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Abstract: In this paper, an output dynamic game model of intertwined supply chains operating
in two different countries is established. The Nash equilibrium point of the model and its stable
region are obtained using nonlinear dynamic principles. The complex properties of the system, such
as stability, period-doubling bifurcations, and chaos, are investigated using numerical simulations.
Our results suggest that the level of output and the system’s profits undergo bifurcation and chaos
with an increase in the output adjustment speed. An interesting phenomenon occurs in that higher
tariffs lead to the expansion of the stable range of the supply chain in the product-exporting country.
The chaotic behavior of the system is sensitive to the value of the initial level of output. In supply
chain competition, each supply chain firm should make suitable adjustments to the speed of output.
To maintain the stability of domestic markets, excessive tariffs should be avoided. It is essential
that each supply chain firm evaluates the potential impacts of different initial output values when
making initial decisions. Using the method of delayed feedback control, the chaotic behavior of the
system can effectively be controlled. These findings offer valuable and novel insight into inter-chain
competition in supply chain networks.
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1. Introduction

As competition among supply chain firms continues to intensify, supply chain compe-
tition has become an important focus of research in the field of management [1–3]. From
the perspective of supply chain networks, companies not only face competition from other
companies in a vertical chain but must also take into account horizontal competition with
other supply chains at the same level. Meanwhile, in operational practice, competition
among enterprises is gradually evolving into inter-chain competition with the goal of
achieving win–win outcomes [4]. Therefore, the study of inter-supply chain competition
can not only enrich and develop the theoretical literature on supply chain system man-
agement but also has important significance for the practical guidance of supply chain
management. Currently, with the advancements in information technology and economics,
globalization has led to a new era of international competition. Supply chains now expand
across many countries and are intricately intertwined [5]. Against this backdrop, one
firm can participate in multiple supply chains, which leads to increased uncertainty and
complexity in inter-chain competition [6]. Any issues that arise in one supply chain may
potentially trigger a chain reaction affecting the entire supply chain system. Therefore,
studying dynamic changes, game relationships, and decision strategies in global supply
chains has become a research hotspot in academia [7,8]. However, the complex dynamics
of interactions, especially in competition within cross-border supply chains, has not been
clearly explained in previous research.

Mathematics 2024, 12, 313. https://doi.org/10.3390/math12020313 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020313
https://doi.org/10.3390/math12020313
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12020313
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020313?type=check_update&version=1


Mathematics 2024, 12, 313 2 of 18

Researchers have extensively developed and examined the concept of supply chain
competition. Initially, scholars concentrated on the phenomenon of competition within
a single supply chain with a single channel, including evolutionary games and strategic
decisions among supply chain participants [1,2]; supply chain decisions considering supply
uncertainty, demand uncertainty, random yield, and consumer preferences [3,9–12]; and
supply chain coordination under various types of contracts [13–15]. Subsequently, dual-
channel supply chains, consisting of both a direct online channel and a traditional retail
channel, have been discussed from different perspectives by researchers. The existing
research on dual-channel supply chains can be divided into two streams: the first stream in
the literature focuses on the price and coordination choices made in dual-channel supply
chains [16–19], and the second stream of research focuses on contract selection in dual-
channel environments [20,21].

These studies mainly focus on competition among several supply chain members.
Considering the characteristics of multiple players in a real-world supply chain, Nagurney
et al. [22,23] introduced a supply chain network competition equilibrium model, develop-
ing a finite-dimensional variational inequality formulation that includes many decision
makers and numerous supply chains. A unified variational inequality framework was
also constructed by Nagurney et al. [24] for the global spatial pricing network equilib-
rium model under tariff quota constraints. On the basis of this model, Yang et al. [25]
and Zhou et al. [26] investigated competitive equilibrium issues in closed-loop supply
chain networks under various carbon tax policies and in global supply chain networks
under various trade policies, respectively. Xiao et al. [27] created a supply chain network
equilibrium model with capacity restrictions and demand unpredictability.

The above literature is limited to the analysis of competition among different members
(i.e., firms) at various tiers of a supply chain and does not consider competition among
supply chains. However, a firm’s competitive advantage largely depends on its supply
chain’s competitive advantage. Competition among firms has gradually evolved into
inter-chain competition [4]. Recently, studies on inter-chain competition have concentrated
on the analysis of the structure of channels (integrated or decentralized) between two
parallel supply chains with exclusive suppliers [28–30], and contract options between two
dual-channel supply chains [31]. Furthermore, Lou et al. [7] developed a model of two
parallel supply chains and analyzed the complex dynamics of the model using numerical
simulations. The results show that both supply chain systems will enter a chaotic state
when the adjustment speed of the price exceeds the domain of attraction. Ma et al. [8]
constructed dynamic decision-making models for low-carbon apparel supply chains and
explored the models’ complex dynamical phenomena of chaos.

There are some real-world supply chain competition scenarios that can be accurately
described by inter-chain competition in parallel supply chains. However, as the global
division of labor continues to be refined, supply chains increasingly exhibit the following
traits: a growing number of participants, multiple tiers, and firms that are able to participate
in multiple supply chains. On this basis, Zhang et al. [32] developed a supply chain
competition model with intertwined structures in which numerous products compete in
multiple marketplaces from the perspective of inter-chain competition. Feng et al. [4]
built an output competition model among global supply chains and examined how trade
policies affect the equilibrium of global supply chain networks. The above two studies
both regard inter-chain competition as a static process: competition is perceived as a
single-stage process or a one-shot game. It is clear that this does not correspond to supply
chain competition in reality. In a real-world scenario, the output decisions made by each
supply chain are modified over time. For instance, the global smartphone shipments of
electronic manufacturers, such as Apple and Samsung, are dynamically adjusted every
quarter. Global supply chain shipments of the iPhone, in particular, reached 70 million units
in Q4 2022 before declining to 58 million units in Q1 2023 [33]. Therefore, the inter-chain
output game is a multi-stage dynamic game process, rather than a single-stage static game.
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In this work, we focused on the following research questions: (1) How can we develop
a model that describes the complex dynamics of competition among cross-border supply
chains? (2) With the provided model, how can we obtain the equilibrium solution of
the problem? (3) How do the parameters of the model affect the dynamic evolution
of the output, and how can we control effects that are already occurring? Firstly, we
establish a discrete dynamical model of inter-chain competition. Secondly, using nonlinear
dynamic principles, we obtain the model’s Nash equilibrium solution and its stable region.
Thirdly, the influence of the parameters is analyzed using numerical simulations. To control
chaos, we apply the delayed feedback control method. This study offers insight into the
output decisions made by supply chain firms and serves as a reference for government
organizations conducting policy analysis.

The paper is organized as follows: the model is provided in Section 2, and Section 3
discusses the model analytically. In Section 4, we present bifurcation diagrams, the maxi-
mum Lyapunov exponent, and time series diagrams using numerical simulations. Also, we
control the chaotic behavior of the model. Lastly, Section 5 is the conclusion of the paper.

2. Model Description and Formulation
2.1. Model Description

We adopt the concept of the product–market chain (PM chain), as proposed by Feng
et al. [4] to describe the inter-chain competition. A PM chain comprises the firms and
activities needed for a product’s procurement, production, transportation, and marketing,
ultimately delivering the final product to a market. We focus on a three-tier PM chain
consisting of raw material suppliers, upstream manufacturers, downstream manufacturers,
and demand markets.

To study the dynamic evolution of inter-chain competition in cross-border supply
chains, we consider a scenario in which there are three representative PM chains between
two countries of product P∗ (country 1 and country 2), as shown in Figure 1. Among these
three PM chains, two represent nonmultinational PM chains within each country, and one
represents a multinational supply chain symbolizing the trade relationship between the
two countries. Without a loss of generality, these three supply chains succinctly describe
the interactive relationships among cross-border supply chains.
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Figure 1. Cross-border supply chain of countries 1 and 2 for product *P . 
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Figure 1. Cross-border supply chain of countries 1 and 2 for product P∗.

The three-tier PM chain s1 = {a1, a3, a5; b1, b3, b5; 1} is shown in Figure 1, where a1,
a3, and a5 are the suppliers of raw materials, upstream manufacturers, and downstream
manufacturers, respectively; b1, b3, and b5 denote the links where the flow of material
occurs; and 1 denotes that the target market of the PM chain is country 1.

Let S = {s1, s2, s3} represent the set of all PM chains as shown in Figure 1, where
s2 = {a2, a4, a6; b2, b4, b7; 2} and s3 = {a2, a4, a6; b2, b4, b6; 1}. Let G = [A, B, J] represent the
cross-border supply chain as a whole, where A, B, and J denote the set of all firms (circles),
all links (black arrow lines), and all consumer markets (hexagons), respectively. Thus,
A = {a1, a2, a3, a4, a5, a6}, B = {b1, b2, b3, b4, b5, b6, b7}, and J = {1, 2}.
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We can conclude that every PM chain is directed toward a certain market, and the
product cannot be completed if any firm or link is removed from the PM chain. Thus,
the consideration of one PM chain as a decision-making unit in a supply chain game
is reasonable.

To increase the number of local jobs and to support local industries, countries usually
implement trade policies related to imported and exported products. Therefore, subsidies
and tariffs are imposed on the cross-border links, which are represented as yellow, dashed
lines in Figure 1. s3 = {a2, a4, a6; b2, b4, b6; 1} is a cross-border PM chain, where b6 is a
cross-border link.

Each firm faces production costs. At the same time, transaction costs occur at the links
with positive material flow, including distribution and transportation costs [4]. In addition
to transaction costs, trade costs occur at the cross-border links, which include subsidies and
tariff costs.

2.2. Model Formulation

The main symbols used in the establishment of the discrete dynamical model for
cross-border supply chains are provided in Table 1.

In a cross-border supply chain, if two PM chains are oriented toward the same market
or contain the same firms, they will directly compete in that market or share the resources
offered by those firms. That is, there exists a competitive relationship between two PM
chains when si ∩ si− ̸= ∅. Taking Figure 1 as an example, we can see s1 ∩ s3 = {1}, which
indicates that PM chains s1 and s3 compete directly in country 1, and there is a direct
competitive relationship between PM Chains s1 and s3. However, s1 ∩ s2 = ∅, which
indicates that there is no direct competition between PM chains s1 and s2.

Thus, the inter-chain relationships in Figure 1 result in direct competition among the
three PM chains. The competitive relationships among the three players are depicted in
Figure 2, where a PM chain represents a game player.
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Three PM chains compete in a Nash–Cournot pattern to meet the consumer demand in
the market. They produce product P∗, and their strategy set involves selecting the optimal
output level, with decisions occurring within a discrete period of time T = 1, 2, . . .. Let X
denote the set of output quantities for P∗, where X = {xs1 , xs2 , xs3}. We assume that P∗ is
sold at the market-clearing price. Then, the market’s demand equals the output quantity of
P∗ by PM chains oriented to the market. When the output quantity of si is xsi (xsi ≥ 0), the
total output quantity of the final product delivered to market j(j ∈ J) is ∑

si∈Sj

xsi , where Sj

represents the set of all PM chains oriented to market J. Thus, in Figure 1, the demand of
the market 1 (i.e., country 1) is xs1 + xs3 and that of market 2 (country 2) is xs2 .

We assume that the sensitivity of the price to demand equals 1. The inverse demand
functions for the three PM chains are defined as follows:

Ps1 = u1 − xs1 − βxs3 (1)

Ps2 = u2 − xs2 (2)
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Ps3 = u1 − βxs1 − xs3 (3)

where uj > 0(j ∈ J) is interpreted as the maximum price of the final products P∗, for
market j; β(0 < β < 1) represents the substitutability of the final products produced by
two countries.

Table 1. Key notations.

Notations Meaning

P∗ The final product
j The end market in Figure 1, j ∈ {1, 2}
si The PM chain in Figure 1, i ∈ {1, 2, 3}
an The firm on the PM chain, n ∈ {1, 2, . . . , 6}
bm The link on the PM chain, m ∈ {1, 2, 3, . . . , 7}

Sets

S The set of all PM chains in Figure 1
A The set of all firms in Figure 1
B The set of all links in Figure 1
J The set of all end markets in Figure 1

Asi The set of all firms on PM chain si
Bsi The set of all links on PM chain si

Functions

Psi The price of P∗ for PM chain si
fansi The output quantity produced by firm an for PM chain si
fan The total output quantity of firm an
Can The total production cost of firm an
lbmsi

The material flow on link bm of chain si
lbm The total material flow on link bm
C1

bm
The transaction cost on link bm

C2
bm

The trade cost on link bm

Cbm The total cost on link bm
Csi The total cost of PM chain si
πsi The profits of the PM chain si

Φsi ,T The marginal profit of the PM chain si in T period

Decision
variables

xsi ,T+1 The output quantity of P∗ on PM chain si in T period

Parameters

ωsi The speed of production adjustment for PM chain si
uj The maximum price of P∗ in market j
β The substitution rate between P∗ produced in the two countries

ρan The output quantity produced by firm an to make one unit of P∗
δansi The binary variable (indicating whether an is involved in PM chain si)
rbm The marginal transaction cost of link bm

σanbm The binary variable (indicating whether bm is involved in PM chain si)
ran The marginal cost of production of firm an
hbm The value of the subsidy imposed on link bm
tbm Unit tariff imposed on link bm
ηbm The binary variable (indicating whether trade policy acts on the link bm)

k Controlling factor

In the supply chain for product P∗, firm an is responsible for providing the corre-
sponding intermediate material. Let ρan represent the quantity of intermediate material
provided by firm an for 1 unit of final product P∗. For example, a screw producer, firm
a1, participates in a PM chain for an automobile tire. Four screws are needed in one tire
(ρa1 = 4), and firm a1 is required to deliver fa1s1 = 40 screws for the PM chain when the
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output quantity of the tire is xs1 = 10. Thus, the output quantity of each firm (an) in PM
chain si can be represented as fansi .

fansi = δansi ρan xsi , n = 1, 2, . . . , 6; i = 1, 2, 3 (4)

Here, δansi is a binary variable. If the firm an participates in PM chain si, then δansi = 1,
otherwise δansi = 0.

Firm an may participate in various PM chains. Thus, the total output quantity of firm
an equals the sum of its own output quantities for all PM chains in which it participates.

fan = ∑
si∈S

δansi ρan xsi , n = 1, 2, 3, . . . , 6; i = 1, 2, 3 (5)

In a complex supply chain system, a firm’s increase in output quantity per unit tends to
result in a nonlinear increase in production costs. In addition, there may be diseconomies of
scale phenomena that occur when the scale of each firm an expands to a certain extent. Thus,
it is appropriate to adopt the quadratic cost function as the production cost function [34]. We
can determine the production cost function of firm an in the PM chain using the following:

Can = ran fan
2, n = 1, 2, 3, . . . , 6 (6)

where ran > 0 represents the marginal cost of production of firm an.
The output quantity of the front-end firm an of link bm determines the material flow

of the link. However, the output quantity of firm an is in turn determined by the output
quantity of the PM chain to which the firm belongs. Therefore, the material flow of each
link can be determined by tracing back the output quantity of P∗. For example, the output
quantity of P∗ for PM chain s1, which is xs1 , determines the output of firm a5 as xs1 and the
output of firm a3 as ρa3 xs1 . Then, the front-end firm a5 for link b5 determines the material
flow for link b5 as xs1 ; the front-end firm a3 determines the material flow for link b3 as
ρa3 xs1 . To ascertain the relationships between firms and links, we use the binary variable
σanbm = 1 to indicate that firm an is the front-end firm of link bm and σanbm = 0 to indicate
that firm an is not the front-end firm of link bm. Then, the material flow of link bm in PM
chain si, lbmsi

, can be expressed as follows:

lbmsi
= σanbm fansi , n = 1, 2, 3, . . . , 6; m = 1, 2, 3, . . . , 7; i = 1, 2, 3 (7)

The total material flow of each link (bm) may be diverted and distributed to multiple
end markets of downstream manufacturers. Therefore, the overall flow of material at each
link (lbm ) can be denoted as follows:

lbm = ∑
si∈S

σanbm fansi , n = 1, 2, 3, . . . , 6; m = 1, 2, 3, . . . , 7; i = 1, 2, 3 (8)

Transaction costs occur at the links with a positive material flow. There may be
diseconomies of scale when the transaction scale expands to a certain extent. Therefore, the
transaction cost function C1

bm
of link bm can be assumed to be quadratic in form.

C1
bm

= rbm lbm
2, m = 1, 2, 3, . . . , 7 (9)

Here, rbm > 0 is the marginal transaction cost for link bm.
Under the subsidy regime, we assume that country 2 imposes a direct subsidy, hbm ,

on the final product exported to country 1. For instance, in Beijing, China, there is a pro-
gram to encourage the export of electromechanical products and enhance the international
competitiveness of related enterprises. It involves the provision of uncompensated finan-
cial assistance, not exceeding RMB 500,000, for the export of electromechanical products.
Similarly, the European Union’s agricultural subsidy policy directly subsidizes agricultural
exports within the EU region [35]. Under the tariff regime, a unit tariff of tbm occurs on the
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final product imported from country 2. For the cross-border links, we assume that the tariff
cost is proportional to the material flow of the links [4]. Thus, the trade cost C2

bm
on link bm

can be assumed as follows:

C2
bm

= ηbm(tbm lbm − hbm), m = 1, 2, 3, . . . , 7 (10)

where ηbm is a binary variable indicating whether a trade policy impacts the link. If yes,
ηbm = 1; otherwise, ηbm = 0.

On the basis of the above analysis, the total cost of link bm can be described as follows:

Cbm = C1
bm

+ C2
bm

, m = 1, 2, 3, . . . , 7 (11)

The total cost of PM chain si can be defined as follows:

Csi = ∑
an∈Asi

Can + ∑
bm∈Bsi

Cbm , n = 1, 2, 3, . . . , 6; m = 1, 2, 3, . . . , 7; i = 1, 2, 3 (12)

where Asi is the set of all firms that participate in PM chain si, and Bsi is the set of all links
participating in PM chain si.

According to (12), the total cost of the three PM chains (s1, s2, and s3) can be given,
respectively, as follows:

Cs1 = Ca1 + Ca3 + Ca5 + Cb1 + Cb3 + Cb5
= [ρa1

2(ra1 + rb1) + ρa3
2(ra3 + rb3) + ρa5

2(ra5 + rb5)]xs1
2 (13)

Cs2 = Ca2 + Ca4 + Ca6 + Cb2 + Cb4 + Cb7

= [ρa2
2(ra2 + rb2) + ρa4

2(ra4 + rb4) + ρa6
2ra6 ](xs2 + xs3)

2 + ρa6
2rb7 xs2

2 (14)

Cs3 = Ca2 + Ca4 + Ca6 + Cb2 + Cb4
+ Cb6

= [ρa2
2(ra2 + rb2 ) + ρa4

2(ra4 + rb4
) + ρa6

2ra6 ](xs2 + xs3 )
2 + ρa6

2rb6 xs3
2 + tba6

xs3 − hb6

(15)

Accordingly, the profits of the three PM chains (s1, s2, and s3) can be given as follows:

πs1 = Ps1 xs1 − Cs1 = (u1 − xs1 − βxs3)xs1 − γs1 xs1
2 (16)

πs2 = Ps2 xs2 − Cs2 = (u2 − xs2)xs2 − γs246(xs2 + xs3)
2 − ρa6

2rb7 xs2
2 (17)

πs3 = Ps3 xs3 − Cs3 = (u1 − βxs1 − xs3 )xs3 − γs246 (xs2 + xs3 )
2 − ρa6

2rb6 xs3
2 − tba6

xs3 + hb6 (18)

where
γs1 = ρa1

2(ra1 + rb1) + ρa3
2(ra3 + rb3) + ρa5

2(ra5 + rb5),

γs246 = ρa2
2(ra2 + rb2) + ρa4

2(ra4 + rb4) + ρa6
2ra6 .

In the Cournot model, each PM chain is aware of the output level of the other PM
chains. When making output decisions, they can observe the total output of the market,
as well as the output of other supply chains. This allows each PM chain to make optimal
production decisions based on complete information. However, in a real-world market, the
game among PM chains is ongoing. Therefore, decision-making by PM chains is a long-term
repetitive dynamic process characterized not only by adaptability but also by long-term
memory. We assume that all firms are bounded rational. That is, if the estimated marginal
profit is negative (positive) in period T, the supply chain firm will reduce (increase) its
output quantity in period T + 1. Such adjustments will be reflected in the output of final
product P∗ in the PM chain si. Therefore, all PM chains in Figure 1 are bounded rational.
Let ωsi (ωsi ≥ 0) represent the output adjustment speed of PM chain si. Then, the output
adjustment process for PM chain si can be expressed as follows:

xsi ,T+1 = xsi ,T + ωsi xsi ,TΦsi ,T , i = 1, 2, 3 (19)
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where Φsi ,T denotes the marginal profit function of the PM chain in period T.

Φsi ,T =
∂πsi ,T
∂xsi ,T

= Psi +
∂Psi
∂xsi

xsi ,T − ∑
a∈Asi

∂Can
∂xsi

− ∑
a∈Bsi

∂Cbm
∂xsi

,

n = 1, 2, 3, . . . , 6; m = 1, 2, 3, . . . , 7; i = 1, 2, 3
(20)

By substituting Equation (20) into Equation (19), the discrete dynamical model for the
inter-chain output game of the studied supply chain can be obtained as follows:

xs1,T+1 = xs1,T + ωs1 xs1,T [u1 − 2(1 + γs1)xs1,T − βxs3,T ]
xs2,T+1 = xs2,T + ωs2 xs2,T [u2 − 2(1 + γs2)xs2,T − 2γs246 xs3,T ]
xs3,T+1 = xs3,T + ωs3 xs3,T [u1 − tb6 − 2(1 + γs3)xs3,T − βxs1,T − 2γs246 xs2,T ]

(21)

where
γs2 = ρa2

2(ra2 + rb2) + ρa4
2(ra4 + rb4) + ρa6

2(ra6 + rb7),

γs3 = ρa2
2(ra2 + rb2) + ρa4

2(ra4 + rb4
) + ρa6

2(ra6 + rb6).

3. Dynamical Analysis for the Model

In the discrete dynamical model (21), by setting xsi ,T+1 = xsi ,T , we can obtain the eight
equilibrium solutions:

E1 = (0, 0, 0), E2 = (
u1

2γs1 + 2
,

u2

2γs2 + 2
, 0), E3 = (

u1

2γs1 + 2
, 0, 0), E4 = (0,

u2

2γs2 + 2
, 0)

E5 = (0, 0,
u1 − tb6

2γs3 + 2
), E6 = (0,

(1 + γs3 )u2 − γs246 (u1 − tb6 )

2(−γs246
2 + γs2 + γs3 + 1 + γs2 γs3 )

,
(1 + γs2 )(u1 − tb6 )− γs246 u2

2(−γs246
2 + γs2 + γs3 + 1 + γs2 γs3 )

)

E7 = (
(2 − β + 2γs3 )u1 + βtb6

4γs3 + 4βγs1 + 4γs1 γs3 + 4 − β2 , 0,
(2 − β + 2γs1 )u1 − (2 + 2γs1 )tb6

4γs3 + 4βγs1 + 4γs1 γs3 + 4 − β2 )

E8 = (
(−2γs246

2+2−β+2γs2+2γs3−βγs2+2γs2 γs3 )u1+βγs246 u2+β(1+γs2 )tb6
A ,

(2β−4−4γs1 )γs246 u1+(4−β2+4γs1+4γs3+4γs1 γs3 )u2+4γs246 (1+γs1 )tb6
2A ,

(2+2γs1+2γs2−βγs2+2γs1 γs2−β)u1−2γs246 (1+γs1 )u2+2(1−γs1−γs2−γs1 γs2 )tb6
A )

where

A = 4γs1 + 4γs2 + 4γs3 + 4γs1 γs2 + 4γs2 γs3 + 4γs1 γs3 − 4γs1 γs246
2 − 4γs246

2 + 4γs1 γs2 γs3 − (1 + γs2)β2 + 4.

E2, E3, and E4 are boundary equilibrium points and non-negative; when u1 > tb6 , E5

is a boundary equilibrium point and non-negative; when
γs246

1+γs2
<

u1−tb6
u2

<
1+γs3
γs246

, E6 is a

boundary equilibrium point and non-negative; when u1 > tb6 and
u1−tb6

u1
< β

2+2γs1
, E7 is

a boundary equilibrium point and non-negative; when 0 <
u1−tb6

u2
<

4β2+4γs1+4γs3+4γs1 γs3
4(1+γs1 )

and u1
u2

>
2γs246 (1+γs1 )

2−βγs2−β , E8 is an interior equilibrium point and non-negative.
The Jacobian matrix of the complex dynamical model (21) is as follows:

J=

 D11 0 −βωs1 xs1

0 D22 −2γs246 ωs2 xs2

−βωs3 xs3 −2γs246 ωs3 xs3 D33

 (22)

where Dii = 1 + ωsi [Φsi − 2(1 + γsi )xsi ], i = 1, 2, 3.
By analyzing the characteristic roots of the Jacobian matrix (22), the stability of the

system can be judged. When the absolute values of all characteristic roots are strictly less
than 1, the equilibrium point tends to be stable, and the equilibrium point is the Nash
equilibrium point of the discrete dynamical model (21) [7].
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To discuss the stable region of the discrete dynamical model (21), we substitute the
Nash equilibrium points into the Jacobian matrix (22). The characteristic polynomial is
obtained as follows:

g(λ) = λ3 + B1λ2 + B2λ + B3 (23)

The discrete dynamical model (21) is also a three-dimensional discrete dynamical
system. According to the Jury’s criterion [36], the discrete dynamical system (21) will
stabilize asymptotically if the following conditions are satisfied.

g(1) = 1 + B1 + B2 + B3 > 0
−g(−1) = 1 − B1 + B2 + B3 > 0
B3

2 − 1 < 0
(B3

2 − 1)2
> (B1B3 − B2)

2

(24)

4. Numerical Simulations

We assume that in terms of production costs, the marginal production cost in the
importing country (country 1) is higher than that in the exporting country (country 2). In
terms of transaction costs, the marginal transaction cost of the cross-border links is higher
than that of domestic links. For the purpose of comparative analysis, we examine an initial
case in which country 1 does not impose tariffs on product P∗ imported from country 2. On
the basis of these considerations and with reference to Zhang et al. [32] and Feng et al. [4],
the following simulation parameters are assumed:

β = 0.3, u1 = 100, u2 = 100, tb6 = 0, hb6 = 28.5, ra1 = ra3 = 1,

ra2 = ra4 = 0.5, ra5 = 2, ra6 = 1, rb1 = rb2 = rb3 = rb4 = rb5 = rb7 = 0.1, rb6 = 0.2

We assume that the suppliers of raw material and the upstream manufacturers require
2 units of materials to produce 1 unit of final product P∗, as shown in Table 2. If a firm
participates in chain si, a value is provided; otherwise, nonparticipation is represented by “-”.

Table 2. List of materials required by each firm.

PM Chain
The Number of Materials Required by the Firm an

ρa1 ρa2 ρa3 ρa4 ρa5 ρa6

s1 2 - 2 - 1 -
s2 - 2 - 2 - 1
s3 - 2 - 2 - 1

The equilibrium solutions of the complex dynamical system (21) are E1 = (0, 0, 0),
E2 = (0, 0, 7.143), E3 = (0, 7.246, 0), E4 = (4.202, 0, 0), E5 = (4.202, 7.246, 0), E6 =
(0, 4.093, 3.752), E7 = (4.113, 0, 7.055), and E8 = (4.158, 4.340, 3.458).

By substituting the above solution into the Jacobian matrix (22), we can observe
that only the characteristic roots of E8 are less than 1. Therefore, E8 is the unique Nash
equilibrium point of the complex dynamical system (21).

The Jacobian matrix at point E8 is given by the following:

J=

1 − 98.958ωs1 0 −1.247ωs1

0 1 − 59.897ωs2 −50.344ωs2

−1.037ωs3 −40.113ωs3 1 − 48.415ωs3

 (25)
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The characteristic polynomial can be calculated as Equation (23). Where

B1 = 98.958ωs1 + 59.897ωs2 + 48.415ωs3 − 3,
B2 = 5927.287ωs1 ωs2 + 4789.758ωs1 ωs3 + 880.464ωs2 ωs3 − 197.916ωs1

−119.794ωs2 − 96.830ωs3 + 3
,

B3 = 98.958ωs1 + 59.897ωs2 + 48.415ωs3 − 5927.287ωs1 ωs2 − 4789.758ωs1 ωs3

−880.464ωs2 ωs3 + 87051.539ωs1 ωs2 ωs3 − 1
.

According to the Jury criterion (24), the stable region of E8 is shown in Figure 3.
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Figure 3. The system’s stable region of output adjustment speeds ωs1 , ωs2 , and ωs3 .

No matter the initial output level of the PM chain, when the values of the output
adjustment speed (ωs1 , ωs2 , ωs3) are within the yellow region shown in Figure 3, the output
level will eventually stabilize at E8. If not, complex behaviors like bifurcation and chaos
will occur.

4.1. Bifurcation and Chaos Simulations
4.1.1. The Influence of Output Adjustment on the System

To obtain the bifurcation diagrams of the output decisions of PM chain si with respect
to its own adjustment speed ωsi , we fix the output adjustment speed of the other PM chains
at ωsi = 0.01. The results are shown in Figure 4. Additionally, we calculate the maximum
Lyapunov exponent, which is an indicator of the system’s stability, and plot its variation in
Figure 5.

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 20 
 

 

1 2 31 98.958 59.897 48.415 3s s sB ω ω ω= + + −
,  

1 2 1 3 2 3 1

2 3

2 5927.287 4789.758 880.464 197.916
119.794 96.830 3

s s s s s s s

s s

B ω ω ω ω ω ω ω
ω ω

= + + −

− − +
,  

1 2 3 1 2 1 3

2 3 1 2 3

3 98.958 59.897 48.415 5927.287 4789.758
880.464 87051.539 1

s s s s s s s

s s s s s

B ω ω ω ω ω ω ω
ω ω ω ω ω

= + + − −

− + −
. 

According to the Jury criterion (24), the stable region of 8E  is shown in Figure 3. 

 
Figure 3. The system’s stable region of output adjustment speeds 

1s
ω , 

2s
ω , and 

3s
ω . 

No matter the initial output level of the PM chain, when the values of the output 
adjustment speed 

1 2 3
( , , )s s sω ω ω  are within the yellow region shown in Figure 3, the out-

put level will eventually stabilize at 8E . If not, complex behaviors like bifurcation and 
chaos will occur. 

4.1. Bifurcation and Chaos Simulations 
4.1.1. The Influence of Output Adjustment on the System 

To obtain the bifurcation diagrams of the output decisions of PM chain is  with re-
spect to its own adjustment speed 

is
ω , we fix the output adjustment speed of the other 

PM chains at 0.01
is

ω = . The results are shown in Figure 4. Additionally, we calculate the 
maximum Lyapunov exponent, which is an indicator of the system’s stability, and plot its 
variation in Figure 5. 

 
Figure 4. (a) Bifurcation diagram of the output of s1 with respect to ωs1 ; (b) bifurcation diagram of
the output of s2 with respect to ωs2 ; (c) bifurcation diagram of the output of s3 with respect to ωs3 .



Mathematics 2024, 12, 313 11 of 18

Mathematics 2024, 12, x FOR PEER REVIEW 12 of 20 
 

 

Figure 4. (a) Bifurcation diagram of the output of 1s  with respect to 
1s

ω ; (b) bifurcation diagram 

of the output of 2s  with respect to 
2s

ω ; (c) bifurcation diagram of the output of 3s  with respect 

to 
3s

ω . 

 
Figure 5. (a) Maximum Lyapunov exponent of the output of 1s  with respect to 

1s
ω ; (b) maximum 

Lyapunov exponent of the output of 2s  with respect to 
2s

ω ; (c) maximum Lyapunov exponent 

of the output of 3s  with respect to 
3s

ω . 

In Figures 4a and 5a, when 
1

0 0.0201sω< <  (i.e., the Lyapunov exponent is negative), 

the output level of the PM chain 1s  is stable; when 
1

0.0201sω =  (i.e., the Lyapunov ex-
ponent is zero), the output level of 1s  occurs at the bifurcation; when 

1
0.0247sω =  and 

1
0.0257sω =  (i.e., the Lyapunov exponent is zero), the output level of 1s  occurs at the 

bifurcation again. Therefore, 
1

0.0202 0.0247sω< <   is the two-periodic orbit, and 

1
0.0247 0.0257sω< <  is the four-periodic orbit. In addition, when 

1
0.0257sω >  (i.e., the 

Lyapunov exponent is positive), there is an emergence of the chaotic state of the output of 
1s . Similar phenomena can also be observed in Figures 4b,c and 5b,c. 

Therefore, as the output adjustment of each PM chain is continuously increasing, the 
output levels of the three PM chains show stability, period-doubling bifurcations, and 
eventually reach a chaotic state. 

To explore the influence of output adjustments on the system (21), we fix 
2

0.011sω =  

and 
3

0.026sω = , and the bifurcation diagram of the system is shown in Figure 6a. The 
bifurcation diagrams created by fixing other parameter combinations are shown in Figure 
6b–d and show the chaotic attractor of the system. 

Figure 5. (a) Maximum Lyapunov exponent of the output of s1 with respect to ωs1 ; (b) maximum
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output of s3 with respect to ωs3 .

In Figures 4a and 5a, when 0 < ωs1 < 0.0201 (i.e., the Lyapunov exponent is negative),
the output level of the PM chain s1 is stable; when ωs1 = 0.0201 (i.e., the Lyapunov exponent
is zero), the output level of s1 occurs at the bifurcation; when ωs1 = 0.0247 and ωs1 = 0.0257
(i.e., the Lyapunov exponent is zero), the output level of s1 occurs at the bifurcation again.
Therefore, 0.0202 < ωs1 < 0.0247 is the two-periodic orbit, and 0.0247 < ωs1 < 0.0257 is
the four-periodic orbit. In addition, when ωs1 > 0.0257 (i.e., the Lyapunov exponent is
positive), there is an emergence of the chaotic state of the output of s1. Similar phenomena
can also be observed in Figures 4b,c and 5b,c.

Therefore, as the output adjustment of each PM chain is continuously increasing, the
output levels of the three PM chains show stability, period-doubling bifurcations, and
eventually reach a chaotic state.

To explore the influence of output adjustments on the system (21), we fix ωs2 = 0.011
and ωs3 = 0.026, and the bifurcation diagram of the system is shown in Figure 6a. The bifur-
cation diagrams created by fixing other parameter combinations are shown in Figure 6b–d
and show the chaotic attractor of the system.

Figure 6a shows that when 0 < ωs1 < 0.02016, the system is in a stable state. When
ωs1 = 0.02015, bifurcation occurs in the system for the first time and enters a two-period
orbit. When ωs1 further increases to 0.02468, bifurcation occurs in the system a second time
and enters a four-period orbit. Similarly, when ωs1 = 0.02568, bifurcation in the system
occurs for the third time. As ωs1 continues to increase, the system eventually enters a
chaotic state.

Figure 6b and Figure 6c show that as ωs2 and ωs3 increase, the system reaches a stable
state and a period-doubling bifurcation and chaotic state, respectively, similar to Figure 6a.

Figure 7 shows the bifurcation and chaos phenomena in three-dimensional space with
respect to ωs2 and ωs3 . With the increase in the output adjustment speed of ωs2 , the stable
range of s2 will decrease, and s3 will enter a chaotic state. Similarly, an increase in ωs3 will
reduce the stable range of s3 and cause the output level of s2 to eventually enter a state of
bifurcation or even chaos.

We can conclude that the system (21) will lose stability as the output adjustment
speed increases. When the adjustment speed of any PM chains in the studied supply
chain surpasses a specific threshold, the system will eventually enter a chaotic state. This
phenomenon leads to fluctuations not only in the output of one PM chain but also in the
output of the entire system. This causes further fluctuations in the market. Therefore, in
order to avoid market fluctuations as much as possible, it is crucial that each PM chain
makes an effort to control the adjustment speed of the output.
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Figure 6. (a) Bifurcation diagram of the outputs of s1, s2, and s3 with respect to ωs1 when ωs2 = 0.011
and ωs3 = 0.026; (b) bifurcation diagram of the outputs of s1, s2, and s3 with respect to ωs2 when
ωs1 = 0.016 and ωs3 = 0.026; (c) bifurcation diagram of the outputs of s1, s2, and s3 with respect to
ωs3 when ωs1 = 0.016 and ωs2 = 0.026; (d) chaotic attractor of the system at ωs1 = 0.016, ωs2 = 0.027,
and ωs3 = 0.026.
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Figure 7. (a) Three-dimensional bifurcation diagram of the output of s2 with respect to ωs2 and ωs3 ;
(b) three-dimensional bifurcation diagram of the output of s3 with respect to ωs2 and ωs3 .

4.1.2. Influence of Output Adjustment on the System

When the adjustment speed of the output surpasses a specific threshold, the output
level of the system (21) will enter a chaotic state, which also affects the profits of each PM
chain. Thus, to explore the influence of the output adjustment on the system’s profits, we
fixed the same parameters as in Figure 6a, Figure 6b, and Figure 6c, and the results are
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shown in Figure 8a, Figure 8b, and Figure 8c, respectively. The intervals of the stable, period-
doubling bifurcation, and chaotic states shown in Figure 8 are consistent with Figure 6.
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Figure 8. (a) Bifurcation diagram of the profits of s1, s2, and s3 with respect to ωs1 when ωs2 = 0.011
and ωs3 = 0.026; (b) bifurcation diagram of the profits of s1, s2, and s3 with respect to ωs2 when
ωs1 = 0.016 and ωs3 = 0.026; (c) bifurcation diagram of the profits of s1, s2, and s3 with respect to ωs3

when ωs1 = 0.015 and ωs2 = 0.026.

Figure 8 shows that the system’s profits change from a stable to period-doubling
bifurcation state and eventually enter a chaotic state as the adjustment speeds of ωs1 , ωs2 ,
and ωs3 increase, respectively. The long-term development of the three PM chains will
be severely hampered by the fluctuation in profits. Furthermore, the profits of PM chain
s1, as shown in Figure 8a, fall after entering a period-doubling bifurcation state, which
suggests that an excessive output adjustment speed not only destabilizes but also decreases
the profits of PM chain s1. To protect the profits of the entire system, each PM chain firm
should make suitable adjustments to the speed of output.

Figure 9 shows the three-dimensional profits diagrams of s2 and s3 with respect to ωs2 ,
ωs3 and ωs1 , ωs2 . In Figure 9a, when ωs2 is small, the increase in ωs3 does not destabilize
the profits of s2 and s3. However, when ωs2 is large, the increase in ωs3 will cause the profits
of both s2 and s3 to decline and eventually enter a chaotic state. This shows that for an
exporting country, when the output adjustment speed of export products is too high, the
profits of the supply chain in the exporting country will decline. This is unfavorable for
exporting countries, so they should opt for a smaller adjustment speed for the quantity of
exports. In Figure 9b, when the value of ωs2 is relatively small, the increase in ωs1 results in
an overall rise in the profits of s2 and s3. However, when ωs2 is large, the increase in ωs1 will
cause the profits of both s2 and s3 to decline. By comprehensively analyzing Figure 9a,b, we
can conclude that, whether making decisions on the export quantity or the level of domestic
output, the exporting country should adopt a relatively smaller output adjustment speed.
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4.1.3. Influence of Tariffs on the System

The analysis above was based on the assumption that country 1 does not impose tariffs
on country 2. To investigate the influence of tariffs on system dynamics, we conducted
simulations with different tariff levels, which are represented by the parameter tb6 . The
results are presented in Figure 10a,b.
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Figure 10a shows a three-dimensional bifurcation diagram of s2 and s3 with respect
to ωs3 and tb6 . When the unit tariff cost increases, the equilibrium of the output level of
PM chain s3 declines, and the stable ranges of s2 and s3 are reduced. It is more challenging
for products to enter overseas markets, and the supply chain of imported goods is more
unstable, when higher tariffs are imposed on the products.

Figure 10b shows that when the adjustment speed ωs2 rises, changes in the unit tariff
cost tb6 have no effect on the dynamic evolution of the PM chain s1, but they influence s2
and s3. As the unit tariff cost tb6 increases from 0 to 0.5, the equilibrium output level of
PM chain s2 increases, while that of the PM chain s3 declines. Additionally, as the unit
tariff cost tb6 rises, there is an expansion in the stable range of PM chains s2 and s3. This
indicates that for the tariff-imposing country (country 1), although the increase in tariffs
can protect domestic producers, it can also lead to the expansion of the stable range of the
PM chain in the product-exporting country (country 2). Thus, when the output adjustment
speed surpasses a specific threshold, the PM chains of country 2 enter a bifurcation state or
even a chaotic state, whereas the PM chains of country 1 exhibit sustained stability. This is
unfavorable for the tariff-imposing country (country 1). Moreover, the likelihood of such
an adverse situation increases as tariffs increase. To prevent fluctuations in its own market,
the tariff-imposing country should impose appropriate tariffs.

4.1.4. Influence of Initial Values on the System

In Figure 3, we can see that when the adjustment speeds of s1, s2, and s3 are 0.029,
0.049, and 0.059, respectively, the system is in a chaotic state. This means that at these
adjustment speeds, the output level of each PM chain will fluctuate unpredictably over
time. To explore the influence of the initial values on the chaotic state of the system, we
made slight adjustments to the equilibrium output level E8 of the three PM chains denoted
as F1 = (4.159, 4.340, 3.458), F2 = (4.158, 4.341, 3.458), and F3 = (4.158, 4.340, 3.459), and
plotted a time series graph, as shown in Figure 11.
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Figure 11 shows that during the early stages of the system’s evolution, the output
levels based on equilibrium point E8, as the initial value, exhibited relatively stable changes
over time. However, when F1, F2, and F3 were used as initial values, the trajectory of the
output levels showed significant fluctuations. As the system continuously evolves, the
trajectories of the output levels based on equilibrium point E8, as the initial value, differ
significantly from the trajectories based on F1, F2, and F3 as initial values. Overall, we can
conclude that the chaotic state of the system (21) is sensitive to initial values, and even
slight differences in the initial conditions can lead to substantial variations in the evolution
of the system (21).

4.2. Chaos Control

On the basis of the above analysis, we can conclude that chaos will cause damage to
the system, which causes profits to fall and fluctuate irregularly. We applied the delayed
feedback control method to control the system’s chaotic behavior [37]. In our study, a PM
chain is a game player, and the firms in it all make efforts to achieve an output of xsi for the
final product. Therefore, firms in the PM chain have the same output adjustment speed
and control factor k for delayed feedback decision-making. When the time delay of PM
chain s2 is chosen as 1, the control system can be described as follows:

xs1,T+1 = xs1,T + ωs1 xs1,T [u1 − 2(1 + γs1)xs1,T − βxs3,T ]
xs2,T+1 = xs2,T + ωs2 xs2,T [u2 − 2(1 + γs2)xs2,T − γs246 xs3,T ] + Z2
xs3,T+1 = xs3,T + ωs3 xs3,T [u1 − tb61 − 2(1 + γs3)xs3,T − βxs1,T − 2γs246 xs2,T ]

(26)

where Z2 = k(xs2,T − xs2,T+1), k is a controlling factor.
When the time delay of PM chains s1, s2, and s3 are all chosen as 1, the control system

can be represented as follows:
xs1,T+1 = xs1,T + ωs1 xs1,T [u1 − 2(1 + γs1)xs1,T − βxs3,T ] + Z1
xs2,T+1 = xs2,T + ωs2 xs2,T [u2 − 2(1 + γs2)xs2,T − γs246 xs3,T ] + Z2
xs3,T+1 = xs3,T + ωs3 xs3,T [u1 − tb61 − 2(1 + γs3)xs3,T − βxs1,T − 2γs246 xs2,T ] + Z3

(27)

where Z1 = k(xs1,T − xs1,T+1), Z3 = k(xs3,T − xs3,T+1).
Figure 12 shows that the system’s chaotic state stabilized with an increase in k, which

indicates that the method of delayed feedback control is effective for controlling chaos
in the system (21). This further indicates that a PM chain firm should adjust its output
level by considering not only the last period’s profits as a benchmark but also the profits
of further previous periods as a reference to improve the stability when making decisions.
Comparing Figure 12a and Figure 12b, we also notice that the transition from a chaotic
state to stable state in Figure 12b occurred faster than Figure 12a, which indicates that each
PM chain firm in the system should adopt the delayed feedback control method to adjust
its level of output.
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5. Conclusions

We established a discrete dynamical model for an output game from the perspective
of inter-chain competition and obtained the Nash equilibrium point and its stable region.
From the numerical simulations, bifurcation diagrams, maximum Lyapunov exponents,
and time series graphs are presented to illustrate the complex dynamic behaviors of the
dynamical model.

Our research showed that the output adjustment speed has a significant impact on
the stability of the whole supply chain system. It can magnify fluctuations in the level
of output in a supply chain system and can eventually lead to a chaotic state when the
output adjustment speed surpasses a specific threshold. Supply chain firms need to pay
attention to whether the output adjustment speed is excessive, as this will not only cause
instability in the supply chain in which it participates but also reduce the profits of the
supply chain in which it participates. To protect their own profits, each supply chain firm
should adjust its output level to a lower speed. The increase in tariffs will expand the stable
range of the PM chain in the product-exporting country. Therefore, to prevent fluctuations
in its own market, governments of tariff-imposing countries should impose appropriate
tariffs. Additionally, the chaotic behavior of the system is sensitive to the initial level of
output. Each PM chain should evaluate the potential impacts of different initial output
values carefully. When the market is in a chaotic state, applying the method of delayed
feedback control would have an effect on the system stability. To maintain system stability
and prevent profit loss, it is particularly important for each PM chain firm to adjust its
output level by considering not only the profits of the last period but also the profits of
further previous periods as references. Government organizations should also actively
introduce relevant policies to regulate the phenomena of chaos.

To better explore the nature of solutions of inter-chain competition and the complexity
of dynamic evolution, our study selectively focused on three representative supply chains
within a global supply chain network. Therefore, there are some limitations of this study,
and a great deal of work is yet to be completed. More complex scenarios, such as the export
of raw materials or intermediate products, as well as special cases like tariff exemptions
between countries with technological disparities, were not considered in our model. Inter-
estingly, if a company engages in the export of raw materials or intermediate materials, a
new PM chain would be added to the game system based on our model. Subsequently, this
new PM chain must be incorporated into the nonlinear dynamical system model, leading
to an increase in model’s dimensionality and analytical complexity. Thus, enriching our
model is an interesting subject for future study.
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