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Abstract: In this work we start developing a Riemann-type integration theory on spaces which are
equipped with a fractal structure. These topological structures have a recursive nature, which allows
us to guarantee a good approximation to the true value of a certain integral with respect to some
measure defined on the Borel σ-algebra of the space. We give the notion of Darboux sums and lower
and upper Riemann integrals of a bounded function when given a measure and a fractal structure.
Furthermore, we give the notion of a Riemann-integrable function in this context and prove that
each µ-measurable function is Riemann-integrable with respect to µ. Moreover, if µ is the Lebesgue
measure, then the Lebesgue integral on a bounded set of Rn meets the Riemann integral with respect
to the Lebesgue measure in the context of measures and fractal structures. Finally, we give some
examples showing that we can calculate improper integrals and integrals on fractal sets.
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1. Introduction

Fractal structures were introduced in [1] to study non-Archimedean quasimetrization,
although it is true that they have a wide range of applications. Some of them can be
found in [2] and include metrization, topological and fractal dimension, filling curves,
completeness, transitive quasi-uniformities, and inverse limits of partially ordered sets.

One of the most recent applications of fractal structures is to construct a probability
measure by taking advantage of their recursive nature. For some reference on this topic,
we refer the reader to [3,4]. The idea of this construction is defining a pre-measure on the
elements of a fractal structure or some topological structures induced by it, so that, from
several sufficient conditions and characterizations, we have extended that pre-measure to a
probability measure on the Borel σ-algebra of the space. Indeed, the authors proved that
each probability measure defined in a space with a fractal structure can be constructed by
following the procedure mentioned.

On the other hand, the classical theory of Riemann-type integration starts from a
bounded function on a compact rectangle of Rn and a collection of almost disjoint compact
sets whose union is the said rectangle, which we refer to by the name partition. From
the function and the partition, the lower and upper Darboux sums are defined, and by
taking the supremum and the infimum of these sums over all the possible partitions, we
get the lower and upper Riemann integrals, respectively. Section 2.3 recalls, in more detail,
some different basic results and notions of this theory. Talking about a partition in the
environment of the calculation of Riemann-type integrals suggests considering a fractal
structure so that, based on each of its levels, we can obtain the lower and upper sums.
Consequently, it will make sense to talk about a Riemann integral, although the volume
can be replaced by a measure that is defined in the σ-algebra of the space in which we
are working. Furthermore, it makes sense to think that considering a higher level of the
fractal structure can guarantee a better approximation to the true value of the integral.
Thus, interest arises in studying the application of fractal structures to the development of
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a Riemann-type integration theory, with respect to a certain measure defined in the space,
and that is the main objective of this work. For this purpose, we first give the notion of
Darboux sums with respect to a measure and a fractal structure in Section 3. After that,
we introduce the notion of a Riemann-integrable function with respect to a measure and a
fractal structure on a certain space in Section 4 and prove a Riemann theorem in this context
(see Section 5). Moreover, in Section 6 we prove that if a bounded function is Riemann-
integrable, its integral does not depend on the chosen fractal structure, so we just have to
refer to the measure defined on the σ-algebra of the space. It is also shown that the integral
introduced coincides with the Riemann integral in Rn and with the Lebesgue integral with
respect to the measure. In the last section, we show some examples to illustrate this theory.
Finally, it is worth highlighting that in the literature there are already other works related
to the calculation of Riemann-type integrals on other types of spaces. For example, in [5–8].

2. Preliminaries
2.1. Fractal Structures

Despite being introduced in [1] for a topological space, fractal structures can be defined
in a set, and this will be the definition we use in this work, as has been used previously in
other works.

First, recall that a cover Γ2 is a strong refinement of another cover Γ1, written as
Γ2 ≺≺ Γ1, if Γ2 is a refinement of Γ1 (that is, each element of Γ2 is contained in some element
of Γ1), denoted by Γ2 ≺ Γ1, and for each B ∈ Γ1, it holds that B =

⋃{A ∈ Γ2 : A ⊆ B}
(equivalently, for each B ∈ Γ1 and x ∈ B there exists A ∈ Γ2 such that x ∈ A ⊆ B). The
definition of a fractal structure is as follows.

Definition 1. A fractal structure on a set X is a countable family of coverings Γ = {Γn : n ∈ N}
such that Γn+1 ≺≺ Γn. The cover Γn is called the level n of the fractal structure.

A fractal structure is said to be finite if each level is a finite covering.
In what follows, we introduce two simple examples of fractal structures. The first is

defined in [0, 1] and its levels are given by Γn = {[ k
2n , k+1

2n ] : k = 0, . . . , 2n − 1} for each
n ∈ N. Note that the previous fractal structure is finite (since it has a finite number of
elements at each level). However, if we consider the Euclidean space R, it is defined as the
countable family of coverings Γ = {Γn : n ∈ N}, where Γn = {[ k

2n−1 , k+1
2n−1 ] : k ∈ Z} for each

n ∈ N. In both cases, Γ is known as the natural fractal structure.
A fractal structure induces (see [1]) a transitive base of a quasi-uniformity given by

{UΓn : n ∈ N}, where UΓ = {(x, y) ∈ X × X : y ̸∈ ⋃{A ∈ Γ : x ̸∈ A}} for each cover Γ.
If Γ is a fractal structure on a set X and A ⊆ X, the fractal structure induced on A

(see [1]) is defined as ΓA = {ΓA
n : n ∈ N}, where ΓA

n = {B ∩ A : B ∈ Γn} for each n ∈ N.

2.2. Measure Theory

Now we recall some definitions related to measure theory from [9]. Let X be a set,
then there are several classes of sets of X. If R is a non-empty collection of subsets of X, we
say that R is a ring if it is closed under complement and finite union. Furthermore, given
Q is a non-empty collection of subsets of X, it is said to be an algebra if it is a ring such that
X ∈ Q. Moreover, a non-empty collection of subsets of X, A, is a σ-algebra if it is closed
under complement and countable union and X ∈ A. If A is a σ-algebra on X, then the pair
(X,A) is called a measurable space.

For a given topological space, (X, τ), B = σ(τ) is the Borel σ-algebra of the space, that
is, it is the σ-algebra generated by the open sets of X.

A set mapping is said to be σ-additive if µ(
⋃∞

n=1 An) = ∑∞
n=1 µ(An) for each countable

collection {An}∞
n=1 of pairwise disjoint sets in A.
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Definition 2 ([9], Section 7). Given a measurable space (Ω,A), a measure µ is a non-negative
and σ-additive set mapping defined in A such that µ(∅) = 0. The triple (Ω,A, µ) is called a
measure space.

A measure is monotonic (which means that if A, B ∈ A are such that A ⊆ B, then
µ(A) ≤ µ(B)). It is also continuous from below: if (An) is a monotonically non-decreasing
sequence of sets (which means that An ⊆ An+1 for each n ∈ N), then µ(An) → µ(

⋃
n∈N An).

Moreover, it is continuous from above: if (An) is monotonically non-increasing (which
means that An+1 ⊆ An for each n ∈ N) and µ(A1) < ∞, then µ(An) → µ(

⋂
n∈N An). Finally,

it is sub-σ-additive (which means that µ(
⋃∞

n=1 An) ≤ ∑∞
n=1 µ(An) for each countable

collection {An}∞
n=1).

2.3. Riemann Integration Theory

In this subsection, we base on [10] in order to give a generalization of the n-dimensional
Riemann integration theory.

A compact interval in the n-dimensional Euclidean space Rn is a product J = [a1, b1]×
. . . × [an, bn] where ai, bi ∈ R and ai ≤ bi for each i = 1, . . . , n. A partition D of this interval
is an n-tuple (D1, . . . ,Dn) where Di is a partition of [ai, bi] for each i = 1, . . . , n, that is, a
sequence ti1, ti2, . . . , tin such that ai = ti1 < ti2 < . . . < tin = bi, which can also be seen
as the sequence of compact intervals [ai, ti2], [ti2, ti3], . . . , [tini−1 , bi]. The partition norm is
defined as ||D|| = max{tik+1 − tik : k = 1, . . . , ni; i = 1, . . . , n}.

The partition D is called a refinement of a partition D′ = (D′
1, . . . ,D′

n) if the sequences
on D are subsequences of the sequences ai = t′i1 < t′i2 < . . . < t′in = bi. Note that two
partitions always have a common refinement.

Moreover, we can define the volume of an interval J = [a1, b1]× . . . × [an, bn] as the
number vol(J) = ∏n

i=1(bi − ai). Let f be a bounded function on an interval J and let D be
a partition of J. The lower and upper Darboux sums of f in D are defined, respectively, by

s( f ;D) = ∑
K∈|D|

mK · vol(K) and S( f ;D) = ∑
K∈|D|

Mk · vol(K)

where
mK = inf{ f (x) : x ∈ K} and Mk = sup{ f (x) : x ∈ K}

and |D| denotes the family of all sets of the partition D. Note that if D is a refinement of D′,
then s( f ;D) ≥ s( f ;D′) and S( f ;D) ≤ S( f ;D′) and, if we consider a common refinement,
it can be proved that s( f ,D) ≤ S( f ;D′) for each pair of partitions D and D′. Now, we
recall the definition of the lower and upper Riemann integrals of f over J.

Definition 3. Let f be a bounded function on an interval J = [a1, b1]× . . . × [an, bn] and D be a
partition of J. Then the lower and upper sums of f over J are defined, respectively, by∫

J
f = sup

D
s( f ;D) and

∫
J
f = inf

D
S( f ;D)

and, in case that both values coincide, we refer to that number by the name of the Riemann integral
of f over J and denote it by ∫

J
f

Two of the most well-known theorems in the classical theory of Riemann integral are
the following ones:

Theorem 1. A function f is Riemann-integrable if and only if for each ε > 0, there exists a
partition D such that

S( f ;D)− s( f ;D) < ε
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A selection for a partition D is a collection of points ξ = (xD)D∈D such that xD ∈ D
for each D ∈ D. The Riemann sum for a function f relative to a partition D and a selection
ξ = (xD)D∈D is defined as S( f ;D; ξ) := ∑D∈D f (xD) · vol(D).

The next theorem is sometimes referred to as Riemann’s theorem (see, for example,
[Th. 7.1.11] [11]).

Theorem 2. A function f is Riemann-integrable if and only if there exists a number L ∈ R with
the following property: for each ε > 0, there exists δ > 0 such that |S( f ;D; ξ) − L| < ε for
each partition D with ||D|| < δ and for each selection ξ = (xD)D∈D for D. Moreover, if f is
Riemann-integrable, then L =

∫
f .

3. Darboux Sums with Respect to a Measure and a Fractal Structure

In this section, we see how to define the Darboux sums from a measure defined on
a space with a fractal structure. This measure plays a similar role to that played by the
Lebesgue measure in the classical theory of Riemann integrals when defining Darboux
sums. For that purpose, we first need to give some conditions on the fractal structure we
define on the space.

Definition 4. Let (X,S , µ) be a measure space and Γ be a fractal structure on X. Γ is said to be
µ-disjoint if the following conditions hold:

1. Γn ⊆ S is countable for each n ∈ N.
2. µ(B ∩ J) = 0 for each B, J ∈ Γn such that B ̸= J and each n ∈ N.
3. µ(A) < ∞ for each A ∈ Γn and each n ∈ N.

Darboux sums are defined for each level of a fractal structure in a space as follows:

Definition 5. Let (X,S , µ) be a measure space, Γ = {Γn : n ∈ N} be a µ-disjoint fractal structure,
and f : X → R be a bounded function. Then, for each J ∈ Γn, we set

m( f ; J) = inf{ f (x) : x ∈ J}

M( f ; J) = sup{ f (x) : x ∈ J}

so that the lower and upper Darboux sums with respect to µ for each level of the fractal structure are
given by

L( f ; Γn, µ) = ∑
J∈Γn

m( f ; J)µ(J)

and
U( f ; Γn, µ) = ∑

J∈Γn

M( f ; J)µ(J)

respectively, when the series are absolutely convergent.

Next, we see that the first condition in Definition 4 allows us to calculate both the
Darboux sums and the measure of each element used in them, while the second condition
means that overlapping is not a problem.

Proposition 1. Let Γ = {Γn : n ∈ N} and Γ∗ = {Γ∗
n : n ∈ N} be two fractal structures on X

and Γ = Γ ∨ Γ∗ = {Γn : n ∈ N} the family given by Γn = {B ∩ J : B ∈ Γn, J ∈ Γ∗
n} for each

n ∈ N. Then Γn ≺≺ Γn, Γ∗
n for each n ∈ N and Γ is a fractal structure.

Proof. First, we prove that Γn ≺≺ Γn. Given A ∈ Γn, then there exist B ∈ Γn and C ∈ Γ∗
n

such that A = B ∩ C. It is clear that A ⊆ B and hence Γn ≺ Γn. On the other hand, given
A ∈ Γn and x ∈ A, since Γ∗

n is a covering, there exists B ∈ Γ∗
n such that x ∈ B and therefore

x ∈ A ∩ B ⊆ A and A ∩ B ∈ Γn. It follows that Γn ≺≺ Γn. Analogously, it can be shown
that Γn ≺≺ Γ∗

n.
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Now we see that Γ is a fractal structure on X, that is, it is a countable family of
coverings of X such that Γn+1 ≺≺ Γn for each n ∈ N.

Let n ∈ N. Given x ∈ X, there exist B ∈ Γn and J ∈ Γ∗
n such that x ∈ B and x ∈ J,

since Γn and Γ∗
n are both coverings of X. Hence, x ∈ B ∩ J ∈ Γn, which means that Γn is a

covering of X.
On the other hand, let H = B ∩ J ∈ Γn+1 be such that B ∈ Γn+1 and J ∈ Γ∗

n+1.
Then there exist B′ ∈ Γn such that B ⊂ B′ and J′ ∈ Γ∗

n such that J ⊂ J′. Therefore,
B ∩ J ⊂ B′ ∩ J′ ∈ Γn and hence Γn+1 ≺ Γn.

Finally, let H′ = B′ ∩ J′ ∈ Γn be such that B′ ∈ Γn and J′ ∈ Γ∗
n and x ∈ H′ = B′ ∩ J′.

Since Γn+1 ≺≺ Γn and Γ∗
n+1 ≺≺ Γ∗

n, there exist B ∈ Γn+1 such that x ∈ B ⊆ B′ and
J ∈ Γ∗

n+1 such that x ∈ J ⊆ J′. It follows that x ∈ B ∩ J ⊆ B′ ∩ J′ = H′ and B ∩ J ∈ Γn.
Therefore, Γn+1 ≺≺ Γn, and Γ is a fractal structure.

Remark 1. Let (X,S , µ) be a measure space and Γ and Γ∗ be two µ-disjoint fractal structures on
X. Then Γ ∨ Γ∗ is a µ-disjoint fractal structure on X.

Proof. If A, B ∈ Γn and C, D ∈ Γ∗
n then (A∩C)∩ (B∩D) ⊆ A∩ B and (A∩C)∩ (B∩D) ⊆

C ∩ D. If A ∩ C ̸= B ∩ D then A ̸= B or C ̸= D and hence µ(A ∩ B) = 0 or µ(C ∩ D) = 0,
since Γ and Γ∗ are µ-disjoint. It follows that µ((A ∩ C) ∩ (B ∩ D)) = 0 by the monotonicity
of the measure.

Lemma 1. Let (X,S , µ) be a measure space and Γ be a µ-disjoint fractal structure on X. Then:

1. µ(A ∪ B) = µ(A) + µ(B) for each A, B ∈ Γn such that A ̸= B.

2. Given k different elements of Γn, A1, ..., Ak, then µ

(
k⋃

i=1

Ai

)
=

k

∑
i=1

µ(Ai).

3. Let {Ai : i ∈ N} be a countable family of different elements of Γn. Then µ

(⋃
i∈N

Ai

)
=

∞

∑
i=1

µ(Ai).

Proof.

1. Let A, B ∈ Γn with A ̸= B. Then we can write µ(A ∪ B) + µ(A ∩ B) = µ(A) + µ(B).
Since µ(A ∩ B) = 0 by hypothesis, it follows that µ(A ∪ B) = µ(A) + µ(B).

2. Let A1, . . . , Ak ∈ Γn be such that they are all different. Reasoning by induction on k,

we prove that µ

(
k⋃

i=1

Ai

)
=

k

∑
i=1

µ(Ai) for each k ∈ N. For k = 1, it is clear. Suppose

that the equality holds for a certain k ∈ N. Let us see that it also holds for k + 1:

First, we have
k+1⋃
i=1

Ai =

(
k⋃

i=1

Ai

)⋃
Ak+1. Moreover, the induction hypothesis lets us

write

µ

((
k⋃

i=1

Ai

)⋃
Ak+1

)
+ µ

((
k⋃

i=1

Ai

)⋂
Ak+1

)
= µ

(
k⋃

i=1

Ai

)
+ µ(Ak+1) =

k+1

∑
i=1

µ(Ai).

The fact that µ is sub-σ-additive implies that

µ

((
k⋃

i=1

Ai

)⋂
Ak+1

)
= µ

(
k⋃

i=1

(Ai ∩ Ak+1)

)
≤

k

∑
i=1

µ(Ai ∩ Ak+1)
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and the fact that Γ is µ-disjoint means that ∑k
i=1 µ(Ai ∩ Ak+1) = 0. Consequently,

µ

((
k⋃

i=1

Ai

)⋂
Ak+1

)
= 0.

If we join all the previous equalities, we conclude that

µ

(
k+1⋃
i=1

Ai

)
= µ

((
k⋃

i=1

Ai

)⋃
Ak+1

)
=

k+1

∑
i=1

µ(Ai).

3. Let {Ai : i ∈ N} be a countable family of different elements of Γn. Since
k⋃

i=1

Ai
k→∞→

⋃
i∈N

Ai and µ is continuous from below, it holds that

k

∑
i=1

µ(Ai) = µ

(
k⋃

i=1

Ai

)
k→∞→ µ

(⋃
i∈N

Ai

)
=

∞

∑
i=1

µ(Ai).

where we have taken into account the previous item in the first equality.

The next proposition gathers some relationships between both Darboux sums with
respect to two µ-disjoint fractal structures defined on a space.

Proposition 2. Let (X,S , µ) be a measure space and Γ = {Γn : n ∈ N} and Γ∗ = {Γ∗
n : n ∈ N}

be two µ-disjoint fractal structures on X. Let f : X → R be a bounded function and n, m ∈ N. Then:

1. L( f ; Γn; µ) ≤ U( f ; Γn; µ).
2. If Γ∗

m ≺≺ Γn, then L( f ; Γn; µ) ≤ L( f ; Γ∗
m; µ) ≤ U( f ; Γ∗

m; µ) ≤ U( f ; Γn; µ). In particular,
it holds that L( f ; Γn; µ) ≤ L( f ; Γm; µ) ≤ U( f ; Γm; µ) ≤ U( f ; Γn; µ), if n ≤ m.

3. L( f ; Γn; µ) ≤ U( f ; Γ∗
m; µ).

Proof.

1. It is clear since m( f ; J) ≤ M( f , J) and µ(J) ≥ 0 for each J ∈ Γn.
2. Since Γ∗

m ≺≺ Γn, if J ∈ Γn, then we have that:

(a) µ(J) = µ(
⋃{H ∈ Γ∗

m : H ⊆ J}) = ∑
H∈Γ∗

m ,H⊆J
µ(H) by Lemma 1.

(b) If H ∈ Γ∗
m and H ⊆ J, then m( f ; J) ≤ m( f ; H) ≤ M( f ; H) ≤ M( f ; J).

(c) Each H ∈ Γ∗
m such that µ(H) ̸= 0 is contained in exactly one J ∈ Γn.

For the proof of (c), note that H is contained in some J ∈ Γn, since Γ∗
m ≺ Γn. Suppose

that H ⊂ J1, J2, where J1, J2 ∈ Γn with J1 ̸= J2. Then H ⊂ J1 ∩ J2 and since µ is
monotonic and µ(J1 ∩ J2) = 0 (because the fractal structure is µ-disjoint), we have
µ(H) = 0, a contradiction.
Item (a) lets us write

L( f ; Γn; µ) = ∑
J∈Γn

m( f ; J)µ(J) = ∑
J∈Γn

m( f ; J)

[
∑

H∈Γ∗
m ,H⊂J

µ(H)

]

and, by item (b), it follows that

∑
J∈Γn

m( f ; J)

[
∑

H∈Γ∗
m ,H⊂J

µ(H)

]
≤ ∑

J∈Γn

∑
H∈Γ∗

m ,H⊂J
m( f ; H)µ(H)

Now, by item (c),

∑
J∈Γn

∑
H∈Γ∗

m ,H⊂J
m( f ; H)µ(H) = ∑

H∈Γ∗
m

m( f ; H)µ(H) = L( f ; Γ∗
m; µ)
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and, by the first item, it holds that

L( f ; Γ∗
m; µ) ≤ U( f ; Γ∗

m; µ) = ∑
H∈Γ∗

m

M( f ; H)µ(H)

Now we use item (c), so that

∑
H∈Γ∗

m

M( f ; H)µ(H) = ∑
J∈Γn

∑
H∈Γ∗

m ,H⊂J
M( f ; H)µ(H)

and item (b) lets us write

∑
J∈Γn

∑
H∈Γ∗

m ,H⊂J
M( f ; H)µ(H) ≤ ∑

J∈Γn

M( f ; J)

 ∑
H∈Γ∗

m ,µ(H)>0,H⊂J
µ(H)


Finally, item (a) means that

∑
J∈Γn

M( f ; J)

 ∑
H∈Γ∗

m ,µ(H)>0,H⊂J
µ(H)

 = ∑
J∈Γn

M( f ; J)µ(J) = U( f ; Γn; µ).

3. Let Γ = Γ ∨ Γ∗ and p = max{n, m}. Then Γp ≺≺ Γn, Γ∗
m. Note that Γ is µ-disjoint by

Remark 1. By the previous items, we have that

L( f ; Γn; µ)
(2)
≤ L( f ; Γp; µ)

(1)
≤ U( f ; Γp; µ)

(2)
≤ U( f ; Γ∗

m; µ).

We can also observe the next result from the previous proposition.

Remark 2. Under the hypothesis of the previous proposition, it follows that L( f ; Γn; µ) ≤
L( f ; Γn+1; µ) ≤ U( f ; Γn+1; µ) ≤ U( f ; Γn; µ) for each n ∈ N, which means that
limn U( f ; Γn; µ) = inf{U( f ; Γn; µ) : n ∈ N} and limn L( f ; Γn) = sup{L( f ; Γn) : n ∈ N}.

4. Riemann Integral with Respect to a Measure and a Fractal Structure

Once we know how to define the lower and upper Darboux sums when given a
bounded function, a measure µ, and a µ-disjoint fractal structure on a space X, the next
step is defining the lower and upper Riemann integrals with respect to the measure and the
fractal structure. Moreover, we can give some conditions so that both integrals coincide.

Definition 6. Let (X,S , µ) be a measure space, Γ = {Γn : n ∈ N} be a µ-disjoint fractal structure
on X, and f : X → R be a bounded function. We define the lower and upper Riemann integrals of
f with respect to µ and Γ on X as follows:

1. Upper Riemann integral of f with respect to µ and Γ:

∫
X

(µ,Γ)
f := inf{U( f ; Γn; µ) : n ∈ N} = lim

n
U( f ; Γn; µ).

2. Lower Riemann integral of f with respect to µ and Γ:

∫
X

(µ,Γ)
f := sup{L( f ; Γn; µ) : n ∈ N} = lim

n
L( f ; Γn; µ).

Remark 3. Note that, by Proposition 2,
∫

X
(µ,Γ) f ≤

∫
X
(µ,Γ)

f .
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Definition 7. Let (X,S , µ) be a measure space, Γ = {Γn : n ∈ N} be a µ-disjoint fractal structure
on X and f : X → R be a bounded function. f is said to be Riemann-integrable with respect to µ

and Γ on X if
∫

X
(µ,Γ)

f is finite and
∫

X
(µ,Γ) f =

∫
X
(µ,Γ)

f .
If f is Riemann-integrable with respect to µ and Γ on X, we define the Riemann integral of f

with respect to µ and Γ on X,
∫ (µ,Γ)

X f , by

∫ (µ,Γ)

X
f =

∫
X

(µ,Γ)
f =

∫
X

(µ,Γ)
f .

We denote by R(X; µ; Γ) the set of Riemann-integrable functions with respect to µ and Γ on X.

Remark 4. If µ(X) = 0, then R(X; µ; Γ) = { f : X → R : f is bounded} and
∫ (µ,Γ)

X f = 0 for
each f ∈ R(X; µ; Γ).

Proposition 3. Let (X,S , µ) be a measure space, Γ = {Γn : n ∈ N} be a µ-disjoint fractal
structure on X and f : X → R be a bounded function. The following statements are equivalent:

1. f ∈ R(X; µ; Γ).
2. For each ε > 0, there exists n ∈ N such that U( f ; Γn; µ)− L( f ; Γn; µ) ≤ ε.
3. For each ε > 0, there exists n0 ∈ N such that U( f ; Γn; µ)− L( f ; Γn; µ) ≤ ε for each n ≥ n0.

Proof. (1 ⇔ 3) By definition of Riemann integral, we have that

f ∈ R(X; µ; Γ) ⇔
∫

X

(µ,Γ)
f =

∫
X

(µ,Γ)
f

⇔
∫

X

(µ,Γ)
f −

∫
X

(µ,Γ)
f = 0

⇔ lim
n

U( f ; Γn; µ)− lim
n

L( f ; Γn; µ) = 0

(1)

what is equivalent, in terms of convergence, to claim that for each ε > 0, there exists n0 ∈ N
such that U( f ; Γn; µ)− L( f ; Γn; µ) ≤ ε for each n ≥ n0.

(2 ⇒ 3) Suppose that for each ε > 0, there exists n0 ∈ N such that U( f ; Γn0 ; µ) −
L( f ; Γn0 ; µ) ≤ ε. Let n ≥ n0. Then, by Proposition 2, it follows that U( f ; Γn; µ)− L( f ; Γn; µ) ≤
U( f ; Γn0 ; µ)− L( f ; Γn0 ; µ) ≤ ε.

(3 ⇒ 2) It is immediate.

Note that the third condition in the previous proposition is equivalent to

lim
n→∞

(U( f ; Γn0 ; µ)− L( f ; Γn0 ; µ)) = 0

Corollary 1. Let (X,S , µ) be a measure space and Γ = {Γn : n ∈ N}, Γ∗ = {Γ∗
n : n ∈

N} be two µ-disjoint fractal structures on X such that Γ∗
n ≺≺ Γn for each n ∈ N. Then

R(X; µ, Γ) ⊆ R(X; µ, Γ∗).

Proof. Let f ∈ R(X; µ, Γ). By Proposition 3, limn→∞(U( f ; Γn; µ)− L( f ; Γn; µ)) = 0. By
Proposition 2, L( f ; Γn; µ) ≤ L( f ; Γ∗

n; µ) ≤ U( f ; Γ∗
n; µ) ≤ U( f ; Γn; µ) for each n ∈ N. It

follows that limn→∞(U( f ; Γ∗
n; µ)− L( f ; Γ∗

n; µ)) = 0 and hence, by Proposition 3 again,
f ∈ R(X; µ, Γ∗).

5. Riemann Theorem for Fractal Structures

In what follows, we prove a theorem which is analogous to the Riemann theorem in
Rn, but for bounded functions defined on a space with a µ-disjoint fractal structure. This is
one of the main results of this work.
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Definition 8. Let Γ be a fractal structure on a space X such that Γn is countable for each n ∈ N. A
selection for Γn is a collection of points ξ := (xA)A∈Γn such that xA ∈ A for each A ∈ Γn.

Definition 9. Let (X,S , µ) be a measure space, Γ = {Γn : n ∈ N} be a µ-disjoint fractal structure
on X and f : X → R be a bounded function. Let n ∈ N and ξ = (xA)A∈Γn be a selection for Γn.
The Riemann sum for f relative to Γn, ξ and µ is denoted by S( f ; Γn; ξ; µ) and is defined as follows:

S( f ; Γn; ξ; µ) := ∑
A∈Γn

f (xA)µ(A).

Theorem 3 (Riemann’s Theorem). Let (X,S , µ) be a measure space, Γ = {Γn : n ∈ N} be a
µ-disjoint fractal structure on X, f : X → R be a bounded function and C ∈ R. The following
statements are equivalent:

1. f ∈ R(X; µ; Γ) and
∫ (µ,Γ)

X f = C.
2. Given ε > 0, there exists n0 ∈ N such that |C − S( f ; Γn; ξn; µ)| < ε for each n ≥ n0 and

each selection for Γn, ξn.
3. Given ε > 0, there exists n ∈ N such that |C − S( f ; Γn; ξ; µ)| < ε for each selection for Γn, ξ.
4. S( f ; Γm; ξm; µ)

m→∞−→ C for each sequence (ξm) such that ξm is a selection for Γm for each
m ∈ N.

Proof. (1 ⇒ 2) Suppose that f ∈ R(X; µ; Γ) and
∫ (µ,Γ)

X f = C. Then

∫ (µ,Γ)

X
f =

∫
X

(µ,Γ)
f =

∫
X

(µ,Γ)
f = lim

n
U( f ; Γn; µ) = lim

n
L( f ; Γn; µ) = C.

Let ε > 0. By Proposition 3, there exists n0 ∈ N such that U( f ; Γm; µ)− L(F; Γm; µ) < ε
for each m ≥ n0.

Now let m ≥ n0. Note that U( f ; Γm; µ) ≥ S( f ; Γm; ξn; µ) ≥ L( f ; Γm; µ) for each selec-
tion for Γn, ξn. Moreover, since limn U( f ; Γn; µ) = limn L( f ; Γn; µ) = C, by Proposition 2 it
holds that U( f ; Γm; µ) ≥ C ≥ L( f ; Γm; µ).

Suppose that ξm is a selection for Γm and m ≥ n0. It follows that

|C − S( f ; Γm; ξm; µ)| ≤ U( f ; Γm; µ)− L(F; Γm; µ) < ε

(3 ⇒ 1) It is enough to prove that
∫

X
(µ,Γ) f =

∫
X
(µ,Γ)

f = C. Let ε > 0. Then there
exists n ∈ N such that |C − S( f ; Γn; ξ; µ)| < ε

2 for each ξ, selection for Γn. We distinguish
two cases:

1. Γn = {A1, ..., Asn} is finite. Let ξn,1 = (yA1 , ..., yAsn
), ξn,2 = (zA1 , ..., zAsn

) be two se-
lections for Γn such that

|M( f ; A)− f (yA)|µ(A) ≤ ε

2sn
for eachA ∈ Γn,

|m( f ; A)− f (zA)|µ(A) ≤ ε

2sn
for eachA ∈ Γn.

Then we have that

|U( f ; Γn; µ)− S( f ; Γn; ξn,1)| ≤
sn

∑
i=1

ε

2sn
=

ε

2
,

|L( f ; Γn; µ)− S( f ; Γn; ξn,2)| ≤
sn

∑
i=1

ε

2sn
=

ε

2
.



Mathematics 2024, 12, 310 10 of 16

2. Γn = {Ai : i ∈ N} is infinitely countable. Let ξn,1 = (yAi )Ai∈Γn , ξn,2 = (zAi )Ai∈Γn be
two selections for Γn such that

|M( f ; Ai)− f (yAi )|µ(Ai) ≤
ε

2i+1 for each i ∈ N,

|m( f ; Ai)− f (zAi )|µ(Ai) ≤
ε

2i+1 for each i ∈ N.

Then we have that

|U( f ; Γn; µ)− S( f ; Γn; ξn,1)| ≤
∞

∑
i=1

ε

2i+1 =
ε

2
,

|L( f ; Γn; µ)− S( f ; Γn; ξn,2)| ≤
∞

∑
i=1

ε

2i+1 =
ε

2
.

Hence, in both cases, we can write

|U( f ; Γn; µ)− C| = |U( f ; Γn; µ)− S( f ; Γn; ξn,1) + S( f ; Γn; ξn,1)− C| ≤

≤ |U( f ; Γn; µ)− S( f ; Γn; ξn,1)|+ |S( f ; Γn; ξn,1)− C| < ε

2
+

ε

2
= ε

which implies that ∫
X

(µ,Γ)
f ≤ U( f ; Γn) < C + ε.

What is more,

|C − L( f ; Γn; µ)| = |C − S( f ; Γn; ξn,2) + S( f ; Γn; ξn,2)− L( f ; Γn; µ)| ≤

≤ |C − S( f ; Γn; ξn,2)|+ |S( f ; Γn; ξn,2)− L( f ; Γn; µ)| < ε

2
+

ε

2
= ε,

which means that ∫
X

(µ,Γ)
f ≥ L( f ; Γn; µ) > C − ε

It follows that

C − ε <
∫

X

(µ,Γ)
f ≤

∫
X

(µ,Γ)
f < C + ε

for each ε > 0. The arbitrariness of ε > 0 leads us to conclude that f ∈ R(X; µ; Γ) and∫ (µ,Γ)
X f = C =

∫
X
(µ,Γ) f =

∫
X
(µ,Γ)

f .

(2 ⇔ 4) It is immediate.

(2 ⇒ 3) It is immediate.

6. Riemann Integral with Respect to a Measure

The next result allows us to claim that the Riemann integral of a bounded function with
respect to a measure and a fractal structure, in fact, does not depend on the fractal structure.

Proposition 4. Let (X,S , µ) be a measure space, Γ = {Γn : n ∈ N} and Γ∗ = {Γ∗
n : n ∈ N} be

two µ-disjoint fractal structures on X and f : X → R be a bounded function. If f ∈ R(X; µ; Γ)

and f ∈ R(X; µ; Γ∗), then
∫ (µ,Γ)

X f =
∫ (µ,Γ∗)

X f .

Proof. Let C =
∫ (µ,Γ)

X f , and D =
∫ (µ,Γ∗)

X f , and suppose that C < D. Then

lim
n

U( f ; Γn; µ) = lim
n

L( f ; Γn; µ) = C < D = lim
n

U( f ; Γ∗
n; µ) = lim

n
L( f ; Γ∗

n; µ).
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Then
lim

n
U( f ; Γn; µ) < lim

n
L( f ; Γ∗

n; µ),

which is a contradiction with Proposition 2, since U( f ; Γn; µ) ≥ L( f ; Γ∗
n; µ) for each

n ∈ N.

Therefore, if a bounded function is Riemann-integrable with respect to a measure,
µ, and different µ-disjoint fractal structures, then all the integrals have the same value.
Therefore, it makes sense to introduce the following concept:

Definition 10. Let (X,S , µ) be a measure space and f : X → R be a bounded function. f is
said to be µ-Riemann-integrable if there exists a µ-disjoint fractal structure Γ on X such that f is
Riemann-integrable on X with respect to µ and Γ. Moreover, if so, the integral is defined as

∫ µ

X
f =

∫ (µ,Γ)

X
f .

From now on, R(X; µ) will denote the set of all bounded functions that are µ-Riemann-
integrable on X.

The proof of the following result is straightforward.

Lemma 2. Let Γ be a fractal structure on a set Y, X be a set and f : X → Y be a map. Then
f−1(Γ) = { f−1(Γn) : n ∈ N} is a fractal structure on X, where f−1(Γn) = { f−1(A) : A ∈ Γn}
for each n ∈ N.

Once we know that the Riemann integral does not depend on the chosen fractal
structure, we give some sufficient conditions to ensure that a function is Riemann-integrable
with respect to a measure.

Proposition 5. Let (X,S , µ) be a finite measure space and f : X → R be a bounded measurable
function. Then f ∈ R(X; µ) and

∫ µ
X f =

∫
f dµ.

Proof. Let ∆ = {∆n : n ∈ N} be the fractal structure in R given by ∆n = {[ k
2n , k+1

2n [: k ∈ Z}
for each n ∈ N, and let Γ = f−1(∆). Note that Γ is a fractal structure by the previous lemma
and it is µ-disjoint since f is measurable, X has finite measure and A ∩ B = ∅ for each
A, B ∈ Γn with A ̸= B and each n ∈ N.

Now, we prove that f is Riemann-integrable with respect to µ and Γ.
Given n ∈ N and i ∈ Z, let En

i = f−1([ i
2n , i+1

2n [) and consider the simple functions
(since f is bounded) ln(x) = ∑i∈Z

i
2n χEn

i
(x) and un(x) = ∑i∈Z

i+1
2n χEn

i
(x), where χA is the

characteristic function of A. Then it is clear that ln(x) ≤ f (x) ≤ un(x) for each x ∈ X.
Given n ∈ N, it follows that

∫
lndµ = ∑i∈Z

i
2n µ(En

i ) ≤ ∑i∈Z m( f ; En
i )µ(En

i ) =

L( f ; Γn; µ) ≤ U( f ; Γn; µ) = ∑i∈Z M( f ; En
i )µ(En

i ) ≤ ∑i∈Z
i+1
2n µ(En

i ) =
∫

undµ. Since
ln ≤ f ≤ un, U( f ; Γn; µ) − L( f ; Γn; µ) ≤

∫
(un − ln)dµ ≤ ∑i∈Z

1
2n µ(En

i ) = 1
2n µ(X) and

X has finite measure, then f is Lebesgue integrable and
∫

f dµ = limn→∞
∫

lndµ =
limn→∞

∫
undµ. It follows from Proposition 3 that f is integrable with respect to µ and Γ

and
∫ µ

X f =
∫ (µ,Γ)

X f =
∫

f dµ.

The previous result states that, for bounded functions and finite measure spaces, the
Riemann integral with respect to a measure is the same as the classic Lebesgue integral
with respect to that measure. An open question is if this result is still true for non-finite
measure spaces.

Another interesting interpretation of the previous result is that the Lebesgue integral
with respect to a measure can be calculated by choosing some simple and easy fractal
structure, since the calculation of the Riemann integral with respect to that fractal structure
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and the measure is easier since it only involves the calculation of the Darboux sums and
some limits. This is particularly true when it is easy to calculate the measure of the elements
of the fractal structure.

An obvious consequence of the previous proposition is that continuous maps are
Riemann-integrable with respect to any measure on the Borel σ-algebra.

Corollary 2. Let (X, τ) be a topological space, µ be a finite measure on the Borel σ-algebra and
f : X → R be a bounded continuous map. Then f ∈ R(X; µ).

Riemann Integrability vs. Riemann Integrability with Respect to the Lebesgue Measure

Functions that are Riemann-integrable (in the classic sense) in a rectangle in RN are
also Riemann-integrable with respect to the Lebesgue measure, and both integrals coincide.

Proposition 6. Let X = [a1, b1]× . . . × [aN , bN ], f : X → R be a bounded function, Γ = {Γn :
n ∈ N} be the natural fractal structure on RN induced on X. Then f is Riemann-integrable (in the
classic sense) if and only if it is Riemann-integrable on X with respect to the Lebesgue measure λ
and Γ. Moreover, if f is Riemann-integrable on X, both integrals coincide.

Proof. On the one hand, suppose that f is Riemann-integrable (in the classic sense). Let
ε > 0. Then, by Theorem 2, there exists δ > 0 such that |S( f ;D; ξ)−

∫
X f | < ε for each

partition D with ||D|| < δ and for each selection ξ = (xD)D∈D for D.
Let n ∈ N be such that 1

2n < δ and ξ be a selection for Γn. Then it is clear that
|S( f ; Γn; ξ; λ)−

∫
X f | = |S( f ; Γn; ξ)−

∫
X f | < ε, since Γn is a partition of X with norm 1

2n ,
which is less than δ. It follows from Theorem 3 that f is Riemann-integrable on X with
respect to λ and Γ and

∫ (λ,Γ)
X f =

∫
X f .

On the other hand, suppose that f is Riemann-integrable on X with respect to λ and Γ

and let ε > 0. By Proposition 3 there exists n ∈ N such that U( f ; Γn; λ)− L( f ; Γn; λ) < ε.
Since Γn is a partition, it follows from Theorem 1 that f is Riemann-integrable (in the
classic sense).

Finally, by definition, it is clear that
∫ (λ,Γ)

X
f ≤

∫
X

f ≤
∫

X f ≤
∫ (λ,Γ)

X f . Hence, if f
is Riemann-integrable on X, then it is Riemann-integrable with respect to λ and Γ and it
follows that

∫ (λ,Γ)
X f =

∫
X f .

Corollary 3. Let X = [a1, b1]× . . . × [aN , bN ] and f : X → R be a Riemann-integrable function
(in the classic sense), then f is λ-Riemann-integrable and both integral coincide, where λ is the
Lebesgue measure.

7. Examples

In the previous section, we have shown (Proposition 6 and Corollary 3) that the classic
Riemann integral is a particular case of the theory, since it is the Riemann integral with
respect to the natural fractal structure and the Lebesgue measure.

Also, we have shown (Proposition 5) that, for bounded functions on finite measure
spaces, the classic Lebesgue integral with respect to the measure is a particular case of the
theory, since it coincides with the Riemann integral with respect to a certain fractal structure
and the measure. In this case, the fractal structure depends on the function, while in the
classic Riemann integral, we can always use the natural fractal structure for any function.

In this section, we give three examples in which an integral is calculated according to
the theory that has been developed before.

In Corollary 3 it was shown that each Riemann-integrable function (in the classic sense)
is Riemann-integrable with respect to the Lebesgue measure. The first is an example of a
function that is not Riemann-integrable (in the classic sense), but it is Riemann-integrable
with respect to the Lebesgue measure.
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7.1. Example 1

Let f : [0, 1] → R be the function defined by

f (x) =
{

0 x ∈ [0, 1]−Q
1 x ∈ Q∩ [0, 1]

First, we prove that f is not Riemann-integrable with respect to a certain fractal
structure when considering the Lebesgue measure. Let Γnat be the natural fractal structure
on [0, 1]. Then,

Γn =

{[
k

2n ,
k + 1

2n

]
: k ∈ {0, . . . , 2n − 1}

}
for each n ∈ N. Note that given n ∈ N and J ∈ Γn, we have that M( f ; J) = 1 and
m( f ; J) = 0. Hence, the lower and upper Darboux sums are, respectively,

U( f ; Γn) = ∑
J∈Γn

M( f ; J)λ(J) = ∑
J∈Γn

λ(J) =
1
2n

2n−1

∑
k=0

1 = 1

and
L( f ; Γn) = ∑

J∈Γn

m( f ; J)λ(J) = 0

for each n ∈ N. It follows that ∫ Γnat

[0,1]
f = 1 ̸= 0 =

∫ Γnat

[0,1]
f

which means that f is not Riemann-integrable on [0, 1] with respect to the natural fractal
structure and the Lebesgue measure.

However, let ∆ be the fractal structure defined by

∆n = {{x} : x ∈ Q∩ [0, 1]} ∪ {[0, 1]−Q}

for each n ∈ N. Since for each n ∈ N, it holds that B ∩ J = ∅ for each B, J ∈ ∆n such that
B ̸= J, it follows that λ(B ∩ J) = λ(∅) = 0 for each J, B ∈ ∆n such that B ̸= J and each
n ∈ N. It follows that ∆ is λ-disjoint. Now, let n ∈ N and J ∈ ∆n. Then

M( f ; J) = m( f ; J) =
{

0 J = [0, 1]−Q
1 J = {x} where x ∈ Q∩ [0, 1].

Since λ({x}) = 0 for each x ∈ Q∩ [0, 1], we have that

U( f ; ∆n; λ) = ∑
J∈∆n

M( f ; J)λ(J) = M( f ; [0, 1]−Q)λ([0, 1]−Q) = 0

and
L( f ; ∆n; λ) = ∑

J∈∆n

m( f ; J)λ(J) = m( f ; [0, 1]−Q)λ([0, 1]−Q) = 0.

We conclude that ∫ λ

[0,1]
f =

∫ (λ,∆)

[0,1]
f =

∫ (λ,∆)

[0,1]
f =

∫ (λ,∆)

[0,1]
f = 0

and, hence, f ∈ R(X; λ).
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7.2. Example 2

In [3,4] it is shown how to define a finite measure from the elements of a fractal
structure. This case is particularly interesting, since you know the measure of the elements
of the fractal structure. By the results in [3,4] you can prove that a pre-measure defined
in the elements of the fractal structure can be extended to the Borel σ-algebra. But if you
are only interested in the calculation of integrals, you do not need to bother about how
the extension is done or how to calculate the measure of other sets, since you only need
the measure of the elements of the fractal structure in order to calculate integrals. This
is similar to the case of the classic Riemann integral where you only need to know the
measure of an interval in order to calculate integrals. Next, we present a simple example.

The next example shows that there exist Riemann-integrable functions with respect to
a certain measure on fractal sets. Indeed, in the following, we work on the Cantor set in
order to calculate integrals.

Let f0, f2 : [0, 1] → R be the functions given by f0(x) = x
3 and f2(x) = x

3 + 2
3 .

Recall that the Cantor set, C, is defined as the unique compact subset on [0, 1] such that
C = f0(C) ∪ f2(C). Now let g : [0, 1] → [0, 1] be a function defined by the following rule:
given x ∈ [0, 1], we write it in base 3. Next, we truncate it by the first 1 (if it is not the case,
we consider the whole expression of x in base 3). In the resulting expression, we exchange
twos by ones. Then we have a number in base 2 whose decimal value is g(x) for some
x ∈ [0, 1]. This function is known as devil’s staircase (see, for example, [12]), and its graph
can be seen in Figure 1. We are interested in the integration of the restriction of this function
to the Cantor set.

Figure 1. Devil’s staircase.

Now, let Γ be the natural fractal structure as a self similar set (see [13]), defined by the
following levels:

Γ1 = { f0(C), f2(C)}

Γn+1 = { fi(J) : i = 0, 2; J ∈ Γn}.

Let J = fa1 fa2 . . . fan(C) ∈ Γn be such that ai ∈ {0, 2} for each i = 1, . . . , n. Then

J =
[
(0.a1...an)3, (0.a1...an2)3

]
∩ C =

[
n

∑
i=1

ai

3i ,
n

∑
i=1

ai

3i +
∞

∑
i=n+1

2
3i

]
∩ C =

[
n

∑
i=1

ai

3i ,
1
3n +

n

∑
i=1

ai

3i

]
∩ C.

Note that g(J) = [(0.x1 . . . xn)2, (0.x1 . . . xn1)2], where ai = 2xi for each i = 1, . . . , n,
and hence M(g|C; J) = (0.x1 . . . xn)2 +

1
2n and m(g|C; J) = (0.x1 . . . xn)2.

Let J ∈ Γn for some n ∈ N. We define the set function µ by

µ(J) =
1
2n .
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By [4], it is known that µ can be extended to a measure on the Borel σ-algebra.
Consequently,

U(g|C; Γn; µ) = ∑
J∈Γn

M(g|C; J)µ(J) =
1
2n

2n−1

∑
m=0

(
m
2n +

1
2n

)
=

(2n − 1)2n

22n+1 +
1
2n

=
1
2
− 1

2n+1 +
1
2n → 1

2

and

L(g|C; Γn; µ) = ∑
J∈Γn

m(g|C; J)µ(J) =
1
2n

2n−1

∑
m=0

m
2n =

(2n − 1)2n

22n+1

=
1
2
− 1

2n+1 → 1
2

.

Hence, limn U(g|C; Γn; µ) = limn L(g|C; Γn; µ) = 1
2 .

We conclude that g|C ∈ R(C; µ) and
∫ µ

C
g|C =

1
2

.

7.3. Example 3

Let X =] − ∞, 0], λ be the Lebesgue measure, f : X → R be the map defined by
f (x) = ex and Γ = {Γn : n ∈ N} be the natural fractal structure induced on X. Then

L( f ; Γn; λ) = ∑∞
i=1

1
2n e−

i
2n and U( f ; Γn; λ) = ∑∞

i=0
1

2n e−
i

2n . Therefore, U( f ; Γn, λ)−
L( f ; Γn; λ) = 1

2n for each n ∈ N. It follows from Proposition 3 that f is Riemann-integrable

with respect to λ and Γ and
∫ (λ,Γ)

X f = limn→∞ ∑∞
i=0

1
2n e−

i
2n = limn→∞

1
2n ∑∞

i=0 e−
i

2n =

limn→∞
1

2n
1

1−e−
1

2n
= 1.

It also follows that f is Riemann-integrable with respect to λ and
∫ λ

X f = 1. Note that
the integral coincides with the improper classic Riemann integral.
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