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Abstract: Epidemiological studies often encounter a challenge due to exposure measurement error
when estimating an exposure–disease association. A surrogate variable may be available for the
true unobserved exposure variable. However, zero-inflated data are encountered frequently in
the surrogate variables. For example, many nutrient or physical activity measures may have a
zero value (or a low detectable value) among a group of individuals. In this paper, we investigate
regression analysis when the observed surrogates may have zero values among some individuals
of the whole study cohort. A naive regression calibration without taking into account a probability
mass of the surrogate variable at 0 (or a low detectable value) will be biased. We developed a
regression calibration estimator which typically can have smaller biases than the naive regression
calibration estimator. We propose an expected estimating equation estimator which is consistent
under the zero-inflated surrogate regression model. Extensive simulations show that the proposed
estimator performs well in terms of bias correction. These methods are applied to a physical activity
intervention study.

Keywords: measurement error; surrogate; zero-inflated data
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1. Introduction

In biomedical research, regression analysis is an important tool to understand associa-
tions between disease outcomes and risk factors. In practice, however, a risk factor may not
be measured precisely. This problem is often called covariate measurement error [1–3]. We
consider an example when a biomarker is a risk factor for a disease outcome. In practice,
the biomarker may have seasonal, daily, or even hourly variation, and a single measure-
ment is prone to a covariate measurement error from instrumentation or human error.
Hence, an average of an infinite number of the biomarker measurements during a specified
period of time is, therefore, a more meaningful covariate variable than the average of a few
observed measurements. However, in practice it is not feasible to make such measurements,
and thus studies often rely on single measures at a specific time point with associated
measurement error.

Physical activity and nutrient intake are important risk factors for disease incidence
and mortality. However, physical activity and nutrient intake data may be measured with
errors since they are generally self-report data. This issue is important since measurement
error in diet or physical activity may have an attenuation effect on the regression coefficients
of exposures in the range of approximately 20% to 50% [4–6]. That is, an odds ratio of
1.5 from diet or physical activity may be reduced to the range of 1.22 to 1.38 due to
measurement errors in these measures. In addition, an important challenge in this research
is that some physical activity or dietary data may have a zero value, such as 0 metabolic
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equivalent (MET) hours per week from moderate or vigorous physical activity or 0 alcohol
intake. One MET is defined as the amount of oxygen consumed while at rest per kilogram
of body weight [7]. A 3 MET activity expends three times the energy used by the body
at rest. Hence, if a person does a 3 MET activity for 4 h in a week, he or she has done
12 MET hours of physical activity in a week. A naive method without taking into account
measurement error may lead to biased effect estimation in regression analysis, and the bias
is attenuation in most (but not all) cases [8]. A standard bias correction for measurement
error without taking into account a subset of individuals with zero exposure value may be
biased in the effect estimation.

One motivating example of our methodology research is covariate measurement error
associated with the measurement of physical activity in the APPEAL study (A Program
Promoting Exercise and Active Lifestyles; APPEAL: Clinicaltrials.gov NCT00668161) [9].
APPEAL was a year long randomized controlled trial of moderate-to-vigorous intensity
exercise vs. control (no exercise) among 202 healthy, sedentary adults recruited between 2001
and 2004 primarily through physician practices, and randomized to an exercise program
(n = 100) or a control group (n = 102). The trial was designed to test the effects of exercise on
biomarkers of colon cancer and other physiologic and psychosocial outcomes. Numerous
case-control and cohort studies have found an inverse association between physical activity
and risk of colon cancer [10]. Physical activities are commonly quantified by determining
the energy expenditure in kilocalories or by using the MET of the activity. A question of
interest is whether there is an association between physical activity via MET-hours/week
and c-reactive protein, a biomarker of inflammation, with elevated levels of CRP associ-
ated with risk of developing colon cancer. The true average of MET-hours/week is an
unobserved variable that is the average of an infinite number of MET-hours/week scores.
However, in practice it is not possible to obtain this measure and, thus, the true average of
MET-hours/week scores cannot be observed.

In the motivating example given above, two methodology challenges are involved.
The first challenge is regression analysis with covariate measurement error, which is
due to physical activity (MET-hours/week). The observed error-prone variable is typ-
ically called a surrogate variable for the true but unobserved exposure. The second
challenge is the zero-inflated surrogate model because some individuals may have zero
MET-hours/week. The zero-inflated surrogate issue in some similar research examples
is also called truncation of the observed surrogates. In our problem, the second chal-
lenge (zero-inflated surrogate modeling) is added to the first challenge (covariate mea-
surement error). Methods for covariate measurement error have been well developed.
For example, regression calibration (RC) for covariate measurement error is to replace an
error-prone covariate by its conditional expectation given the observed covariates [11].
In linear regression, the RC estimator is a consistent estimator for regression coefficients
(Buonaccorsi, 2010, Chapter 5) [12]. However, for logistic and Cox regression, it is known
that it is not consistent (Carroll, et al., 2006, Chapter 4) [2]. There is further research on
refinement of RC for logistic and Cox regression [13,14]. Another general approxima-
tion approach for covariate measurement error is the simulation extrapolation (SIMEX)
approach [15,16]. An advantage of SIMEX is that it has the advantage of being easy to
implement. There are methods to address the situation when the surrogate variables may
be truncated (which is in general the same as zero-inflated surrogate modeling). Tooze et al.
investigated a likelihood approach for repeated measures data with clumping at zero [17].
When the observed exposure variables are truncated by a lower limit, the estimation of the
disease–exposure association due to measurement error and truncation may not always be
attenuation [18].

As discussed above, there is relatively limited research that addresses the issue of
measurement error when some individuals may have a zero value (or lower limit) in the
observed surrogates. The main objective of the paper is to develop and apply methods to
adjust for measurement error in generalized linear models when the observed surrogates
may be truncated at a low value (such as 0) among some individuals. The paper is organized
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as follows: In Section 2, we describe the statistical models for the problem of interest, and
discuss the bias issue when we apply a naive RC estimator without taking into account the
zero-inflated surrogates. In Section 3, we study a regression calibration estimator for this
problem. In Section 4, we propose a maximum likelihood estimator via expected estimating
equations for this problem. In Section 5, the results from simulation studies are presented.
In Section 6, we apply the methods to the APPEAL study data. We discuss the advantages
and limitations of the proposed EEE estimator in Section 7. Concluding remarks are given
in Section 8.

2. Statistical Models and Naive RC Estimator

We assume that the total sample size of the study cohort is n. The regression model
of interest is the generalized linear model. Let Yi be the response variable, Xi be the
unobserved true covariate (dietary intake or physical activity) that cannot be precisely
measured, and Zi be the vector of covariates which is available for all individuals, i,
i = 1, . . . , n. For simplicity of presentation, the true unobserved exposure X is assumed to
be a scalar throughout this paper. The main interest is to estimate the vector of regression
coefficients β ≡ (β0, β1, β′

2)
′ in the followingregression model:

E(Yi|Xi, Zi) = g(β0 + β1Xi + β′
2Zi), (1)

where g(·) is a specified function. Model (1) contains many important regression models.
For example, g(u) = u in linear regression, while g(u) = (1 + e−u)−1 in logistic regression.
The goal of the research is to develop valid estimation methods for the regression coeffi-
cients β. For the true unobserved covariate Xi, we assume that there are ki non–negative
surrogate variables Wij, j = 1, . . . , ki such that Wij = max(c, W∗

ij), where c is a detection
limit, W∗

ij = Xi + Uij, in which Uij is an independent measurement error with E(Uij) = 0.
Let ηij be the indicator function for a positive Wij value, that is, ηij = I[Wij > c]. In a
covariate measurement error problem when the surrogates are not truncated, replicates
Wij, j = 1, . . . , ki, are used to estimate the measurement error variance where ki is the
number of replicates. We use notation W̃i for (Wi1, . . . , Wiki

), W̃∗
i for (W∗

i1, . . . , W∗
iki
), and η̃i

for (ηi1, . . . , ηiki
).

To understand the RC estimator, we consider a special linear regression case that
Yi = β0 + β1Xi + ei, where ei is a mean-zero random residual term. Assume W∗

ij =

Xi + Uij, j = 1, . . . , k, then it is easily seen that E(Yi|W̃∗
i ) = β0 + β1E(Xi|W̃i). From

this argument, it is seen that under the special linear regression case above, replacing an
unobserved true Xi with E(Xi|W̃∗

i ) will lead to a consistent estimator. This method is
often called the RC estimator [2]. In this case, E(Yi|W̃∗

i ) is the calibration function. We
may also use E(Yi|W

∗
i ), where W∗

i = ∑k
j=1 W∗

ij/k, as the calibration function to replace
the unobserved Xi. If replicates W∗

ij , j = 1, . . . , ki are from a normal distribution, then

E(Yi|W
∗
i ) = E(Yi|W̃∗

i ) [14]. Let µx and σx denote the mean and standard deviation of
any random variable X, respectively. Calculation of the conditional expectation of the
unobserved exposure given the surrogates can be obtained based on a bivariate normal
assumption such that

E(Xi|W
∗
i ) = µx + σ2

x

(
σ2

x + σ2
u/k

)−1(
W∗

i − µx

)
.

Therefore, E(Yi|W
∗
i ) = β0+ β∗

1 W∗
i , then β∗

1 = {σ2
x
(
σ2

x + σ2
u/k

)−1}β1. From this cal-
culation, a naive estimator using W∗

i as a replacement for Xi will have an attenuation effect.
When Z is in the model, a standard RC estimator is to replace Xi with E(Xi|W

∗
i , Zi). This

can be done by a multivariate-normal assumption with a conditional mean formula similar
to the formula given above. However, a more practical approach is via a semiparametric RC
approach by assuming a working regression model of E(W∗

ij |W∗
ij′ , Zi) = α0 + α1W∗

ij′ + α′
2Zi,
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where j ̸= j′ = 1, . . . , k, and (α0, α1, α′
2)

′ is the vector of regression coefficients. This semi-
parametric RC estimator does not assume a multivariate normality assumption of the
observed surrogates and covariates [19,20].

However, in our problem, the observed Wij is different from W∗
ij if W∗

ij < c. Using Wij
data will likely overestimate µx, but underestimate σx, and σu since Wij = c if W∗

ij < c. For

linear regression with truncated surrogates, standard RC may be biased because E(Xi|Wi)

will be different from E(Xi|W
∗
i ). One naive approach is to use the observed Wij as W∗

ij ,
without taking into consideration the truncated surrogates, to calculate the RC estimator.
We call this estimator a naive RC (NRC) estimator. As discussed above, the NRC estimator
is biased even when the main regression model is linear. The asymptotic variance of the
NRC estimator can be obtained by a sandwich variance estimator where the vector of
the estimating equations is obtained by stacking the estimating equations for β and the
nuisance parameters involved in the calculation of the calibration function E(Xi|W̃∗

i , Zi)
(but noting that the NRC estimator assumes W̃i is the same as W̃∗

i ). However, if there are
many covariates in the modeling of the calibration function, then it will be computationally
easier to use bootstrap variance estimation to obtain the standard errors.

3. Regression Calibration for Zero-Inflated Surrogates

The NRC estimator described in the previous section does not take into account zero
values due to truncation. Now, we consider calibration based on truncate surrogates due
to zero values. To understand the method, we first consider a linear regression model
Yi = β0 + β1Xi + β′

2Zi + ei, where ei has mean 0, and is independent of Xi and Zi. Then,
E(Yi|W̃i, Zi) = β0 + β1E(Xi|W̃i, Zi) + β′

2Zi. That is, replacing Xi with E(Xi|W̃i, Zi) in the
regression analysis may be a valid approach. Let X̂i ≡ E(X|W̃, Z). The estimating equation
for the RC estimator can be expressedas

n

∑
i=1

(1, X̂i, Z′
i)
′{Yi − (β0 + β1X̂i + β′

2Zi)} = 0. (2)

Hence, when Yi given (Xi, Zi) is linear, we have the following result:

Proposition 1. Assume the surrogate variables W∗
ij , j = 1, . . . , ki may be truncated by a lower limit,

and the truncation indicator η̃i is independent of Yi given (Xi, Zi). If Yi = β0 + β1Xi + β′
2Zi + ei,

where ei has mean 0, and is independent of Xi and Zi. Then the RC estimator solving (2) is a
consistent estimator of β.

The proof of Proposition 1 is given in Appendix A. We note that because of the
surrogate assumption, the measurement errors Uij and ei are independent, which is needed
to ensure that estimating Equation (2) is unbiased. Hence, for linear regression with zero-
inflated surrogates, the RC estimator is consistent. However, when the mean function
of Yi given Xi, Zi is not linear, the RC estimator may be biased since the expectation of
the estimating score will no longer be zero. For logistic regression, pr(Yi = 1|Xi, Zi) =
H(β0 + β1Xi + β′

2Zi), where H(u) = {1 + exp(−u)}−1 is the logistic function. Although
the RC estimator is not consistent, the RC estimator can be considered as an improved
estimator of the NRC estimator described in the last section. The calibration function can be
calculated based on the likelihood function. We use notation L(X) to denote a likelihood
function for any random variable X, and L(Y|X) to denote a conditional likelihood function
of Y given X, for any two random variables X and Y. Generally, the conditional calibration
function can be calculated by the following:

E{Xi|W̃i, Zi} =

∫
x x ∏j{L(Wij|Xi = x, Zi)}ηij{L(Wij = c|Xi = x, Zi)}1−ηijL(Zi, Xi = x)dx∫
x ∏j{L(Wij|Xi = x, Zi)}ηij{L(Wij = c|Xi = x, Zi)}1−ηijL(Zi, Xi = x)dx

. (3)
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In (3), we note that L(Wij = c|Xi = x, Zi) = L(Uij ≤ c − x). From the argument given
above, the RC estimator can be obtained by replacing an unobserved Xi by E{Xi|W̃i, Zi}
based on (3). The asymptotic variance of the RC estimator can be obtained by a stacked
sandwich estimator that is similar to the one for the NRC estimator described in the last
section, or by bootstrap variance estimation.

4. Expected Estimating Equation Estimator

We now develop another approach to this problem via the maximum likelihood
(ML) estimation. We first take a different viewpoint linking the ML estimation and the
conditional expectation of the full data estimating equation, namely, the estimating equation
when there is no measurement error. The full data likelihood, L(Yi|Xi, Zi), is the likelihood
function of Yi given (Xi, Zi). The full data estimating equation for β can be expressed as
∑n

i=1 ϕ(Yi, Xi, Zi, β) = 0, in which ϕ(Yi, Xi, Zi, β) is the derivative of log{L(Yi|Xi, Zi)} with
respect to β. Because the true Xi is not observed, the full data estimating equation can
not be directly applied to the data. With the observed data, the estimating score will be
from the likelihood of Yi given Zi and Wi, denoted by L(Yi|Zi, Wi). If the distribution of
(W̃i, Xi, Zi) does not involve β, then

∂

∂β
logL(Yi|W̃i, Zi) =

(∂/∂β)
∫

x L(Yi|Xi, Zi)L(W̃i|Xi = x, Zi)L(Xi = x, Zi)dx
L(Yi, W̃i, Zi)

= E{ ∂

∂β
logL(Yi|Xi = x, Zi)|Yi, W̃i, Zi}.

From the equations given above, the likelihood-based score of the observed data can
be obtained by the conditional expectation of the likelihood-based score of the full data
given the observed data. That is, the estimating score for an individual can be expressed as
E{ϕ(Yi, Xi, Zi, β)|Yi, W̃i, Zi}, which is the observed data estimating score. The ML estimator
can be obtained from the idea of expected estimating equations [21]. Therefore, the ML
estimator can be obtained by solving

n

∑
i=1

E{ϕ(Yi, Xi, Zi, β)|Yi, W̃i, Zi} = 0. (4)

In general, ϕ(Yi, Xi, Zi, β) does not need to be the full data likelihood-based estimating
score. It can be any estimating equation that satisfies E{ϕ(Yi, Xi, Zi, β)} = 0. For example,
it can be a weighted estimating equation of the ML estimator. The estimator solving (4) is
the expected estimating equation (EEE) estimator for β. Let Equation (4) be denoted by
S(β, X, Z) = 0. Let the EEE estimator be denoted by β̂eee. The asymptotic distribution of
β̂eee can be presented as the following result:

Proposition 2. Assume Yi given (Xi, Zi) follows (1), and the surrogate variables W∗
ij , j = 1, . . . , ki

may be truncated by a lower limit, and the truncation indicator η̃i is conditionally independent of Yi given
(Xi, Zi). Assume ϕ(Yi, Xi, Zi, β) is any estimating equation that satisfies E{ϕ(Yi, Xi, Zi, β)} = 0.
The EEE estimator solving (4) is consistent for β. Furthermore, n1/2(β̂eee − β) is asymptotically normal
with mean 0 and asymptotic variance given in Appendix A.

The proof of Proposition 2 is given in Appendix A. The EEE in (4) can be calculated by
the following:

E{ϕ(Yi, Xi, Zi, β)|Yi, W̃i, Zi}

=

∫
x ϕ(Yi, Xi, Zi)L(Yi|Xi = x, Zi){∏ki

j=1 L(Wij|Xi = x, Zi)}L(Zi, Xi = x)dx∫
x L(Yi|Xi = x, Zi){∏ki

j=1 L(Wij|Xi = x, Zi)}L(Zi, Xi = x)dx
,
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where L(Wij|Xi = x, Zi) = {L(Wij|Xi = x, Zi)}ηij{L(Wij = c|Xi = x, Zi)}1−ηij . The
asymptotic variance of the EEE estimator solving (4) for β can be obtained by a sandwich
variance estimator. The vector of the estimating equations is obtained by stacking two sets
of estimating equations. The first set is the estimating equations for β and the second set
is the nuisance parameters involved in the conditional distribution of Yi given (Zi, W̃i).
However, bootstrap variance estimation is another approach to obtain the standard errors
of the EEE estimator.

5. Simulation Study

We conducted a simulation study to examine the finite sample performance of the
NRC, RC, and EEE estimators with the naive estimator that used Wi for Xi. In Table 1, we
illustrate the situation when the regression model is linear and the observed surrogates may
have a zero value among some individuals. That is, the observed surrogates were truncated
at c = 0 in the simulations. In this table, each individual’s true covariate is Xi. We first
generated Xi, i = 1, . . . , n, from a normal distribution, where the sample size was n = 500,
and n = 1000, respectively. We generated two replicates W∗

i1 and W∗
i2 for the unobserved

Xi. With µx = 1.5, σx = 1, and σu = 0.707. The percent of non–zero Wij was η = 89%;
11% of Wij was truncated at 0. We also considered the situation when σu = 1, 1.5, and

√
3,

respectively, in which the percent of non-zero covariates were η = 86%, 80%, and 77%,
respectively. The outcomes were generated based on linear regression with coefficients
β0 = 0.5 and β1 = 1, and the residuals were from a standard normal distribution. In
Tables 1–4, “bias” was obtained from the average of the biases of the regression coefficients
estimates of the 500 simulation replicates, “SD” was the sample standard deviation of the
estimates, and “ASE” was the average of the estimated standard errors of the estimates.
The 95% confidence interval coverage probabilities (CP) were also obtained. The standard
errors of the estimates were obtained from sandwich variance estimation. From the result
of Table 1, the NRC estimator was not much better than the naive estimator. The reason for
limited improvement from the NRC over the naive estimator was because of truncated W
values. The RC and EEE estimators were consistent with limited biases under this setting,
and hence, they were better than the naive and NRC estimators. Under this setting, the RC
and EEE were very comparable.

Table 1. Simulation study for linear regression with truncated surrogates.

Naive NRC RC EEE Naive NRC RC EEE

n = 500 n = 1000

µx = 1.5, σx = 1, σu = 0.707, η = 89%

β0 = 0.5 Bias 0.134 −0.230 −0.002 0.003 0.133 −0.228 −0.003 0.002
SD 0.093 0.117 0.103 0.103 0.064 0.080 0.072 0.071

ASE 0.093 0.117 0.106 0.106 0.066 0.083 0.075 0.074
CP 0.684 0.486 0.972 0.962 0.460 0.180 0.954 0.966

β1 = 1 Bias −0.126 0.107 0.004 0.000 −0.127 0.103 0.001 −0.002
SD 0.050 0.068 0.060 0.060 0.035 0.047 0.043 0.042

ASE 0.049 0.068 0.061 0.061 0.035 0.048 0.043 0.043
CP 0.270 0.658 0.958 0.954 0.056 0.446 0.956 0.960

µx = 1.5, σx = 1, σu = 1, η = 86%

β0 = 0.5 Bias 0.301 −0.349 −0.007 −0.006 0.299 −0.343 −0.005 −0.004
SD 0.096 0.161 0.133 0.132 0.067 0.109 0.091 0.091

ASE 0.095 0.162 0.136 0.136 0.068 0.113 0.095 0.095
CP 0.122 0.404 0.960 0.952 0.002 0.106 0.966 0.962

β1 = 1 Bias −0.252 0.154 0.006 0.006 −0.252 0.147 0.003 0.002
SD 0.050 0.096 0.080 0.079 0.035 0.066 0.056 0.056

ASE 0.049 0.096 0.082 0.082 0.035 0.067 0.057 0.057
CP 0.002 0.674 0.952 0.958 0.000 0.424 0.948 0.958



Mathematics 2024, 12, 309 7 of 14

Table 1. Cont.

Naive NRC RC EEE Naive NRC RC EEE

n = 500 n = 1000

µx = 1.5, σx = 1, σu = 1.5, η = 80%

β0 = 0.5 Bias 0.556 −0.652 −0.035 0.033 0.558 −0.616 −0.018 −0.019
SD 0.101 0.341 0.244 0.241 0.070 0.217 0.156 0.157

ASE 0.098 0.325 0.230 0.229 0.069 0.220 0.157 0.158
CP 0.000 0.462 0.962 0.942 0.000 0.104 0.960 0.960

β1 = 1 Bias −0.445 0.263 0.023 0.022 −0.447 0.241 0.011 0.012
SD 0.048 0.197 0.152 0.150 0.033 0.126 0.097 0.099

ASE 0.047 0.188 0.144 0.144 0.033 0.128 0.099 0.099
CP 0.000 0.846 0.960 0.942 0.000 0.558 0.952 0.954

µx = 1.5, σx = 1, σu =
√

3, η = 77%

β0 = 0.5 Bias 0.655 −0.839 −0.057 −0.051 0.657 −0.769 −0.024 −0.025
SD 0.101 0.609 0.323 0.307 0.070 0.302 0.197 0.198

ASE 0.098 0.466 0.300 0.296 0.069 0.302 0.198 0.229
CP 0.000 0.634 0.956 0.922 0.000 0.150 0.956 0.950

β1 = 1 Bias −0.519 0.327 0.038 0.034 −0.522 0.287 0.015 0.015
SD 0.046 0.286 0.204 0.195 0.033 0.170 0.126 0.127

ASE 0.045 0.263 0.191 0.189 0.032 0.170 0.126 0.148
CP 0.000 0.972 0.956 0.918 0.000 0.716 0.948 0.930

NOTE: Naive is an estimator that uses the average of two replicates as the covariate, NRC is the naive RC
estimator described in Section 2, RC is the RC estimator that uses E(X|W̃) as the covariate, and EEE is the expected
estimating equation estimator described in Section 4.

Table 2. Simulation study for linear regression with truncated surrogates; misspecified distribution
for covariate X or measurement error.

Naive NRC RC EEE Naive NRC RC EEE

n = 500 n = 1000

X is from a mixture of two normal distributions and the error is normal

µx = 1.5, σx = 1, σu = 0.707, η = 91%

β0 = 0.5 Bias 0.209 −0.096 0.041 0.036 0.204 −0.101 0.037 0.032
SD 0.081 0.099 0.097 0.097 0.061 0.074 0.073 0.073

ASE 0.084 0.105 0.103 0.103 0.060 0.074 0.072 0.073
CP 0.300 0.878 0.940 0.946 0.074 0.720 0.900 0.916

β1 = 1 Bias −0.160 0.038 −0.020 −0.018 −0.158 0.041 −0.018 −0.016
SD 0.045 0.058 0.057 0.057 0.033 0.043 0.042 0.042

ASE 0.046 0.061 0.059 0.060 0.032 0.043 0.042 0.042
CP 0.060 0.920 0.946 0.950 0.002 0.848 0.928 0.928

µx = 1.5, σx = 1, σu = 1, η = 86%

β0 = 0.5 Bias 0.341 −0.199 0.051 0.036 0.336 −0.204 0.050 0.034
SD 0.084 0.132 0.123 0.125 0.063 0.098 0.090 0.091

ASE 0.086 0.139 0.130 0.131 0.061 0.098 0.091 0.092
CP 0.024 0.734 0.928 0.946 0.000 0.460 0.902 0.920

β1 = 1 Bias −0.268 0.074 −0.024 −0.017 −0.265 0.076 −0.024 −0.017
SD 0.045 0.078 0.075 0.076 0.033 0.058 0.054 0.055

ASE 0.046 0.082 0.078 0.079 0.033 0.058 0.055 0.055
CP 0.000 0.892 0.938 0.950 0.000 0.744 0.916 0.932
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Table 2. Cont.

Naive NRC RC EEE Naive NRC RC EEE

n = 500 n = 1000

X is normal and the error is from a modified chi-square distribution

µx = 1.5, σx = 1, σu = 1, η = 87%

β0 = 0.5 Bias 0.384 −0.278 0.082 0.088 0.385 −0.275 0.085 0.091
SD 0.095 0.169 0.134 0.134 0.067 0.118 0.094 0.094

ASE 0.093 0.163 0.129 0.129 0.066 0.115 0.091 0.091
CP 0.012 0.614 0.870 0.850 0.000 0.322 0.816 0.792

β1 = 1 Bias −0.295 0.125 −0.038 −0.040 −0.293 0.125 −0.038 −0.040
SD 0.052 0.101 0.081 0.081 0.036 0.070 0.056 0.056

ASE 0.050 0.097 0.078 0.078 0.036 0.069 0.055 0.055
CP 0.000 0.764 0.898 0.890 0.000 0.594 0.880 0.882

X is normal and the error is from a mixture of two normal distribution

µx = 1.5, σx = 1, σu = 1, η = 84%

β0 = 0.5 Bias 0.376 −0.431 0.024 −0.024 0.380 −0.418 −0.018 −0.018
SD 0.096 0.196 0.162 0.162 0.069 0.136 0.107 0.107

ASE 0.096 0.198 0.160 0.161 0.068 0.139 0.112 0.112
CP 0.030 0.402 0.954 0.958 0.000 0.114 0.954 0.958

β1 = 1 Bias −0.311 0.183 0.013 0.013 −0.314 0.175 0.009 0.009
SD 0.048 0.116 0.098 0.098 0.033 0.080 0.066 0.066

ASE 0.049 0.118 0.098 0.099 0.035 0.082 0.068 0.068
CP 0.000 0.724 0.950 0.950 0.000 0.430 0.954 0.956

NOTE: See the footnote of Table 1 for notation.

We considered non-normal X in Table 2 to investigate if the estimators were sensitive
to the normality assumption in the calculation. We also examined the sensitivity of the
estimators to misspecification of the measurement error distribution. On the upper portion
of Table 2, the unobserved X was generated from a mixture of two normal distributions;
one with mean 2.5 and variance 1, and the other with mean 1 and variance 0.25, and
the mixture percentages were (1/3, 2/3). The result from the upper portion of the table
was similar to that of Table 1, except that there were small biases from the RC and EEE
estimators. We found that the RC and EEE showed small biases when the unobserved
exposure had a skewed distribution, but the bias was not too large in general. Nevertheless,
the RC and EEE estimators were still better than the NRC and naive estimators under this
situation. On the lower portion of Table 2, we considered the situation when X was normal
but measurement error was from a location/scale-transformed chi-squared distribution
and a mixture of two normal distributions, respectively. The specification of the mixture of
two normal distributions was the same as the mixture of normal distributions given above.
The location/scale-transformed chi-squared distribution has mean 0 and variance σ2

u after a
chi-squared random variable was location/scale-transformed. From the sensitivity analysis,
the RC and EEE estimators were not sensitive to mild violation due to a mixture of normal
distributions since the biases were considered small. However, the biases may be sensitive
to violation of the normality assumption while the true distribution was very skewed, as
for chi-squared distributions. The biases were moderate, rather than small, when the errors
were from chi-squared distributions.
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Table 3. Simulation study for logistic regression with truncated surrogates.

Naive NRC RC EEE Naive NRC RC EEE

n = 500 n = 1000

µx = 1.5, σx = 1, σu = 0.707, η = 89%

β0 = 0 Bias 0.065 −0.190 −0.010 −0.010 0.063 −0.190 −0.012 −0.012
SD 0.191 0.234 0.203 0.208 0.136 0.169 0.147 0.150

ASE 0.181 0.224 0.193 0.199 0.128 0.158 0.136 0.140
CP 0.922 0.836 0.938 0.944 0.892 0.766 0.936 0.942

β1 = ln(2) Bias −0.080 0.083 −0.008 0.007 −0.079 0.083 −0.006 0.008
SD 0.122 0.154 0.133 0.142 0.085 0.109 0.094 0.100

ASE 0.115 0.147 0.126 0.134 0.082 0.104 0.089 0.095
CP 0.868 0.914 0.928 0.930 0.788 0.874 0.936 0.944

β0 = 0 Bias 0.069 −0.340 −0.014 −0.013 0.065 −0.341 −0.018 −0.016
SD 0.207 0.266 0.219 0.232 0.148 0.189 0.159 0.169

ASE 0.197 0.254 0.210 0.223 0.139 0.179 0.148 0.156
CP 0.930 0.706 0.950 0.948 0.900 0.518 0.928 0.928

β1 = ln(3) Bias −0.116 0.146 −0.035 0.015 −0.114 0.145 −0.034 0.014
SD 0.159 0.205 0.165 0.190 0.111 0.141 0.115 0.132

ASE 0.149 0.191 0.155 0.178 0.106 0.135 0.109 0.125
CP 0.848 0.884 0.920 0.940 0.766 0.836 0.920 0.942

µx = 1.5, σ2
x = 1, σ2

u = 1, η = 86%

β0 = 0 Bias 0.175 −0.276 −0.014 −0.015 0.171 −0.277 −0.017 −0.016
SD 0.186 0.277 0.222 0.230 0.135 0.203 0.166 0.172

ASE 0.177 0.267 0.214 0.223 0.125 0.188 0.150 0.156
CP 0.824 0.800 0.938 0.948 0.700 0.672 0.934 0.940

β1 = ln(2) Bias −0.173 0.108 −0.014 0.011 −0.171 0.109 −0.012 0.012
SD 0.113 0.178 0.146 0.162 0.081 0.128 0.106 0.117

ASE 0.108 0.171 0.140 0.155 0.076 0.121 0.098 0.109
CP 0.610 0.914 0.948 0.946 0.404 0.856 0.926 0.940

β0 = 0 Bias 0.232 −0.487 −0.028 −0.023 0.225 −0.487 −0.031 −0.023
SD 0.204 0.333 0.249 0.269 0.146 0.236 0.183 0.199

ASE 0.193 0.314 0.238 0.259 0.136 0.221 0.167 0.181
CP 0.754 0.642 0.946 0.952 0.626 0.398 0.924 0.922

β1 = ln(3) Bias −0.273 0.175 −0.056 0.023 −0.270 0.174 −0.055 0.021
SD 0.148 0.240 0.183 0.227 0.104 0.166 0.129 0.162

ASE 0.138 0.222 0.171 0.213 0.098 0.156 0.120 0.148
CP 0.488 0.892 0.900 0.946 0.230 0.824 0.902 0.940

NOTE: See the footnote of Table 1 for notation.

In Table 3, the data were generated similarly to those in Table 1 but the main model
was logistic regression such that pr(Yi = 1|Xi) = H(β0 + β1Xi), where the regression
coefficients were β = (0, ln(2)) and β = (0, ln(3)), respectively. The findings were similar
to those from Table 1 for the situation when β = (0, ln(2)). The biases of the RC and EEE
estimators were very small. Although RC is not consistent, it may have limited biases if the
relative risk parameter is small to moderate, such as β1 = ln(1.5) or β1 = ln(2) when the
exposure’s standard deviation is about 1. However, when β1 = ln(3), the biases of the RC
estimator were larger than those of the EEE estimator. The reason is that the RC estimator’s
bias will increase if the relative risk parameter is large. The findings are typically similar
to those for measurement error in longitudinal data and survival analysis with covariate
measurement error [20,21].

In Table 4, we investigated the situation when both X and Z were included in a
linear regression model. We first generated Xi, i = 1, . . . , n and two replicates Wi1 and
Wi2 in the same way as those in Table 1. Covariate Zi, i = 1, . . . , n, were generated via
Zi = ρXi/σx +

√
1 − ρ2Vi/σz, where Vi were from N(0, σ2

z ) and independent from Xi,
σ2

z = 1 and ρ = 0.2. The outcomes were generated via Yi = β0 + β1Xi + β2Zi + ei, where
β0 = 0.5, β1 = 1 and β2 = −1, The residuals ei, i = 1, . . . , n, were generated from a
standard normal random variable which was independent of Xi and Zi. The findings were
mostly similar to those from Table 1. That is, the naive and NRC estimators had large biases
while the RC and EEE estimators were consistent with limited biases.
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Table 4. Simulation study for linear regression model with truncated surrogates; covariates are X
and Z.

Naive RC CRC EEE Naive RC CRC EEE

n = 500 n = 1000

µx = 1.5, σx = 1, σu = 0.707, η = 89%

β0 = 0.5 Bias 0.137 −0.225 −0.006 −0.001 0.134 −0.224 −0.001 0.005
SD 0.095 0.122 0.109 0.110 0.065 0.082 0.074 0.073

ASE 0.093 0.117 0.106 0.106 0.066 0.083 0.075 0.074
CP 0.694 0.504 0.938 0.930 0.454 0.226 0.946 0.944

β1 = 1 Bias −0.137 0.094 0.004 0.001 −0.136 0.093 0.001 −0.003
SD 0.051 0.071 0.071 0.065 0.033 0.048 0.044 0.043

ASE 0.050 0.069 0.064 0.063 0.036 0.049 0.044 0.044
CP 0.204 0.742 0.940 0.938 0.020 0.538 0.954 0.956

β2 = −1 Bias 0.042 0.042 −0.004 −0.004 0.049 0.049 0.002 0.003
SD 0.052 0.052 0.053 0.053 0.036 0.036 0.038 0.037

ASE 0.050 0.050 0.050 0.050 0.035 0.035 0.036 0.036
CP 0.852 0.852 0.938 0.938 0.704 0.704 0.942 0.942

µx = 1.5, σx = 1, σu = 1, η = 86%

β0 = 0.5 Bias 0.300 −0.347 −0.016 −0.016 0.298 −0.338 −0.005 −0.004
SD 0.098 0.170 0.142 0.143 0.067 0.114 0.095 0.094

ASE 0.095 0.162 0.136 0.136 0.067 0.113 0.095 0.094
CP 0.110 0.406 0.944 0.944 0.006 0.132 0.956 0.954

β1 = 1 Bias −0.264 0.138 0.011 0.011 −0.264 0.132 0.004 0.002
SD 0.051 0.099 0.087 0.087 0.033 0.068 0.060 0.059

ASE 0.049 0.096 0.083 0.083 0.035 0.068 0.058 0.058
CP 0.000 0.732 0.944 0.948 0.000 0.518 0.958 0.958

β2 = −1 Bias 0.070 0.070 −0.005 −0.006 0.076 0.076 0.002 0.002
SD 0.054 0.054 0.059 0.059 0.038 0.038 0.042 0.042

ASE 0.052 0.052 0.053 0.054 0.037 0.037 0.038 0.038
CP 0.736 0.736 0.934 0.938 0.464 0.464 0.922 0.920

NOTE: Naive is an estimator that uses the average of two replicates as the covariate, RC is the usual RC estimator
that uses E(X|W̃, Z) as the covariate, CRC is a conditional RC estimator that uses E(X|W̃, Z, η) as the covariate,
EEE is the expected estimating equation estimator described.

6. Analysis of APPEAL Data

The design of the APPEAL study was briefly reviewed in the Introduction. In this
section, we are interested in investigating the association between physical activity mea-
sured via MET hours per week and CRP. The outcome variable of interest is the CRP
value at baseline. In the APPEAL study, MET hours per week and other data including
biomarkers were collected at both baseline and 12 months (end of study). In the control
group who did not receive the exercise intervention, physical activity levels did not change
significantly between baseline and 12 months. Hence, it seems reasonable to assume that
the two MET-hours/week scores at baseline and 12 months in the control group (n = 102)
can be treated as replicates. The MET-hours/week data for the exercise intervention group
at 12 months were not included in the analysis as the MET-hours/week value changed sig-
nificantly for study participants randomized to the exercise intervention between baseline
and 12 months. As such, these values cannot be treated as replicates. The MET-hours/week
scores at baseline and 12 months are surrogate variables (replicates, control arm only)
for an unobserved true MET-hours/week score of an individual (unobserved underlying
average of a period of time). The true unobserved average MET-hours/week variable is a
variable to measure the actual physical activity which cannot be observed. In addition to
MET-hours/week, age at baseline was another covariate in the regression analysis.

We first investigated an association between MET-hours/week and CRP at base-
line. A scatterplot and a fitted kernel smoother of MET-hours/week and CRP at base-
line are shown in the upper portion of Figure 1. The lower portion of Figure 1 is the
scatterplot and a fitted kernel smoother of log(MET+1) and log(CRP) at baseline. We
excluded 26 individuals with missing data and outliers (defined as values larger than
median + 3× interquartile range) for CRP. Hence, a total of 176 individuals are included
in the data analysis. The percentage of non-zero log(MET+1) at baseline is 67%, and
68% at 12 month. In our regression analysis, we used the log-transformed data since the
transformed data were less skewed.
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Figure 1. Upper: CRP versus MET; Lower: log(CRP) versus log(MET+1). The lines were obtained
from fitting lowess smoothers.

In this section, the data analysis involved applying our methods to the regression
association for the effects of physical activity (MET-hours/week) and age on CRP. The data
application here is primarily for the purpose of a demonstration of our new methods. The
regression coefficients were estimated based on the naive, RC, CRC, and EEE estimators.
The results are given in Table 5. All the four estimators showed that MET was negatively
associated with the inflammatory marker CRP; but not significant.

From the naive estimator, when the log(MET+1) score increased by 1 h/week, the CRP,
on average, decreased by about 0.07 mg/L. From the NRC, RC, and EEE estimates, when
the log(MET+1) score increased by 1 h/week, the CRP, on average, decreased by about
0.1 mg/L. It was observed that the standard errors from the NRC, RC, and EEE estimates
were larger than those from the naive estimates. This was a general phenomenon of a
bias–efficiency trade-off that has been reported in the measurement error literature, and
is consistent with the findings from our simulations. Furthermore, all the four estimates
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demonstrated a significant effect of age on CRP. On average, an increase of 10 years in age
was associated with an increase of approximately 0.15 mg/L in log(CRP).

Table 5. Analysis results of data from the APPEAL study.

Naive NRC RC EEE

Intercept β0 0.259 0.345 0.299 0.282
SE 0.360 0.377 0.367 0.364

log(MET+1) β1 −0.067 −0.136 −0.107 −0.098
SE 0.045 0.098 0.071 0.062

Age β2 0.015 0.015 0.014 0.015
SE 0.006 0.006 0.007 0.007

Nuisance parameters
µx 1.258 0.925 0.927
SE 0.100 0.160 0.161
σ2

x 0.447 0.976 0.987
SE 0.145 0.337 0.330
σ2

u 0.910 1.674 1.671
SE 0.130 0.293 0.292

Note: See the footnote of Table 1 for notation. The percentages of non-zero log(1+MET) were 66.7% and 67.8% at
baseline and 12 months among the participants in the control group, respectively. The total sample size in the
analysis was 176.

7. Discussion

In the paper, we propose an EEE estimator for generalized linear models with covariate
measurement error when the surrogate variables may have zero values among a subset of
individuals. Our work is applicable to the situation for more applications when an exposure
may be truncated. Our numerical studies show that RC is better than the naive estimator
and NRC estimator in general, but it may be biased under some situations. Overall, the
EEE estimator has smaller biases. There is a trade-off between bias and efficiency. The EEE
has a larger SE due to this. One limitation of the proposed EEE estimator is that it may be
biased if the likelihood function of the exposure variable is misspecified. Our simulation
results demonstrate that the biases are moderate if the exposure distribution is not too
skewed. Future research is needed to develop a non-parametric approach that does not
require the exposure variable distribution [22].

In addition to physical activity or dietary data, biomarker measurements are important
for the early detection and monitoring of disease progression. Our methods developed
in this paper can be applied to biomarker data. When a biomarker is truncated due to a
detection limit, decisions are required concerning how to handle values at or below the
threshold in order to avoid biasing the parameter estimates. However, biomarkers are often
measured with errors for many reasons, such as imperfect laboratory conditions, analytic
variability of the assay, or temporal variability within individuals. The statistical modeling
of zero-inflated surrogates in this paper can be applied to the situation when biomarker
data are truncated due to a detection limit. Further research is needed if longitudinal
biomarker, physical activity, or dietary data, are available over time [23–25].

8. Conclusions

We have developed an EEE approach for regression analysis with covariate measure-
ment error when the surrogates may be truncated. One limitation of our proposed EEE
estimator is that it is not consistent if the covariate distribution or the measurement error
distribution is misspecified. In our simulations, the covariates and measurement errors are
from normal distributions. Our simulation results demonstrate that if the misspecification
is not too extreme, then the bias is typically small. Hence, if the covariates are skewed, then
an appropriate (such as a logarithmic) transformation of the data may reduce the skewness
of the data. Then the proposed EEE estimator may work well with likely minimal biases.
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Appendix A. Proofs of Propositions 1 and 2

Proof of Proposition 1. Based on a standard surrogate assumption, the measurement er-
rors Uij and ei are independent. Also, the truncation indicator η̃i is independent of ei. Hence,
E(ei|W̃i, Zi) = 0. The unbiasedness of the estimating Equation (2) of the RC estimator can
be obtained by calculating the expectation of the estimating score for individual i,

E
[
(1, X̂i, Z′

i)
′{Yi − (β0 + β1X̂i + β′

2Zi)
]

= E
(
(1, X̂i, Z′

i)
′E
[
{Yi − (β0 + β1X̂i + β′

2Zi)}|W̃i, Zi

])
= 0.

Hence, for linear regression with zero-inflated surrogates, the RC estimator is consistent.

Proof of Proposition 2. We note that ϕ(Yi, Xi, Zi, β) is an estimating score that satisfies
E{ϕ(Yi, Xi, Zi, β)} = 0. We note that

E
[
E{ϕ(Yi, Xi, Zi, β)|Yi, W̃i, Zi}

]
= E{ϕ(Yi, Xi, Zi, β)} = 0.

Hence, estimating Equation (4) for the EEE estimator is unbiased. We now develop the
asymptotic distribution of the EEE estimator. Let the estimating score of the EEE estima-
tor for the ith participant E{ϕ(Yi, Xi, Zi, β)|Yi, W̃i, Zi} be denoted by ψ(Yi, W̃i, Zi, β). Let
G(β) = −E{∂ψ(Y, W̃, Z, β)/∂β}. By a Taylor expansion of the estimating equation at the
true β, and under some regularity conditions, it can be shown that

n1/2(β̂eee − β) = G−1(β)n−1/2
n

∑
i=1

ψ(Yi, W̃i, Zi, β) + op(1),

Hence, it is seen that n1/2(β̂eee − β) is asymptotically normal with mean 0 and variance

{G(β)}−1n−1[
n

∑
i=1

ψ(Yi, W̃i, Zi, β){ψ(Yi, W̃i, Zi, β)}′]{G−1(β)}′,
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