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Abstract: In this paper, we give the sufficient conditions for the compactness of sets in generalized
Morrey spaces Mw(·)

p . This result is an analogue of the well-known Fréchet–Kolmogorov theorem on
the compactness of a set in Lebesgue spaces Lp, p > 0. As an application, we prove the compactness
of the commutator of the Riesz potential [b, Iα] in generalized Morrey spaces, where b ∈ VMO
(VMO(Rn) denote the BMO-closure of C∞

0 (Rn)). We prove auxiliary statements regarding the
connection between the norm of average functions and the norm of the difference of functions in the
generalized Morrey spaces. Such results are also of independent interest.
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1. Introduction

Morrey spaces Mλ
p , named after C. Morrey, were introduced by him in 1938 in [1] and

defined as follows: For 1 ≤ p ≤ ∞, n ≥ 1, 0 < λ < n, f ∈ Mλ
p if f ∈ Lloc

p and

∥ f ∥Mλ
p
≡ ∥ f ∥Mλ

p (Rn) = sup
x∈Rn ,r>0

(
r−λ∥ f ∥Lp(B(x,r))

)
< ∞,

where B(x, r) is a ball with center at the point x and of radius r > 0.
For λ = 0 and λ = n, the Morrey spaces M0

p(Rn) and Mn
p(Rn) coincide (with equality

of norms) with the spaces Lp(Rn) and L∞(Rn), respectively.
Later, the Morrey spaces were found to have many important applications to the

Navier–Stokes equations (see [2,3]), the Shrodinger equations (see [4,5]) and the potential
analysis (see [6,7]).

Generalized Morrey spaces Mw(·)
p were first considered by T. Mizuhara [8], E. Nakai [9]

and V.S. Guliyev [10].
Let 1 ≤ p ≤ ∞ and let w be a measurable non-negative function on (0, ∞) that is not

equivalent to zero. The generalized Morrey space Mw(·)
p ≡ Mw(·)

p (Rn) is defined as the set
of all functions f ∈ Lloc

p (Rn) with ∥ f ∥
Mw(·)

p
< ∞, where

∥ f ∥
Mw(·)

p
= sup

x∈Rn , r>0

(
w(r)∥ f ∥Lp(B(x,r))

)
.

The space Mw(·)
p coincides with the Morrey space Mλ

p if w(r) = r−λ, where 0 ≤ λ ≤ n
p .
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By Ωp∞ we denote the set of all non-negative, measurable on (0, ∞) functions, not
equivalent to 0 and such that for some t > 0,

∥w(r)r
n
p ∥L∞(0,t) < ∞, ∥w(r)∥L∞(t,∞) < ∞.

The space Mw(·)
p is non-trivial if and only if w ∈ Ωp∞ [11,12].

The Riesz potential Iα of order α(0 < α < n) is defined by

Iα f (x) =
∫
Rn

f (y)
|x − y|n−α

dy.

For the function b ∈ Lloc(Rn), let Mb denote the multiplication operator Mb f = b f ,
where f is a measurable function. Then, the commutator for the Riesz potential Iα and the
operator Mb is defined by

[b, Iα]( f )(x) = Mb(Iα( f (x)))− Iα(Mb f )(x) =
∫
Rn

[b(x)− b(y)] f (y)
|x − y|n−α dy.

The function b ∈ L∞(Rn) is said to belong to the space BMO(Rn) if

∥b∥∗ = sup
Q⊂Rn

1
|Q|

∫
Q

∣∣b(x)− bQ
∣∣dx < ∞,

where Q is a ball in Rn and bQ = 1
|Q|
∫
Rn

b(y)dy.

By VMO(Rn), we denote the BMO-closure of the space C∞
0 (Rn), where C∞

0 (Rn) is the
set of all functions from C∞(Rn) with compact support.

The boundedness of the Riesz potential on the Morrey spaces was investigated by S.
Spanne, J. Peetre [13] and D. Adams. [14]. T. Mizuhara [8], E. Nakai [9] and V.S. Guliyev [10]
generalized the results of D. Adams and obtained sufficient conditions for the boundedness
of Iα on the generalized Morrey spaces. Boundedness of the commutator for the Riesz
potential on the Morrey spaces and on the generalized Morrey spaces was considered
in [15,16], respectively. The compactness of the commutator for the Riesz potential on the
Morrey spaces and on the Morrey spaces with non-doubling measures was considered
in [17,18], respectively. The pre-compactness of sets on the Morrey spaces and on variable
exponent Morrey spaces was considered in [17,19,20]. The compactness of the commutator
for the Riesz potential [b, Iα] on the Morrey-type spaces was also considered in [21,22].

The boundedness and compactness of integral operators and their commutators
on various function spaces play an important role in harmonic analysis, in potential
theory and PDE [23,24] and in some important physical properties and physical struc-
tures [25,26]. Moreover, the interest in the compactness of operator [b, T], where T is the
classical Calderón–Zygmund singular integral operator, in complex analysis is from the
connection between the commutators and the Hankel-type operators. The compactness
of [b, T] attracted attention among researchers in PDEs. For example, with the aid of the
compactness of [b, T], one easily derives a Fredholm alternative for equations with VMO
coefficients in all Lp spaces for 1 < p < ∞ (see [27]). Hence, it is possible that the compact-
ness of [b, Iα] on generalized Morrey spaces will be applied to discuss some local problems
of PDEs with VMO coefficients (see also [28]).

The main goal of this paper is to find the conditions for the pre-compactness of sets
on generalized Morrey spaces and to find sufficient conditions for the compactness of
the commutator of the Riesz potential [b, Iα] on the generalized Morrey spaces Mw(·)

p (Rn),
namely, to find conditions for parameters p, q, α and functions w1 and w2 ensuring the
compactness of operators [b, Iα] from Mw1(·)

p to Mw2(·)
q .

This paper is organized as follows: In Section 2, we present results on the pre-
compactness of a set in generalized Morrey spaces. To do this, we will establish some
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auxiliary lemmas. In Section 3, we give sufficient conditions for the compactness of the
commutator for the Riesz potential [b, Iα] on the generalized Morrey space Mw(·)

p (Rn). We
will also recall some theorems and establish some auxiliary lemmas. Finally, we draw
conclusions in Section 4.

We make some conventions on notation. Throughout this paper, we always use C to
denote a positive constant that is independent of the main parameters involved but whose
value may differ from line to line. Constants with subscripts, such as Cp, are dependent on
the subscript p. We denote f ≲ g if f ≤ Cg. By C(R), we denote the set of all continuous
bounded functions on R with the uniform norm, by χA we denote the characteristic function
of the set A ⊂ Rn and by c A we denote the complement of A.

2. On the Pre-Compactness of a Set in Generalized Morrey Spaces

In this section, we give sufficient conditions for the pre-compactness of sets in general-
ized Morrey spaces.

Theorem 1. Let 1 ≤ p < ∞ and w ∈ Ωp∞. Suppose that the set S ⊂ Mw(·)
p satisfies the

following conditions:
sup
f∈S

∥ f ∥
Mw(·)

p
< ∞, (1)

lim
u→0

sup
f∈S

∥ f (·+ u)− f (·)∥
Mw(·)

p
= 0, (2)

lim
r→∞

sup
f∈S

∥ f χc B(0,r)∥Mw(·)
p

= 0. (3)

Then S is a pre-compact set in Mw(·)
p .

For the Morrey space Mλ
p , an analogue of Theorem 1 was proved in [17,19]. If λ = 0,

it coincides with the well-known Fréchet–Kolmogorov theorem (see [29]). Theorem 1 is
formulated in terms of the difference of a function (see condition (2)). The conditions for
the pre-compactness of sets in the global and local Morrey-type spaces were given in terms
of the average functions

(Mr f )(x) =
1

|B(x, r)|

∫
B(x,r)

f (y)dy, f ∈ Mw(·)
p ,

in [30–32]. Here, | A | is the Lebesgue measure of the set A ⊂ Rn.
To prove Theorem 1, we will need the following auxiliary statements.

Lemma 1. Let 1 ≤ p < ∞ and w ∈ Ωp∞. Then, for all f ∈ Mw(·)
p and r > 0

∥Mr f − f ∥
Mw(·)

p
≤ sup

u∈B(0,r)
∥ f (·+ u)− f (·)∥

Mw(·)
p

. (4)

Proof. Let z ∈ Rn and ρ > 0. Using the Hölder inequality, we have

∥Mr f − f ∥Lp(B(z,ρ)) =

=

 ∫
B(z,ρ)

∣∣∣∣∣∣∣
1

|B(x, r)|

∫
B(x,r)

f (y)dy − f (x)

∣∣∣∣∣∣∣
p

dx


1
p
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=

 ∫
B(z,ρ)

∣∣∣∣∣∣∣
1

|B(x, r)|

∫
B(x,r)

( f (y)− f (x))dy

∣∣∣∣∣∣∣
p

dx


1
p

≤

 ∫
B(z,ρ)

 1
|B(x, r)|

∫
B(x,r)

| f (y)− f (x)|pdy

dx


1
p

.

Next, using the change of variables y = x + u and the Fubini theorem, we obtain

∥Mr f − f ∥Lp(B(z,ρ)) ≤

 ∫
B(z,ρ)

 1
|B(0, r)|

∫
B(0,r)

| f (x + u)− f (x)|pdu

dx


1
p

=

 1
|B(0, r)|

∫
B(0,r)

 ∫
B(z,ρ)

| f (x + u)− f (x)|pdx

du


1
p

=

 1
|B(0, r)|

∫
B(0,r)

∥ f (·+ u)− f (·)∥p
Lp(B(z,ρ))du


1
p

.

Hence,

∥Mr f − f ∥
Mw(·)

p
= sup

z∈Rn , ρ>0
w(ρ)∥Mr f − f ∥Lp(B(z,ρ))

≤ sup
z∈Rn , ρ>0

w(ρ)

 1
|B(0, r)|

∫
B(0,r)

∥ f (·+ u)− f (·)∥p
Lp(B(z,ρ))du


1
p

≤

 1
|B(0, r)|

∫
B(0,r)

sup
z∈Rn , ρ>0

w(ρ)∥ f (·+ u)− f (·)∥p
Lp(B(z,ρ))du


1
p

.

=

 1
|B(0, r)|

∫
B(0,r)

∥ f (·+ u)− f (·)∥p

Mw(·)
p

du


1
p

≤ sup
u∈B(0,r)

∥ f (·+ u)− f (·)∥
Mw(·)

p
.

Lemma 1 is proved.

Lemma 2. Let 1 ≤ p < ∞, w ∈ Ωp∞. Then, for all f ∈ Mw(·)
p and r > 0

∥Mr f ∥
Mw(·)

p
≤ ∥ f ∥

Mw(·)
p

. (5)
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Proof. Using the change of variables y = x + u, the Hölder inequality and the Fubini
theorem, we obtain

∥Mr f ∥Lp(B(z,ρ)) =

 ∫
B(z,ρ)

∣∣∣∣∣∣∣
1

|B(x, r)|

∫
B(x,r)

f (y)dy

∣∣∣∣∣∣∣
p

dx


1
p

≤

 ∫
B(z,ρ)

 1
|B(x, r)|

∫
B(x,r)

| f (y)|pdy

dx


1
p

=

 ∫
B(z,ρ)

 1
|B(0, r)|

∫
B(0,r)

| f (x + u)|pdu

dx


1
p

=

 1
|B(0, r)|

∫
B(0,r)

 ∫
B(z,ρ)

| f (x + u)|pdx

du


1
p

=

 1
|B(0, r)|

∫
B(0,r)

 ∫
B(z+u,ρ)

| f (v)|pdv

du


1
p

=

 1
|B(0, r)|

∫
B(0,r)

∥ f ∥p
Lp(B(z+u,ρ))du


1
p

.

Therefore,
∥Mr f ∥

Mw(·)
p

= sup
z∈Rn , ρ>0

(
w(ρ)∥Mr f ∥Lp(B(z,ρ))

)

≤ sup
z∈Rn , ρ>0

 1
|B(0, r)|

∫
B(0,r)

(
w(ρ)∥ f ∥Lp(B(z+u,ρ))

)p
du


1
p

≤

 1
|B(0, r)|

∫
B(0,r)

(
sup

z∈Rn , ρ>0
w(ρ)∥ f ∥Lp(B(z+u,ρ))

)p

du


1
p

=

 1
|B(0, r)|

∫
B(0,r)

(
sup

x∈Rn , ρ>0
w(ρ)∥ f ∥Lp(B(x,ρ))

)p

du


1
p

= ∥ f ∥
Mw(·)

p
.

Lemma 2 is proved.

Lemma 3. Let 1 ≤ p < ∞, w ∈ Ωp∞. Then, there exists r0 > 0 and for any 0 < r ≤ r0 there is
C1 > 0, depending only on r, n, p, w, such that

(1) for any f ∈ Mw(·)
p

∥Mr f ∥C(Rn) ≤ C1∥ f ∥
Mw(·)

p (Rn)
. (6)
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(2) for any δ > 0

sup
u∈B(0,δ)

∥Mr f (·+ u)− Mr f (·)∥C(Rn) ≤ C1 sup
u∈B(0,δ)

∥ f (·+ u)− f (·)∥
Mw(·)

p (Rn)
. (7)

Proof. (1) Since the function w ∈ Ωp∞ is not equivalent to 0, then there exists r0 > 0 such
that sup

r0<ρ<∞
w(ρ) > 0. Let 0 < r ≤ r0. Using the Hölder inequality, for any x ∈ Rn, we have

|Mr f (x)| ≤ 1

|B(x, r)|
1
p
∥ f ∥Lp(B(x,r)).

Hence,

|Mr f (x)|w(ρ) ≤ 1

(vnrn)
1
p

(
w(ρ)∥ f ∥Lp(B(x,r))

)
,

where vn is the volume of the unit ball in Rn, and

|Mr f (x)| sup
r<ρ<∞

w(ρ) ≤ 1

(vnrn)
1
p

(
sup

r<ρ<∞
w(ρ)∥ f ∥Lp(B(x,r))

)

≤ 1

(vnrn)
1
p

(
sup

r<ρ<∞
w(ρ)∥ f ∥Lp(B(x,ρ))

)
≤ 1

(vnrn)
1
p

(
sup
ρ>0

w(ρ)∥ f ∥Lp(B(x,ρ))

)
.

Therefore, for any x ∈ Rn

|Mr f (x)| ≤ C1∥ f ∥
Mw(·)

p
, (8)

where C1 =

(
( sup

r<ρ<∞
w(ρ))(vnrn)

1
p

)−1

< ∞, since w ∈ Ωp∞.

(2) For any x1, x2 ∈ B(0, r), by Hölder’s inequality, we have

|(Mr f )(x1)− (Mr f )(x2)| =
1

vnrn

∣∣∣∣∣∣∣
∫

B(x1,r)

f (y)dy −
∫

B(x2,r)

f (y)dy

∣∣∣∣∣∣∣
= (vnrn)−1

∣∣∣∣∣∣∣
∫

B(0,r)

f (z + x1)dz −
∫

B(0,r)

f (z + x2)dz

∣∣∣∣∣∣∣
≤ (vnrn)−1

∫
B(0,r)

| f (z + x1)− f (z + x2)|dz

= (vnrn)−1
∫

B(x2,r)

| f (s + x1 − x2)− f (s)|ds

≤ (vnrn)
− 1

p ∥ f (·+ x1 − x2)− f (·)∥Lp(B(x2,r)).

Therefore, similar to the first part of the proof, we obtain

|(Mr f )(x1)− (Mr f )(x2)| ≤ C1∥ f (·+ x1 − x2)− f (·)∥
Mw(·)

p
.

Hence,
sup

x1,x2∈Rn , |x1−x2|≤δ

|(Mr f )(x1)− (Mr f )(x2)|

≤ C1 sup
x1,x2∈ Rn , |x1−x2|≤δ

∥ f (·+ x1 − x2)− f (·)∥
Mw(·)

p
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= C1 sup
u∈B(0,δ)

∥ f (·+ u)− f (·)∥
Mw(·)

p
.

Lemma 3 is proved.

Lemma 4. Let 1 ≤ p < ∞, w ∈ Ωp∞. Then, there exists C2 > 0, depending only on n, p, w, such

that for any r, R > 0 and for any f , g ∈ Mw(·)
p

∥Mr f − Mrg∥
Mw(·)

p
≤ C2(1 + R

n
p )∥Mr f − Mrg∥C(B(0,R))

+ sup
u∈B(0,r)

∥ f (·+ u)− f (·)∥
Mw(·)

p
+ sup

u∈B(0,r)
∥g(·+ u)− g(·)∥

Mw(·)
p

+
∥∥∥ f χc B(0,R)

∥∥∥
Mw(·)

p
+

∥∥∥∥gχ
c B(0,R)

∥∥∥∥
Mw(·)

p

.

Proof. Indeed,
∥Mr f − Mrg∥

Mw(·)
p

≤
∥∥∥(Mr f − Mrg)χ

B(0,R)

∥∥∥
Mw(·)

p
+
∥∥∥(Mr f − Mrg)χc B(0,R)

∥∥∥
Mw(·)

p
:= I1 + I2.

First, we will estimate I1. By using B(x, ρ) ∩ B(0, R) ⊂ B(0, R), B(x, ρ) ∩ B(0, R) ⊂ B(x, ρ),
for any ρ > 0, R > 0, we have

I1 = sup
x∈Rn , ρ>0

(
w(ρ)∥Mr f − Mrg∥Lp(B(x,ρ)∩B(0,R))

)
≤ sup

x∈Rn , 0<ρ<1

(
w(ρ)∥Mr f − Mrg∥Lp(B(x,ρ)∩B(0,R))

)
+ sup

x∈Rn , 1≤ρ<∞

(
w(ρ)∥Mr f − Mrg∥Lp(B(x,ρ)∩B(0,R))

)

≤ ∥Mr f − Mrg∥C(B(0,R)) ·
(

sup
0<ρ<1

w(ρ)(vnρn)
1
p + sup

1≤ρ<∞
w(ρ)(vnRn)

1
p

)

≤ ∥Mr f − Mrg∥C(B(0,R)) · v
1
p
n

(
sup

0<ρ<1
w(ρ)ρ

n
p + sup

1≤ρ<∞
w(ρ)R

n
p

)
.

Therefore,

I1 ≤ ∥Mr f − Mrg∥C(B(0,R)) · v
1
p
n

(
sup

0<ρ<1
w(ρ)ρ

n
p + sup

1≤ρ<∞
w(ρ)

)
×

×

 sup0<ρ<1 w(ρ)ρ
n
p

sup0<ρ<1 w(ρ)ρ
n
p + sup1<ρ<∞ w(ρ)

+
sup1≤ρ<∞ w(ρ)

sup0<ρ<1 w(ρ)ρ
n
p + sup1≤ρ<∞ w(ρ)

· R
n
p


≤ C2

(
1 + R

n
p
)
∥Mr f − Mrg∥C(B(0,R)),

where

C2 = v
1
p
n

(
sup

0<ρ<1
w(ρ)ρ

n
p + sup

1≤ρ<∞
w(ρ)

)
< ∞,

since, by w ∈ Ωp∞.
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For estimate I2, using Lemma 1, we have

I2 =
∥∥∥(Mr f − Mrg)χc B(0,R)

∥∥∥
Mw(·)

p

≤
∥∥∥(Mr f − f )χc B(0,R)

∥∥∥
Mw(·)

p
+
∥∥∥( f − g)χc B(0,R)

∥∥∥
Mw(·)

p
+
∥∥∥(Mrg − g)χc B(0,R)

∥∥∥
Mw(·)

p

≤ ∥Mr f − f ∥
Mw(·)

p
+
∥∥∥( f − g)χc B(0,R)

∥∥∥
Mw(·)

p
+ ∥Mrg − g∥

Mw(·)
p

≤ sup
u∈B(0,r)

∥ f (·+ u)− f (·)∥
Mw(·)

p
+ sup

u∈B(0,r)
∥g(·+ u)− g(·)∥

Mw(·)
p

+
∥∥∥ f χc B(0,R)

∥∥∥
Mw(·)

p
+
∥∥∥gχc B(0,R)

∥∥∥
Mw(·)

p
.

From estimates of I1 and I2, we obtain the inequality of Lemma 4.
Lemma 4 is proved.

Lemma 5. Let 1 ≤ p < ∞, w ∈ Ωp∞. Then, for any r, R > 0 and for any f , g ∈ Mw(·)
p

∥ f − g∥
Mw(·)

p
≤ C2

(
1 + R

n
p
)
∥Mr f − Mrg∥C(B(0,R))

+2 sup
u∈B(0,r)

∥ f (·+ u)− f (·)∥
Mw(·)

p
+ 2 sup

u∈B(0,r)
∥g(·+ u)− g(·)∥

Mw(·)
p

(9)

+
∥∥∥ f χc B(0,R)

∥∥∥
Mw(·)

p
+
∥∥∥gχc B(0,R)

∥∥∥
Mw(·)

p
,

where C2 > 0 is the same as in Lemma 4.

Proof. It is sufficient to note that

∥ f − g∥
Mw(·)

p
≤ ∥Mr f − f ∥

Mw(·)
p

+ ∥Mr f − Mrg∥
Mw(·)

p
+ ∥Mrg − g∥

Mw(·)
p

and use Lemmas 1 and 4.

Proof of Theorem 1. Let S ⊂ Mw(·)
p and let conditions (1)–(3) hold.

Step 1. First, we show that the set Sr = {Mr f : f ∈ S} is a strongly pre-compact set
in C(B(0, R)) .

Let 0 < r < r0, where r0 is defined in Lemma 3 and R > 0 is fixed. Due to inequality
(6) and condition (1), it follows that

sup
f∈S

∥Mr f ∥C(B(0,R)) ≤ sup
f∈S

∥Mr f ∥C(Rn) ≤ C1 sup
f∈S

∥ f ∥
Mw(·)

p
< ∞.

In addition, due to inequality (7) and condition (2), it follows that

sup
u∈B(0,δ)

∥Mr f (·+ u)− Mr f (·)∥C(B(0,R)) ≤ sup
u∈B(0,δ)

∥Mr f (·+ u)− Mr f (·)∥C(Rn)

≤ C1 sup
u∈B(0,δ)

∥ f (·+ u)− f (·)∥
Mw(·)

p
.

Therefore, by using condition (2), we have

lim
u→0

sup
f∈S

∥Mr f (·+ u)− Mr f (·)∥C(B(0,R)) = 0.

As such, we obtained that the set Sr is uniformly bounded and equicontinuous in
C(B(0, R)).
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Therefore, by the Ascoli–Arzela theorem, the set Sr is pre-compact in C(B(0, R)), then
the set Sr is totally bounded in C(B(0, R)). Hence, for any ε > 0, there exists f1, ..., fm ∈ S
(depending on ε, r and R) such that {Mr f1, Mr f2, ..., Mr fm} is a finite ε-net in Sr with respect
to norm of C(B(0, R)). Therefore, for any f ∈ S, there is 1 ≤ j ≤ m such that∥∥Mr f − Mr f j

∥∥
C(B(0,R)) < ε.

Hence,
min

j=1,...,m

∥∥Mr f − Mr f j
∥∥

C(B(0,R)) < ε.

Step 2. Let us show that the set S is a relative compact set in Mw(·)
p . Let {φ1, ..., φm} be

an arbitrary finite subset of S. By inequality (9) for any f ∈ S and any j = 1, ..., m we have∥∥ f − φj
∥∥

Mw(·)
p

≤ C2(1 + R
n
p )
∥∥Mr f − Mr φj

∥∥
C(B(0,R))

+2 sup
u∈B(0,r)

∥ f (·+ u)− f (·)∥
Mw(·)

p
+ 2 sup

u∈B(0,r)

∥∥φj(·+ u)− φj(·)
∥∥

Mw(·)
p

+
∥∥∥ f χc B(0,R)

∥∥∥
Mw(·)

p
+
∥∥∥φjχc B(0,R)

∥∥∥
Mw(·)

p

≤ C2(1 + R
n
p )
∥∥Mr f − Mr φj

∥∥
C(B(0,R))

+4 sup
g∈S

sup
u∈B(0,r)

∥g(·+ u)− g(·)∥
Mw(·)

p
+ 2 sup

g∈S

∥∥∥gχcB(0,R)

∥∥∥
Mw(·)

p
,

where C2 is the same as in Lemma 4, C2 = v
1
p
n

(
sup

0<ρ<1
w(ρ)ρ

n
p + R

n
p sup

1≤ρ<∞
w(ρ)

)
.

Hence, for any f ∈ S:

min
j=1,...,m

∥∥ f − φj
∥∥

Mw(·)
p

≤ C2(1 + R
n
p ) min

j=1,...,m

∥∥Mr f − Mr φj
∥∥

C(B(0,R))

+4 sup
g∈S

sup
u∈B(0,r)

∥g(·+ u)− g(·)∥
Mw(·)

p
+ 2 sup

g∈S

∥∥∥gχcB(0,R)

∥∥∥
Mw(·)

p
. (10)

Let ε > 0. First, using condition (3) we find R(ε) > 0 such that

sup
g∈S

∥∥∥gχcB(0,R(ε))

∥∥∥
Mw(·)

p
<

ε

6
.

Next, using condition (2), we find r(ε) such that

sup
u∈B(0,r(ε))

sup
g∈S

∥g(·+ u)− g(·)∥
Mw(·)

p
<

ε

12
.

Finally, by the pre-compactness of the set Sr(ε) in C(B(0, R(ε))), there exist m(ε) ∈ N
and f1,ε, ..., fm(ε),ε ∈ S, such that for any f ∈ S

min
j=1,...,m(ε)

∥∥∥Mr(ε) f − Mr(ε) f j,ε

∥∥∥
C(B(0,R(ε)))

<
ε

3C2(1 + R
n
p )

.

Therefore, setting φj = f j,ε, j = 1, ..., m(ε), by inequality (10), for any f ∈ S we obtain

min
j=1,...,m(ε)

∥∥ f − f j,ε
∥∥

Mw(·)
p

<
ε

3
+

ε

3
+

ε

3
= ε.

Then, we have that φj = f j,ε, j = 1, ..., m(ε) is a finite ε-net in S in the norm of Mw(·)
p .



Mathematics 2024, 12, 304 10 of 16

Therefore, the set S is a pre-compact set in Mw(·)
p . Theorem 1 is proved.

3. Compactness of the Commutator for the Riesz Potential on Generalized
Morrey Spaces

The main goal of this section is to find sufficient conditions for the compactness of the
commutator [b, Iα] from Mw1(·)

p to Mw2(·)
q .

The Riesz potential Iα of order α(0 < α < n) is defined by

Iα f (x) =
∫
Rn

f (y)
|x − y|n−α

dy.

The boundedness of Iα on Morrey spaces was investigated in [13,14].
The sufficient conditions for the boundedness of Iα from Mw1(·)

p to Mw2(·)
q were ob-

tained by T. Mizuhara [8], E. Nakai [9], and V.S. Guliyev [10].
The following theorems give sufficient conditions for the boundedness of the Riesz

potential and its commutator in generalized Morrey spaces.

Theorem 2 ([10]). Let 1 < p < q < ∞ and α = n
(

1
p − 1

q

)
. Moreover, let functions w1 ∈ Ωp,∞,

w2 ∈ Ωq,∞ satisfy the condition∥∥∥w−1
1 (r)r−

n
q −1
∥∥∥

L1(t,∞)
≲ w−1

2 (t)t−
n
p (11)

uniformly in t ∈ (0, ∞). Then, the operator Iα is bounded from Mw1(·)
p to Mw2(·)

q .

Theorem 3 ([16]). Let 1 < p < q < ∞, 0 < α < n
p , 1

q = 1
p − α

n , b ∈ BMO(Rn) and
w1(·), w2(·) satisfy the following condition

∞∫
r

ln
(

e +
l
r

) ess inf
t<s<∞

w1(s)dt

t
≲ w2(r). (12)

Then, the operator [b, Iα] is bounded from Mw1(·)
p to Mw2(·)

q .

Theorem 4. Let 1 < p < q < ∞, 0 < α < n(1 − 1
q ),

1
q = 1

p − α
n , b ∈ VMO(Rn) and functions

w1 ∈ Ωp,∞, w2 ∈ Ωq,∞ satisfy conditions (11) and (12). Then, the commutator [b, Iα] is a compact

operator from Mw1(·)
p to Mw2(·)

q .

To prove Theorem 4, we need the following auxiliary statements.

Lemma 6. Let n ∈ N, 1 < p < q < ∞, 0 < α < n
(

1 − 1
q

)
, β > 0, 1

q = 1
p − α

n . Then, there is
C5 > 0, depending only on n, p, q, α, such that for some f ∈ Lp(B(0, β)) satisfying the condition
supp f ⊂ B(0, β), and for some γ ≥ 2β, t ∈ Rn, r > 0∥∥∥(Iα f )χcB(0,γ)

∥∥∥
Lq(B(t,r))

≤ C5γα−n(min{γ, r})
n
q ∥ f ∥Lp(B(0,β)). (13)

Proof. Let f ∈ Lp(B(t, r)). By definition of the operator Iα, we have

I :=
∥∥∥(Iα f )χc

B(0,γ)

∥∥∥
Lq(B(t,r))
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=

 ∫
B(t,r)∩cB(0,γ)

∣∣∣∣∣∣
∫
Rn

f (y)
|x − y|n−α dy

∣∣∣∣∣∣
q

dx


1
q

≤

 ∫
B(t,r)∩cB(0,γ)

∣∣∣∣∣∣∣
∫

B(0,β)

f (y)
|x − y|n−α dy

∣∣∣∣∣∣∣
q

dx


1
q

.

Since β ≤ γ
2 for x ∈ cB(0, γ), y ∈ B(0, β), we have

|x − y| ≥ |x| − |y| ≥ |x| − β =
|x|
2

+
|x|
2

− β ≥ |x|
2

. (14)

By (n − α)q − n > 0, we have

I ≤ 2n−α

 ∫
cB(0,γ)

dx

|x|(n−α)q


1
q ∫

B(0,β)

| f (y)|dy

≤ 2n−α

 ∞∫
γ

ρ−(n−α)q+n−1dρ

 1
q

(υnβn)
1− 1

p ∥ f ∥Lp(B(0,β))

≡ C6γ
α−n(1− 1

q )∥ f ∥Lp(B(0,β)). (15)

Since β ≤ γ
2 for x ∈ cB(0, γ), y ∈ B(0, β), by (14) |x − y| ≥ |x|

2 .
Therefore,

I ≤ 2n−αγα−n

 ∫
B(t,r)

dx


1
q ∫

B(0,β)

| f (y)|dy

≤ 2n−αγα−n(υnrn)
1
q (υnβn)

1− 1
p ∥ f ∥Lp(B(0,β))

= C4γα−nr
n
q ∥ f ∥Lp(B(0,β)). (16)

Inequalities (15) and (16) imply inequality (13), where C5 = max{C6, C4}

Lemma 7. Let n ∈ N, 1 < p < q < ∞, 0 < α < n
(

1 − 1
q

)
, 1

q = 1
p − α

n , β > 0. Then, there is
C7 > 0 depending only on n, p, q, α such that for some f ∈ Lp(B(0, β)), b ∈ L∞(Rn) satisfying
the condition supp b ⊂ B(0, β), and for some γ ≥ 2β, t ∈ Rn, r > 0∥∥∥([b, Iα] f )χcB(0,γ)

∥∥∥
Lq(B(t,r))

≤ C7γα−n(min{γ, r})
n
q ∥b∥L∞(Rn)∥ f ∥Lp(B(0,β)). (17)

Proof. Let γ > β, supp b ⊂ B(0, β), for x ∈ cB(0, γ), b(x) = 0. Then∥∥∥[b, Iα] f χc
B(0,γ)

∥∥∥
Lq(B(t,r))

=

 ∫
B(t,r)∩cB(0,γ)

∣∣∣∣∣∣
∫
Rn

(b(x)− b(y)) f (y)
|x − y|n−α dy

∣∣∣∣∣∣
q

dx


1
q
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≤

 ∫
B(t,r)∩cB(0,γ)

∣∣∣∣∣∣
∫
Rn

b(y) f (y)
|x − y|n−α dy

∣∣∣∣∣∣
q

dx


1
q

≤

 ∫
B(t,r)∩cB(0,γ)

∣∣∣∣∣∣∣
∫

B(0,β)

|b(y)| · | f (y)|
|x − y|n−α dy

∣∣∣∣∣∣∣
q

dx


1
q

≤

 ∫
B(t,r)∩cB(0,γ)

∣∣∣∣∣∣∣
∫

B(0,β)

| f (y)|
|x − y|n−α dy

∣∣∣∣∣∣∣
q

dx


1
q

∥b∥L∞(Rn).

Finally, by proof of Lemma 6, we obtain estimate (17).

Proof of Theorem 4. Let us prove that for [b, Iα] f , conditions (1)–(3) of Theorem 1 are satisfied.
Let F be an arbitrary bounded set in Mw1(·)

p . Due to the density, it is sufficient to prove
the statement of the theorem under the condition b ∈ C∞

0 (Rn); i.e., under this condition,

the set G = {[b, Iα] f : f ∈ F} is pre-compact in Mw2(·)
q .

Let
∥ f ∥

M
w1(·)
p

≤ D, for f ∈ F.

By Theorem 3, we have

∥[b, Iα] f ∥
Mw2(·)

q
≤ C8 · sup

f∈F
∥ f ∥

M
w1(·)
p

≤ C8 · D < ∞.

This implies condition (1) of Theorem 1.
Now let us prove that condition (3) of Theorem 1 holds for [b, Iα]. On the other hand,

suppose that suppb ⊂ {x : |x| ≤ β}. For any 0 < ε < 1, we take γ > β + 1 such that
(γ − β)−(n−α)+n/q < ε. Below, we show that for every t ∈ Rn and r > 0,

∥[b, Iα] f χc
B(0,γ)

∥
Mw2(·)

q
< C9 · D · ε,

hence
lim

γ→∞

∥∥∥([b, Iα] f )χc
B(0,γ)

∥∥∥
Mw2(·)

q
= 0.

By Lemma 7, we have

∥∥∥([b, Iα] f )χcB(0,γ)

∥∥∥
Mw2(·)

q
= sup

x∈(Rn)

∥∥∥w2(r)∥([b, Iα] f )χcB(0,γ)∥Lp(B(x,r))

∥∥∥
L∞(0,∞)

≤ C5γα−n sup
x∈(Rn)

∥∥∥w2(r)(min{γ, r})
n
q
∥∥∥

L∞(0,∞)
∥b∥L∞(Rn)∥ f ∥Lp(B(0,β)).

For r < t < γ, we have (min{γ, r})
n
q = r

n
q . Using condition w2 ∈ Ωq,∞, we obtain

∥w2(r)r
n
q ∥L∞(0,t) < ∞.

For γ < t < r, we have (min{γ, r})
n
q = γ

n
q . Using condition w2 ∈ Ωq,∞, we obtain

∥w2(r)γ
n
q ∥L∞(t,∞) = γ

n
q ∥w2(r)∥L∞(t,∞) < ∞.
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lim
γ→∞

∥∥∥([b, Iα] f )χcB(0,γ)

∥∥∥
Mw2(·)

q
= 0.

Consequently, we have the required condition (3) of Theorem 1.
Now, let us prove that condition (2) of Theorem 1 holds for the set [b, Iα], where f ∈ F.

That is, we will show that for all ε > 0 and for all f ∈ F, the inequality

∥[(b, Iα f )(·+ z)]− [b, Iα] f (·)∥
Mw2(·)

q
≤ C10 · ε,

is satisfied for sufficiently small |z|.
Let ε be an arbitrary number such that 0 < ε < 1

2 . For |z| ∈ Rn, we have

[b, Iα] f (x + z)− [b, Iα] f (x) =
∫

|x−y|> |z|
ε

[b(x + z)− b(x)] f (y)
|x − y|n−α

dy

+
∫

|x−y|> |z|
ε

(
1

|x − y|n−α
− 1

|x + z − y|n−α

)
· [b(y)− b(x + z)] f (y)dy

+
∫

|x−y|≤ |z|
ε

[b(y)− b(x)] f (y)
|x − y|n−α

dy −
∫

|x−y|≤ |z|
ε

[b(y)− b(x + z)] f (y)
|x + z − y|n−α

dy

= J1 + J2 + J3 − J4.

Due to b ∈ C∞
0 (Rn), we have

|b(x)− b(x + z)| ≤ |∇ f (x)| · |z| ≤ C11|z|.

Then,
|J1| ≤ C11|z|Iα(| f |)(x).

By Theorem 2,

∥J1∥Mw2(·)
q

≤ C11|z|∥Iα( f )∥
Mw2(·)

q
≤ C11|z|∥ f ∥

M
w1(·)
p

≤ C11D|z|.

For J2, we have that

(b(x + z)− b(y)) ≤ 2∥b∥∞ ≤ C10.

Therefore,

|J2| ≤ C12|z|
∫

|x−y|> |z|
ε

f (y)
|x − y|n−α

dy ≤ C12εIα(| f |)(x).

Again, based on Theorem 2, we obtain

∥J2∥Mw2(·)
q

≤ C12ε∥Iα( f )∥
M

w1(·)
p

≤ C12ε∥ f ∥
M

w1(·)
p

≤ C12 · D · ε.

Now, consider J3. Since b ∈ C∞
0 , we have |b(x)− b(y)| ≤ C13|x − y|.

Then, for |J3|, we have

|J3| ≤ C13

∫
|x−y|≤ |z|

ε

f (y)
|x − y|n−α−1 dy

≤ C13ε−1|z|
∫

|x−y|≤ |z|
ε

f (y)
|x − y|n−α

dy
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≤ C13 ·
|z|
ε

Iα(| f |)(x).

Therefore, by Theorem 2

∥J3∥Mw2(·)
q

≤ C13 · ε−1|z|∥Iα( f )∥
Mw2(·)

q
≤ C13 · ε−1|z|∥ f ∥

M
w1(·)
p

≤ ε−1|z|.

Similarly, using the estimate

|b(x + z)− b(y)| ≤ C14|x + z − y|,

we obtain

|J4| ≤ C14

∫
|x−y|≤ε−1|z|

|x + z − y|−n+α+1|b(y)|dy ≤ C14(ε
−1|z|+ |z|)Iα| f |(x + z).

Therefore,

∥J4∥Mw2(·)
q

≤ C14 · (ε−1|z|+ |z|)∥ f ∥
M

w1(·)
p

≤ C14 · D · (ε−1|z|+ |z|).

Here, the constants do not depend on z and ε.
Taking |z| small enough, we finally obtain

∥[b, Iα( f )(·+ z)]− [b, Iα] f (·)∥
Mw2(·)

q

≤ ∥J1∥Mw2(·)
q

+ ∥J2∥Mw2(·)
q

+ ∥J3∥Mw2(·)
q

+ ∥J4∥Mw2(·)
q

≤ C15 · D · ε,

that is, the set [b, Iα]( f ), f ∈ F also satisfies condition (2) of Theorem 1. Then, according to
Theorem 1, the set [b, Iα]( f ), f ∈ F is compact in Mw2(·)

q . Theorem 4 is proved.

Remark 1. When proving Theorem 4, we used the method from [19], taking into account the
specifics of the generalized Morrey space.

4. Conclusions

In this paper we have obtained the sufficient conditions for the compactness of sets
in generalized Morrey spaces . Moreover, we have obtained the sufficient conditions for
the compactness of the commutator [b, Iα] for the Riesz potential operator on generalized
Morrey spaces Mw(·)

p (Rn). More precisely, we prove that if b ∈ VMO(Rn), then [b, Iα] is a

compact operator from Mw1(·)
p to Mw2(·)

q .
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