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Abstract: Multimodal learning is a promising area in artificial intelligence (AI) that can make the
model understand different kinds of data. Existing works are trying to re-train a new model based on
pre-trained models that requires much data, computation power, and time. However, it is difficult to
achieve in low-resource or small-sample situations. Therefore, we propose VL-Meta, Vision Language
Models for Multimodal Meta Learning. It (1) presents the vision-language mapper and multimodal
fusion mapper, which are light model structures, to use the existing pre-trained models to make
models understand images to language feature space and save training data, computation power,
and time; (2) constructs the meta-task pool that can only use a small amount of data to construct
enough training data and improve the generalization of the model to learn the data knowledge and
task knowledge; (3) proposes the token-level training that can align inputs with the outputs during
training to improve the model performance; and (4) adopts the multi-task fusion loss to learn the
different abilities for the models. It achieves a good performance on the Visual Question Answering
(VQA) task, which shows the feasibility and effectiveness of the model. This solution can help blind
or visually impaired individuals obtain visual information.

Keywords: vision-language models; multimodal learning; meta-learning; token-level training; visual
question answering

MSC: 68T45

1. Introduction

Asking a question about an image is a straightforward and common task for people,
especially children learning things. Children strengthen their understanding of the world
through continuous learning, and this transferable general knowledge can help them
complete complex tasks, such as looking at pictures and answering questions. However,
it is hard for an artificial intelligence (AI) model. It needs much data, computing power,
and time because the large parameter models need to be fine-tuned by using large-scale
downstream data to understand the task. AI can only learn tasks through datasets, and the
relatively limited pre-training dataset is very limited compared to the general knowledge
that children have. Moreover, children can complete complex tasks with only a few
examples, which is also the goal we pursue in this work. Therefore, it is very meaningful to
use a small amount of data to assist the model in completing the picture Visual Question
Answering (VQA). It can also help visually impaired individuals perceive the environment.

Single-modal models only involve data from one modality during the training process,
such as language models only learning language abilities and visual models learning visual
abilities. Different modal data, like text, image, audio, video, etc., can complement each
other to illustrate the same thing. However, different data have their own feature space,
which cannot be directly used to output answers by the language decoder. How to align
the different feature spaces to make the model understand different modal data, even with
limited labeled data, is a challenging and valuable problem.
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Multimodal learning can make models understand different modal data and combine
different modal features. It uses different modal data to deal with a multimodal problem
like the VQA task [1–9]. There are many works [10–14] trying to solve this problem.
Some works [15–24] use relevant models to obtain the features from different modal
data or, further, input them to a fusion module to combine different modal features to
make the model understand the different modal data and finally perform the multimodal
task. Some works [13,14,25,26] use only one encoder to make the model learn different
multimodal data.

Meta-learning [27–38] can deal with the few-shot problem. It helps models to learn by
constructing tasks with different support and query sets. The support set is used to train
the model, and the query set is used to evaluate the model. It can set the N categories and
K support samples to train an N-way K-shot meta-learning model. Then, the model can be
applied to a new task.

To bridge the multimodal feature spaces gap with a few examples, Frozen [39] trains
a vision encoder to embed each image as a vision prefix, which can help the language
decoder understand images. But it needs much data and computing power to train the
vision encoder, which is not friendly for low-source learners. MML [40] proposes a mapper
module to convert the vision feature to language feature space with limited data. It
can reduce the training computation, but the vision feature cannot learn the language
information, which is important for multimodal tasks.

Our model VL-Meta is a simple but effective method, as shown in Figure 1. Our main
contributions are as follows:

• We present the VL-Meta model structure, including the vision-language mapper and
multimodal fusion mapper, simple and light networks that make the large language
models understand the visual features by mapping the vision features into language
feature space and fusing the final feature, as shown in Section 3.4.

• We propose the meta-task pool that constructs the support set and query set by meta-
learning for training and validating the model, as shown in Section 3.2.

• We present the token-level training that makes the training phase align with the gener-
ation phase that can import the performance of the model, as shown in Section 3.3.

• We adopt the multi-task fusion loss to help the model learn from different perspectives
of data and tasks, as shown in Section 3.5.

Figure 1. VL-Meta flow chart. The meta-task pool constructs the support set and query set from
training data based on their classification to make the model learn the data knowledge and task
knowledge. The vision-language mapper maps the vision feature into the language feature space,
and the multimodal fusion mapper fuses the whole input features, which helps the model understand
the images. The token-level training aligns the input with the output token by token. We fuse 2 losses
to make the model learn data and tasks from different perspectives. Finally, the model can output the
answer based on the images and the question.

The following sections are shown as follows. Section 2 introduces the related work.
Section 3 describes the method details of VL-Meta. Section 4 introduces the data, model, and
algorithm in the experiments. Section 5 summarizes the conclusions and some future work.
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2. Related Work

Previous works that have tried to solve the multimodal problem are summarized below.

2.1. Multimodal Learning

Some multimodal data, including text, image, audio, video, code, table, and so on,
are used to train models. However, traditional models can only deal with single-modal
data. In this work, we focus on vision-language multimodal learning. Vision-language
processing (VLP) focuses on image and text data and combines them into one new feature.
Some representative studies that are worthy of attention are discussed as follows.

UNITER [15] uses vision and language encoders to extract the vision feature and the
language feature and then combines them by using a transformer structure to fuse these
two different modal inputs. It concatenates the two different types of modal features and
then adopts four objects to train the model. Masked language modeling (MLM) learns
the language-understanding ability by using the masked text. Masked region modeling
(MRM) learns the vision-understanding ability by using the masked image region. Word
region alignment (WRA) learns the local interaction information between images and text.
Image–text matching (ITM) learns the multimodal alignment ability by using the text and
image pair. Based on these four objects, UNITER uses the multimodal data to train the
whole model.

ViLT [16] assumes that the multimodal data can give more information by the fusion
inputs. It uses some extra embeddings such as [class] embedding, modal-type embed-
ding, token position embedding, and patch position embedding. Using a [class] token
to represent the whole text and image, each text and image has a [class] embedding to
represent itself. Modal-type embedding represents the data modal. Here, 0 means text
embedding, and 1 means image patch. The position embedding represents the text and
image itself. There are three main loss functions to train the model. The MLM loss function
trains the model to predict the masked token by using the remnant text embedding and
image patches. The ITM loss function lets the model determine whether the text matches
the image. The word patch alignment (WPA) loss function is similar to the above WRA. It
calculates the distance between the text embedding and image embedding.

ALBEF [17] assumes that the text encoder does not need many multimodal layers but
can obtain a good-enough feature representation. So, it splits the 12-layer transformer into
a 6-layer text encoder and a 6-layer multimodal fusion module. It uses the image–text
contrastive (ITC) loss function to obtain a better feature representation of image and text
and uses ITM and MLM as the object functions to train the model. SimVLM [18] is an
encoder–decoder architecture. It extracts the image and text embedding and concatenates
them as the inputs to a transformer encoder–decoder module. The encoder can obtain
the feature of the multimodal inputs, and the decoder can convert the multimodal feature
to natural language to perform the downstream task. It adopts the PrefixLM loss, which
inputs a sequence and generates the next sequence.

BLIP-2 [21] proposes a Q-former and introduces the learned query. The Q-former is
the BERT transformer’s structure that can align the vision feature to the language feature
space. The learned query learns from different modal features, and it can control the length
of the vision feature to reduce the computation. However, it cannot be improved by giving
in-context VQA examples because the training set does not have this type of data. Ref. [41]
proposes to adopt a visual transformer that aligns visual and linguistic features to enable
the model to learn the local features of the image. Ref. [42] proposes inserting predefined
length vectors to generate effective descriptions of input images, using the bird swarm
algorithm (BSA) and long short-term memory (LSTM) models for sentence generation,
to enhance image captioning performance. Ref. [43] proposes a method for constructing
cross-modal graph convolutional networks for multimodal information fusion. Specifically,
it introduces image titles as auxiliaries and aligns them with images to enhance semantic
transmission. Then, it uses the generated sentences and images as nodes to construct the
graph. Through graph learning, long-distance dependencies can be captured while filtering
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visual noise. CLIPCap [44] also designs a light module to concatenate the vision and text
features. It designs a mapping network to obtain the vision features and convert the shape
into 10 lengths to make the language model understand the images.

2.2. Multimodal Meta-Learning

Meta-learning in the multimodal problem can improve the generalization performance
with a few examples. Ref. [45] proposed to use meta-learning for low-resource data transfer
in multimodal tasks. It adopts the large multimodal model to improve the cross-lingual
performance of the model. Frozen [39] achieves the vision-language multimodal task by
using the meta-learning dataset. It does not train the vision and language models but only
trains a vision encoder to let the vision feature be understood by the language model. It
also constructs a meta-learning dataset to make the model learn how to learn and perform
a task that has not been seen before. MML [40] assumes that Frozen [39] needs to re-train
the vision model, which requires much computing power and time. So, it designs a light
module that can obtain the vision features by using four learnable prefix tokens and then
extracts these four learnable prefix tokens as the image embedding and concatenates them
with the text embedding. It also creates meta-datasets for training, validation, and testing.
It does not re-train any pre-trained models but just trains a light module to make the
language model understand the vision features.

3. VL-Meta

To train a model that can perform multimodal tasks with limited data under the
meta-learning setting, we define the VQA task and the multimodal meta-learning setting,
then formally introduce our contributions to the VL-Meta model structure, meta-task pool,
token-level training, and multi-task fusion loss.

3.1. Problem Definition

There is a dataset D about Visual Question Answering (VQA) as Equations (1) and (2),
which includes the I-th image (vision) V, the I-th question Q, and the I-th answer A.

D = {(V, Q, A)} (1)

= {(V1, Q1, A1), . . . , (VI , QI , AI)} (2)

These three kinds of inputs are the sets that can be written as Equations (3)–(5). Each
set has its elements, which are the i-th token v of the I-th image, the j-th token q of the I-th
question, and the k-th token a of the I-th answer.

VI = {vI
1, . . . , vI

i } (3)

QI = {qI
1, . . . , qI

j} (4)

AI = {aI
1, . . . , aI

k} (5)

To perform the VQA task, we propose VL-Meta, which can understand the images
and answer the questions as Equations (6) and (7) where the I-th answer A is based on the
I-th image V and the I-th question A.

VL-Meta(VI , QI) = AI (6)

VL-Meta({v1, . . . , vi}, {q1, . . . , qj}) = {a1, . . . , ak} (7)

3.2. Meta-Task Pool

For meta-learning, we first determine the N-way, which means the number of the
image category, formulated as Equations (8) and (9). The name list includes all categories
of the dataset. It randomly samples n time to construct the category list from the name list
of the dataset.
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category_list = random.sample(name_list, n) (8)

= {N1, . . . , Nn} (9)

The support set can be constructed based on N-way K-shot as Equations (10) and (11)
where the (V, Q, A)Nn

Kk
is the k-th (V, Q, A) of the support set based on the n-th category,

which can also be written as KNn
k .

support_set = {(V, Q, A)N1
K1

, . . . , (V, Q, A)N1
Kk

,

. . . ,

(V, Q, A)Nn
K1

, . . . , (V, Q, A)Nn
Kk
} (10)

= {KN1
1 , . . . , KN1

k ,

. . . ,

KNn
1 , . . . , KNn

k } (11)

The query set can also be constructed as the support set based on N-way M-shot as
Equations (12) and (13) where the (V, Q, A)Nn

Mm
is the m-th (V, Q, A) of the query set based

on the n-th category, which can also be written as MNn
m .

query_set = {(V, Q, A)N1
M1

, . . . , (V, Q, A)N1
Mm

,

. . . ,

(V, Q, A)Nn
M1

, . . . , (V, Q, A)Nn
Mm
} (12)

= {MN1
1 , . . . , MN1

m ,

. . . ,

MNn
1 , . . . , MNn

m } (13)

To construct a meta-task, we combine the support set and the query set of each category
N as Equations (14) and (15) where it concatenates the k-th (V, Q, A) of the support set and
the m-th (V, Q, A) of the query set based on the n-th category.

meta_task = {(V, Q, A)N1
K1

, . . . , (V, Q, A)N1
Kk

,

(V, Q, A)N1
M1

, . . . , (V, Q, A)N1
Mm

,

. . . ,

(V, Q, A)Nn
K1

, . . . , (V, Q, A)Nn
Kk

,

(V, Q, A)Nn
M1

, . . . , (V, Q, A)Nn
Mm
} (14)

= {KN1
1 , . . . , KN1

k , MN1
1 , . . . , MN1

m ,

. . . ,

KNn
1 , . . . , KNn

k , MNn
1 , . . . , MNn

m } (15)

Finally, based on Equations (1)–(15), the meta-task pool can repeat the meta-task
T times to be constructed as Equations (16) and (17) where Tt is the t-th task T of the
meta-task pool.

meta_task_pool = {meta_task1, . . . , meta_taskt} (16)

= {T1, . . . , Tt} (17)

The meta-task pool can adjust the task size t, category number n, support size k, and
query size m to change its size, as shown in Figure 2.
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Figure 2. Meta-task pool can construct T tasks from training data. To construct a task, we first need
to random sample N categories and then sample K sets of VQA for the support set and M sets of
VQA for the query set based on each category.

We adjust the meta-task pool by using T, N, K, and M. T means the number of tasks
that adjust the size of the meta-pool task. N means the number of categories that adjust
the size of the categories in a task. K means the size of the support set that includes K
support set data for each category. M means the size of the query set that includes M
pieces of query set data for each category. We propose the meta-task pool by meta-learning.
We construct the support set to train the model and construct the query set to evaluate
the model, for example: Category 1 of the support set is [image1, question1, answer1],
[image2, question2, answer2], [image3, question3, answer3]; Category 2 of the support set
is [image1, question1, answer1], [image2, question2, answer2], [image3, question3, answer3];
Category 1 of the query set is [image1, question1, answer1], [image2, question2, answer2],
[image3, question3, answer3]; Category 2 of the query set is [image1, question1, answer1],
[image2, question2, answer2], [image3, question3, answer3]; In a 2-way-3-shot setting, we
train the model by the support set, including 2 categories and each category with 3 data,
and evaluate the model by the query set, including 2 categories and each category with
3 data.

3.3. Token-Level Training

The token-level training is a method to align the input to the output token by token
during training. There are many levels, such as document-level, paragraph-level, sentence-
level, and token-level. For the token-level, it means that VL-Meta learns the training
set into the token by token. Generative models such as the GPT series output token by
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token, forming tokens and linking them into sentences. Therefore, we consider aligning
the training method with this output method so that the input end can maintain the
input-output form of this method, as shown in Figure 3.

Figure 3. Token-level training is used to align the input to the output token by token. We set the
input token as Position 0, which means there is no answer token in the input. Secondly, we add the
first one of the answer tokens to the input as Position 1. Next, we move to the next position, Position
2, to give the model one more answer token, and so on. In this way, the model can learn the input
tokens one by one to align to the output.

We proposed the method for this purpose, training token by token, that is, token-level
training, or the token-for-token training method, which has more benefits than sentence-
level training or sentence-for-sentence training. Therefore, we integrate this training
method into the algorithm, which is called token-level training.

3.4. Model Structure

The vision-language mapper (VLM) inputs the vision feature and language features to
map the images and questions to output the vision representation prompt, which includes
these two multimodal data information to represent the images as Equations (18) and (19).
The vision representation prompt VP token vp can provide the image information, and the
length is l.

VLM(V, Q) = VP (18)

= {vp1, . . . , vpl} (19)

The multimodal fusion mapper (MFM) inputs the vision representation prompt VP and
the question embeddings QE to map the whole inputs to the language feature space to make
the language decoder understand the images and questions as Equations (20) and (21). The
final inputs are (FV, FQ) with the token {vp1, . . . , vpl , qe1, . . . , qem}.

MFM(VP, QE) = {FV, FQ} (20)

= {vp1, . . . , vpl , qe1, . . . , qem} (21)

The visual features cannot be recognized by language models, but modal transforma-
tion can be achieved by training network structures vision-language mapper and multimodal
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fusion mapper with only a small number of parameters in multimodal interaction, as shown
in Figure 4.

VL-Meta is a simple but effective model. To extract the vision image features, we
use the vision processor to embed the image into vision embedding vectors and then
input the vision embedding vectors into the Frozen vision encoder to extract the vision
image features. To extract the language question embedding vectors, we use the language
tokenizer to embed the sentence into the language embedding vectors. The vision-language
mapper network structure is a transformer layer that is used to map visual image features
and language problem features into the vision representation alignment tokens. This
network structure makes the generated new visual features more targeted to the problem
and reduces the impact on the language model. The length of the token of sentences can
be from 1 to 10 tokens. It can also be more than 10, but our method defines it as a mapper
method, so the number can be smaller than the original sentences. The hidden size of
the tokens is 768, which means the dimensionality of the embeddings and hidden states.
The multimodal fusion mapper network structure is a linear layer that fuses new visual
features, vision representation alignment, and language problem features, to stimulate the
language ability of the language model, thus using a simple language model to complete
visual-language tasks. Finally, we input all of them into the language decoder to generate
the answer based on the image and the question.

The language model only used language data for training during the training process,
without using data from other modalities. Therefore, after training, the language cannot
recognize data from other models except for language. Our method VL-Meta uses vision-
language mapper and multimodal fusion mapper network structures during the modal
transformation process and sets task objectives during training. The former maps visual
features to language space under the training of task objectives, The latter mapper under
the training of the task objectives, maps the visual features to the language space and the
problems corresponding to the images through a fully connected layer to make the visual
image features consistent with the language problem features. Our method is a simple way
to make the model learn new abilities without training the pre-trained models but only
training light mappers that have fewer parameters than the pre-trained models. It uses
mappers as modules in the model architecture that do not affect the pre-trained models
and can easily change any other pre-trained models. The traditional method needs to train
the language model, which has 163 M trainable parameters or the vision model, which has
87 M trainable parameters. However, the number of parameters of the vision-language
mapper is only about 7 M, and the number of parameters of the multimodal fusion mapper
is just about 0.59 M, which is less than the two pre-trained models and easy to achieve
the objective.

3.5. Multi-Task Fusion Loss

To help the model learn common knowledge from multiple related tasks to improve
model performance and generalization, we adopt the multi-task fusion loss. We adopt the
language modeling (LM) task [46], which is the GPT series [47–49] models loss to predict
the next token based on the previous tokens as Equation (22) where yn means the last
label token.

Llm(yn) = −
k

∑
n=1

log P(yn|x1, . . . , xm, y1, . . . , yn−1) (22)
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Figure 4. VL-Meta model architecture. First, we embed the question into the language embedding
space by the language embedding layer to obtain the question embeddings, which are yellow blocks,
and then encode the question embeddings into the language feature space by the language encoder
to obtain the question features, which are the orange blocks. Second, to make the language decoder
understand the images, we encode the images by the vision encoder to obtain the image features
which are the green blocks and then map the vision feature and the question feature to the vision
representation prompt by the vision-language mapper to represent the image with the corresponding
to question information, which are the purple blocks. Third, we input the vision representation
prompt and the question embeddings to the multimodal fusion mapper to obtain the final inputs.
Fourth, we weigh the different losses to help the model learn all the abilities of the tasks. Finally, we
input the inputs to the language decoder to obtain the answers for the VQA task.
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We also use the cross-entropy (CE) task to calculate the prediction error during train-
ing as Equation (23), n is the index of the category from 1 to N. ∑N

n=1 wyn · ⊮{yn ̸=
ignore_index} is a normalization term used to ensure that the weights of different sam-
ples are taken into account when calculating the average. The denominator of this term
is the weight wyn for all samples multiplied by an indicator function. If yn is not equal
to ignore_index, then it is 1; otherwise, it is 0. This ensures that the weights of different
samples are taken into account when calculating the average. wyn is the weight of cate-
gory yn used for weighting between different categories. This allows for the emphasis

or reduction of certain categories of contributions in training. log exp(xn,yn )

∑C
c=1 exp(xn,c)

measures

the error between the output probability distribution of the model and the actual label.
{yn ̸= ignore_index} is a means that specifies a target value like padding token that is
ignored and does not contribute to the input gradient.

Lce = −
N

∑
n=1

wyn log exp(xn,yn )

∑C
c=1 exp(xn,c)

·⊮{yn ̸= ignore_index}

∑N
n=1 wyn ·⊮{yn ̸= ignore_index}

. (23)

Based on Equations (22) and (23), the final task loss is the weighted sum of the losses
as Equation (24), wlm is the weight of the LM loss, and wce is the weight of the CE loss.

L = wlm ∗ Llm + wce ∗ Lce. (24)

The multi-task fusion loss is the L which is our object to train the model to learn the
vision understanding ability of the model.

3.6. Pseudocode

The pseudocode for the implementation of VL-Meta is shown in Algorithm 1, and it
can be summarized as follows. First, load the training, evaluation, and test data from the
COCO2017 and Guided VQA data sets. Second, load the pre-trained models to extract the
features of images and texts. Third, train the model with a support set and evaluate the
model with a query set. Specifically, in the training phase, the loss consists of two parts.
They are language modeling loss and cross-entropy loss. Finally, test the model on the
COCO2017 for intra-domain or Guide VQA dataset for cross-domain.

Algorithm 1 VL -Meta Pseudocode.

1: coco_data_list ← image_id, images, question, categories ←
coco2017_preprocess(dataset)

2: coco_task_list ← support_set, query_set ← meta_pool(dataset =
data_list, meta_task_pool_size = T, n, k, m)

3: guided_vqa_list← load_test_data(dataset = guided_vqa)
4: vison_model = load_model. f rom_pretrained(vision_model_name)
5: language_model = load_model. f rom_pretrained(language_model_name)
6: for support_set, query_set in task_list do
7: support_logits← VL_Meta(support_set)
8: lm_loss← get_lm_loss(support_logits, support_lables)
9: ce_loss← get_ce_loss(support_logits, support_labels)

10: loss← lm_loss_weight ∗ lm_loss + ce_loss_weight ∗ ce_loss
11: evaluation_logits← VL_Meta(query_set)
12: pred_tokenget_pred_token(evaluation_logits)
13: validation_acc← torch.eq(pred_token, answer_token)
14: end for
15: for images, questions, answers in test_vqa_list do
16: test_logits← VL_Meta(images, questions)
17: pred_tokenget_pred_token(test_logits)
18: test_acc← torch.eq(pred_token, answer_token)
19: end for
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4. Experiment
4.1. Datasets

The training and validation datasets are from the Microsoft COCO 2017 (MSCOCO2017)
dataset [50], which is about image captioning. We first create a script for collecting and
splitting the COCO datasets as training data and validation data. Specifically, each piece of
data includes image ID, image, captions, and categories. The captions include five image
captions. The categories are some classifications of the image objects. Then, we build a
meta-learning set which is a task pool including some training and validation data. Further,
the number of training and validation datasets can change depending on the task demand.
As our experiments are under meta-learning, we randomly sample the training data and
validation data from the meta-task pool. In the training period, we train the model by
each token, which means the model will learn a sentence from the first word to the last
word. It can give the model more opportunities to learn the sentence, especially paying
attention to each word. That is also a way to the position IDs strategy. In the validation
period, the model will generate tokens one by one. The accuracy is calculated by each
token of prediction and ground truth. The test data are split into two data sets: one is
intra-data, which is the same domain dataset as the train set, and the other is inter-data,
which is another data set named Guided VQA. The cross-domain test dataset Guided VQA
is constructed from the VisualGenome (VG) dataset [9], which includes some different
tasks such as region descriptions, visual question answers, object instances, attributes, and
relationships. It is visual-language representation learning.

Multimodal meta-learning constructs meta-tasks t, n categories k samples for training,
and m samples for validation. The less n, more k, and the less m, the easier for training
and validating. It can improve the model to perform a new domain task. Specifically,
we use MSCOCO2017 as the training set and the intra-domain test set, and VG as the
cross-domain test set. We determine the n-way k-shot based on the task objectives, and
sample and train it in the constructed meta-learning task pool. Meta reconstructs the dataset
and provides more category samples for the query through support sets, providing more
category information for the model. The cross-domain test can test whether the model has
generalization ability and whether the model can complete tasks beyond the training set.

4.2. Implementation Details

In this experiment, we just re-use the pre-trained models and freeze them to keep the
parameters. Specifically, we use CLIP [15] with the vision transformer (ViT/B-32) [51] as a
vision encoder to obtain the image features and use the GPT-2 [48] as a language encoder
to obtain the text features. We tokenize the original text and image and then embed these
tokens to vector space, and finally obtain the features of texts and images.

For the few-shot problem, we set the meta-task pool size as T = 4, which means the
meta-task pool has 10 tasks; the category number as N = 2, which is to align with others;
the support size in each task as K = 1 or K = 5 to test the support set performance in
different settings; and the query size in each task as M = 5 to test the model performance
in different settings. The total training data number is T ∗ N ∗ K = 4 ∗ 2 ∗ 1 = 8 or
T ∗N ∗K = 4 ∗ 2 ∗ 5 = 40, and the total validating data number is T ∗N ∗M = 4 ∗ 2 ∗ 5 = 40.

The optimizer is AdamW [52], and the learning rate is 3e− 5. To obtain a good initial
learning rate, we adopt a warm-up strategy and choose the linear schedule with a warm
up. During the warm-up period, the learning rate will gradually increase from 0 to the
initial set. In the subsequent remaining training, the learning rate will gradually decrease
from the initial set to 0. We adopt the early stop strategy on the validation set to avoid the
model overfitting. We set the temperature as 0.1 to clearly distinguish between positive
and negative samples.
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4.3. Evaluation Metric

Accuracy is an important evaluation metric to measure the performance of the models.
To easily compare the results, we use the accuracy as the same as other research, as
Equation (25).

Accuracy =
n

∑
1

torch.eq(pred_tokenn, answer_tokenn).sum().item()

answer_tokenn.numel() (25)

The molecule is the sum of the equal of the two tensors, the denominator is the number
of one tensor element, and finally sum of each task from 1 to N.

4.4. Results and Discussion

Two models can compare the results because existing models, particularly not large
ones, have fewer researchers to follow.

Frozen [39] proposes to freeze the language encoder and only train the vision encoder
to make the model know the image and then perform the VQA task.

MML [40] presents to freeze the vision encoder and language encoder but design a
light module called meta-mapper to train the model. Specifically, it concatenates a sequence
of zero vectors called visual prefixes. The meta-mapper can convert the image feature to a
visual prefix, which gives the language encoder the image information.

VL-Meta proposes to construct the meta-data, which can improve the generalization
of the model; adopt the vision-language mapper, which can convert the vision feature
and language feature to make the model understand the images; and propose token-level
training, which can align outputs with inputs.

As shown in Algorithm 1, VL-Meta loads the support set and query set in the training
set. VL-Meta learns the knowledge in the support set and uses the query set for vali-
dation. The model performance is evaluated through the test set, and the VQA task is
ultimately completed.

As shown in Table 1, Frozen [39] only has the non-meta experimental result and is the
baseline for multimodal few-shot learning. The MML [40] proposes to use meta-learning
to improve the multimodal few-shot learning, which is more accurate than Frozen. The
best accuracy in the real-fast VQA dataset is our VL-Meta, which reaches 10.936% for the
two-way one-shot and 14.456% for two-way five-shots.

Table 1. VL-Meta comparison on 2-way cross-domain real-fast VQA task in accuracy. The bold font is
the best accuracy in the results.

Accuracy (%)

Methods Meta 1-Shot 5-Shots

Frozen [39] × 7.8 10.5

MML [40] × 6.9 10.7
✓ 8.5 13

VL-Meta (Ours) × 7.952 10.864
✓ 10.936 14.456

For few-shot learning, Frozen trains on conceptual captions [53], a public dataset that
consists of around three million image-caption pairs. We train the model using only 8
and 40 image and text pairs for T ∗ N ∗ K = 4 ∗ 2 ∗ 1 = 8 and T ∗ N ∗ K = 4 ∗ 2 ∗ 5 = 40,
respectively. These quantities are equivalent to one three millionth and one seventy-five
thousandth of the original data volume, which is consistent with MML.

For the model structure shown in Figure 4, we propose VL-Meta to use a Frozen vision
encoder to extract vision image features and a Frozen language encoder to extract the
language question features. Then, we input the vision image feature and language question
feature to the vision-language mapper, which is just a transformer [54] in BERT [55], to
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combine the two different modal features. Finally, we use the new feature as the vision
prompt and input it with the question to generate the answer sentence. Note that the vision-
language mapper is different from MML [40], which is without text features in training.

4.5. Ablation Study

In the ablation experiment, we test two dimensions of meta- and cross-domain. In
Table 2, it shows the ablation experiment results. We found without the meta-learning, the
model cannot perform better in the VQA task. In addition, cross-domain validation can
prove that the model has good generalization ability. When increasing the support set from
1 to 5, all performances of the models can be improved.

Table 2. Ablation experiment of comparison of meta- and cross-domain of VL-Meta on 2-way real-fast
VQA task in accuracy. The bold font is the best accuracy in the results.

Accuracy (%)

Method Meta Cross-Domain 1-Shot 5-Shots

VL-Meta

× × 5.750 6.700
× ✓ 7.952 10.864
✓ × 7.100 8.600
✓ ✓ 10.936 14.456

As shown in Table 3, the accuracy is decreased without the meta-task pool and cross-
domain. The performance is decreased when we adopt the linear layer as the vision-
language mapper because the linear layer cannot learn much knowledge from the training
data. Without the token-level training method, the model is unable to learn the generative
features of each word in detail. The CE objective can help the model learn the differences
between the prediction sentence and the ground truth answer, which can improve the
training effect and the generation ability.

Table 3. Ablation experiment of comparison of VL-Meta on 2-way real-fast VQA task in accuracy.
The bold font is the best accuracy in the results.

No. Methods
Accuracy (%)

1-Shot 5-Shots

1 Meta-task pool (w/o) 7.952 10.864
2 Cross-domain (w/o) 7.100 8.600
3 Vision-language mapper (linear) 7.280 9.096
4 Token-level training (w/o) 8.304 9.496
5 Multi-task fusion loss (LM) 7.864 8.464

6 VL-Meta 10.936 14.456

4.6. Qualitative Analysis

Our VL-Meta can enable the language model to see images and improve the vision-
understanding ability of the model to answer the questions based on the images, as shown
in Table 1. It demonstrates that the model can use the vision prompt to answer the visual
questions. However, for comparison with other works, we adopt accuracy as the metric
that mechanically compares results instead of considering the semantic information. That
can serve as one of the future directions.

5. Conclusions

It is generally difficult for a language model to reach good performance using a few
examples, i.e., solving the few-shot problem. To alleviate this problem, we propose VL-
Meta. First, we propose the vision-language mapper and the multimodal fusion mapper,
which are light modules to make the language model able to learn the vision data like
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images to perform tasks like VQA. Second, we propose the meta-task pool, which improves
the model generalization to help the model learn both data knowledge and task knowledge.
Third, we propose the train by each token method to align the inputs to outputs. Fourth,
we adopt the multi-task fusion loss to achieve multiple tasks learning to let the model learn
from different perspectives of the data and task. The experiments show that our method
can reach a better performance. The results show that VL-Meta can extract vision and
language features and can fusion them to perform multimodal learning.

Our research scenario is a few-shot problem, so the amount of data used is not
significant. Therefore, during the evaluation process, it may lead to errors in the content
of the answers. This problem may be due to the model not having training data to learn
transferable knowledge, so one solution is to provide the model with more data to improve
its ability to solve tasks. Our VL-Meta still needs to improve its performance to empower
production and services in the industry, which is a limitation that needs to be a concern.

In the future, we consider some further research directions. The quality of data and
the level of preprocessing can affect the effectiveness of model learning. This work used the
same dataset as other models and maintained the same preprocessing method to explore
whether this visual-language model is an effective method for achieving visual question–
answering tasks. So, we can explore it as one of the future research directions. Training
a model based on pre-trained models is an easy way to perform the multimodal task.
Therefore, how to use the existing model to perform the multimodal task based on few-shot
learning is an important future research direction.
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