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Abstract: The link prediction problem is a time-evolving model in network science that has simul-
taneously abetted myriad applications and experienced extensive methodological improvement.
Inferring the possibility of emerging links in dynamic social networks, also known as the dynamic
link prediction task, is complex and challenging. In contrast to the link prediction in cross-sectional
networks, dynamic link prediction methods need to cater to the actor-level temporal changes and as-
sociated evolutionary information regarding their micro- (i.e., link formation/deletion) and mesoscale
(i.e., community formation) network structure. With the advent of abundant community detection
algorithms, the research community has examined community-aware link prediction strategies in
static networks. However, the same task in dynamic networks where, apart from the actors and
links among them, their community pattern is also dynamic, is yet to be explored. Evolutionary
community-aware information, including the associated link structure and temporal neighborhood
changes, can effectively be mined to build dynamic similarity metrics for dynamic link prediction.
This study aims to develop and integrate such dynamic features with machine learning algorithms
for link prediction tasks in dynamic social networks. It also compares the performances of these fea-
tures against well-known similarity metrics (i.e., ResourceAllocation) for static networks and a time
series-based link prediction strategy in dynamic networks. These proposed features achieved high-
performance scores, representing them as prospective candidates for both dynamic link prediction
tasks and modeling the network growth.

Keywords: social network analysis; dynamic networks; link prediction; community detection; actor
dynamicity

MSC: 91C03; 05C85

1. Introduction

Many real-world systems and complex phenomena can now be modeled as a network
where actors represent the entities or individuals and links denote their relationships or
inter-dependencies. Due to the ubiquity of such real-world network intrinsic applications
in various disciplines, dynamic network data have recently become widely prevalent where
network events are time-stamped. One of the inherent underlying structures of these
networked systems is their evolution over time experiencing temporal changes in overall
network dynamics. Understanding the mechanism by which these evolutions occur is yet
to be congruously standardized. However, network science has offered various methods
supporting the study and modeling of the network evolution process that governs their
dynamics [1]. Among them, link prediction is the fundamental computational problem
that models the underlying growth mechanism of evolving networks [2]. Due to its
primacy in understanding the evolution of networks, the link prediction mechanism of
complex social networks has attracted extensive research attention. Subsequently, a wide
range of methodological improvements are also engendered to support this part of link
analysis. Most of these methods attempt to estimate the possibility of the emergence of
new links among non-connected network actors by leveraging topological properties; actor
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and link attributes; local, global, or quasi-local network structures [3]; or probabilistic
models [4]. The dependency on feature engineering [5] and failure to acknowledge the
temporal changes that emanate in dynamic networks [6] are two major encumbrances of
these methods. Furthermore, despite being called a time-evolving model, different link
prediction strategies generally overlooked the evolutionary aspects of the network to take
into account.

In an evolutionary (i.e., ‘longitudinal’, ‘temporal’, or ‘dynamic’) network, temporal
patterns emerge through simultaneous arrivals and/or departure of actors including the
creation and/or deletion of links among these actors. Actors (i.e., nodes) in dynamic
social networks are subject to varying dynamicity regarding their network positions, neigh-
borhoods, and communities formed within the temporal network snapshots. Temporal
variations in different network activities (e.g., forming or severing links) result in temporal
changes in actors’ structural positions and neighborhoods. Furthermore, these actor-
oriented microscopic network changes may result in mesoscopic alterations of network
structure (e.g., community). These facts led the scholars to take into account the evolution-
ary community related information in the dynamic network in the link prediction task.

Communities in social networks implicitly denote groups of actors with similar fea-
tures or attributes or actors closely tied according to their roles, social interests, or collective
behavior. As attributes, social patterns, roles, and interests of actors change over time, so do
their network activities and association patterns. These result in fluctuations in both local
and global network structures. Due to the evolutionary patterns of link structures of actors
in dynamic networks, they eventually endure existing community membership or gain new
membership to different communities. Consequently, communities of actors may shrink or
increase in size or completely disappear, erode, or engender new ones over time. Therefore,
it is believed that in evolving social networks, temporal microscale actor-level changes
trigger mesoscopic or collective changes. By mining the similarity between actor-level
temporal microscale (i.e., neighborhood changes) and mesoscale (i.e., community mem-
bership) fluctuations, it is possible to generate dynamic similarity metrics (i.e., dynamic
features) for dynamic link prediction. Therefore, this study sought to develop such dynamic
features by analyzing and mining temporal community-aware information, incident to
actors, in dynamic networks. The contributions of this study are as follows: First, this study
defines the rate of actor-level evolutionary changes regarding community memberships
and associated neighborhood changes over time. Second, it computes dynamic features by
mining community evolution representing the similarity between non-connected actors.
To compute these features, it considers network structure, temporal information, and evo-
lutionary community-aware information over several network snapshots. Third, this study
conducted extensive experiments and evaluations of these features via supervised machine
learning algorithms to measure their performance in dynamic link prediction tasks.

2. Related Work

The researchers explored historical or temporal information [7] in conjunction with a
wide range of techniques to infer the possibility of future links among the network actors
of dynamic networks—known as link prediction in dynamic (i.e., temporal) networks or
dynamic (i.e., temporal) link prediction. Myriad methods were designed for this purpose
that differ in the comprehension of the temporal nature of the networks and the definition of
the network property to be preserved. The researchers used different centrality measures [8]
as the influence factor of the network actors that support both the prediction of future
associations among them and capturing their associated network structural changes in
dynamic networks [9]. For example, Zhang et al. [10] used the eigenvector centrality
measures for temporal link prediction that compared and contrasted the contributions of
common neighbors in the emergence of future links. Chi et al. [11] categorized the actors
in the dynamic network by considering their evolving influence strength in comparison
to their neighbors and used this factor to compute the attraction force as the connection
probability among them. Most of the primitive methods of link prediction used either
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heuristics or different structural and network topological features to compute individual
similarities as the connection probability between actors. The most comprehensive list
of similarity indices based on both neighborhood topological and nodal attributes was
presented by Bliss et al. [12], where the authors used the covariance matrix adaptation
evolution strategy to compute the weight of individual similarity measures.

The time-varying nature of dynamic networks and the inter-dependency between
the evolutionary patterns and link prediction in dynamic networks make the task of dy-
namic link prediction even more challenging. Therefore, researchers also delved into other
techniques including dynamic latent space representation of actors and random walk-in
temporal networks [13], probabilistic temporal measures [14], probabilistic generative mod-
els [15], matrix and tensor factorization [16], and deep learning methods [17]. Divakaran
and Mohan [18] developed a taxonomy of dynamic link prediction methods based on
various approaches and categorized them into five main classes including: (i) time series
approaches, (ii) probabilistic approaches, (iii) matrix factorization, (iv) spectral clustering,
and (v) deep learning methods. The frequently evolving structure of the network makes the
time series approach a promising option for dynamic link prediction. Studies [19–21] in this
approach deployed various time series of actor’s centrality measures, network structural
features, or various similarity indices between each node pair, along with forecasting mod-
els for predicting the future values of the features or indices as the connection probability
between node pairs. For example, Wu et al. [22] considered the eigenvector-based nodal
centrality in conjunction with a forecasting method (i.e., adaptive weighted moving) for
link prediction in dynamic networks. A few techniques [23,24] of dynamic link prediction
employed probabilistic models that deployed maximum likelihood approaches or probabil-
ity distributions. This allowed them to consider variations and quantify the uncertainty
around emerging links. As an effective tool for large-scale data processing and analysis,
matrix factorization-based methods factorize (i.e., decompose) a matrix into its constituent
factors to simplify complex operations. Dynamic link prediction methods based on matrix
factorization [25,26] represent the network property in the form of a matrix (e.g., adjacency
matrices) and factorize this matrix to form the features for performing the link prediction
task. Finally, by exploring the properties of a graph via eigenvalues and eigenvectors of
the adjacency matrix or Laplacian matrix associated with the graph, a few studies [27,28]
of dynamic link prediction exploited the spectral graph theory. These techniques utilized
a low-rank approximation approach that supports large-scale graphs where the matrix
factorization approach does not fit well.

Nevertheless, the high representational ability [29] of a Deep Belief Network (DBN)
built upon the Restricted Boltzmann Machine (RBM) allowed researchers to use deep
learning approaches to solve the dynamic link predicting problems. A few earlier deep-
learning-based dynamic link prediction models concentrated on modeling an RBM, which
is a special case of Markov random field. The basic function of these models is to incorpo-
rate temporal and neighbor information to train an RBM over a sequence of observations of
the dynamic network structures to compute the connection probability among neighbors.
In one of the earliest models, Li et al. [7] proposed a generative model called the conditional
temporal restricted Boltzmann machine(ctRBM) that can integrate the neighbors’ influence
and individual transition variance in a dynamic network with nonlinear transitional pat-
terns to compute the connection probability between neighbors. Among recent techniques,
Jinyin Chen and coauthors [30] developed a graph convolution network(GCN) embedded
long-short-term memory(LSTM) deep-learning model known as GC-LSTM. It was capable
of learning spatiotemporal features that extracted the network structural features from
dynamic temporal network snapshots via graph convolution and learned temporal struc-
ture through LSTM. Their model can predict both the emerging links and obtain accurate
predictions of the whole dynamic network evolution. Recently developed techniques such
as network representation learning [31] and graph embedding techniques [32] promoted
the representation of graphs in a low-dimensional vector space that not only preserved
the network properties but also eased the strenuous feature engineering process. The
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objective of the embedding-based dynamic link prediction approaches [33,34] is to predict
the emerging links of a network from the low-dimensional embedding vectors.

Despite their improved performance in predicting emerging or hidden links, some
of these aforementioned methods are subject to their inherent limitation. For example,
probabilistic models require a prior definition of the distribution of link occurrences, which
is strenuous for temporal networks. Some probability-driven models (e.g., exponential
random graphs) are only suitable for small networks. Furthermore, matrix- or tensor-based
methods are not feasible for real-time link prediction in large networks due to their inherent
complexity regarding computational and processing time requirements [35]. Additionally,
the data-hungry deep learning methods not only rely on large amounts of labeled data to
train and optimize their models effectively but also employ an extra layer of complexity in
the representation of data and the prediction process [36].

Researchers also exploited network community information in dynamic link predic-
tion. Yuhang Zhu et al. [37] considered the concept of collective influence in percolation
optimization theory—an effective attribute of nodes, community multi-feature fusion,
and embedded representation to predict links in dynamic networks. Their method in-
tegrated collective influence, the community random-walk features, and the centrality
features for dynamic link prediction. In a more recent study, Kumar et al. [38] proposed
a dynamic link prediction algorithm that used the parameterized influence area of actors
and their contribution to community partitions. Their method considered different features
based on local, global, and quasi-local similarity and community information. By mining
the temporal patterns of evolutionary changes associated with actors concerning their
neighborhoods and communities in the dynamic networks, Choudhury and Uddin [39]
developed dynamic similarity metrics (i.e., dynamic features) for supervised dynamic
link prediction.

3. Evolutionary Community and Dynamic Similarity Metrics

In most social networks, there are parts where actors are more densely connected than
the rest of the network. These condensed regions are known as clusters or communities
and consist of actors with common properties, objectives, or goals. With the wide adoption
of networks to understand the social interaction pattern, the term ‘community’ started
representing closely knitted actors demonstrating certain common characteristic structural
properties [40]. According to Santo Fortunato [41], global and local heterogeneous link
distributions within networked systems spawn community structures within networks. In
an evolving social network, interactions among its actors evolve dynamically over time,
leading to a similar change pattern in their community patterns. The underlying reasons
are divergent; for example, actors may change their roles, acquire new links, sever old ties
with others, and new actors and links emerge. Simultaneously, in the course of network
evolution, owing to various network events, actors may join or leave a community, resulting
in shrinking or expanding the size of communities; merging, splitting, or diminishing the
existing communities; or even engendering new ones. By considering these facts, this
study first attempts to define the community-aware dynamicity experienced by actors
in dynamic networks. It then derives dynamic features by mining the aspects of the
actor-level evolutionary information that embodies the evolutionary changes in the actor’s
community participation.

3.1. Community Dynamicity

Many real-world networks are longitudinal, involve dynamic processes, and evolve
temporally. A dynamic network consists of a time series of network snapshots where
each snapshot represents the corresponding network state at a particular timestamp. Each
snapshot in this temporal sequence is known as a short-interval network (SIN) . The degree
of temporal fluctuations, incident to actors in the dynamic networks, in regards to their
link structures, neighborhoods, and network positions in every SIN, represents actor-level
dynamicity [42,43]. The term ‘actor dynamicity’ refers to the variable involvement of indi-
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vidual actors in dynamic social networks. In conjunction with the actor dynamicity, varying
roles, and divergent network activities simultaneously trigger changes in social communi-
ties within these network snapshots. Communities may appear, disappear, merge, split,
shrink, expand, or even sometimes remain unmodified without incurring any changes. In
Figure 1A, this phenomenon is visualized with the help of two abstract SINs at two different
timestamps (i.e., t1, t2) in a dynamic network metaphor. The sizes of actors in the network
snapshots are proportionate to their degree of connections, and four actors are accompanied
by their clustering coefficient values at two different timestamps. This figure demonstrates
various aspects of actor-level temporal microscale changes resulting in community-aware
mesoscale network alterations. For example, in this figure, at the time t2, actor a4 changes
its community as a result of its neighborhood changes. Likewise, the clustering tendency
of actors changes as a result of altering link structures among neighborhoods; however,
acquiring more neighborhoods does not implicitly extend cliquishness. It is also evident
that varying neighborhood and actors’ network positional changes simultaneously affect
their clustering disposition.

Figure 1. An abstract visualization of a dynamic network comprised of two short-interval networks
(SIN) (A) G1 at time t1 and (B) G2 at time t2 and (C) an aggregation of G1 and G2 (i.e., G1 ∪ G2). Each
SIN has three communities represented by three different colors, and actors within these communities
represent the color of the corresponding community. Actors a3, a4, a10, and a12 are accompanied by
their clustering coefficient values in G1, G2 and the aggregated network on the right.

Understanding the evolutionary patterns of network communities, actors, and their
community participation may support researchers commending the underlying network
evolution. Particularly, it can assist social scientists in comprehending the underlying
growth pattern of social networks. Different types of evolutionary changes, evident from
Figure 1, are triggered by temporal variations of different network activities performed by
network actors, which were envisaged by Uddin et al. [42].

Subsequently, the authors developed two different types of actor-level dynamicity
metrics (i.e., positional and participation) to quantify the temporal variations of actors
regarding their network position and participation in dynamic networks. The authors also
pointed out that according to social network topology, a dynamic network needs to be
analyzed in regards to the temporal aggregation of links among its actors and simultane-
ously using both the static and dynamic topology of social network analysis. Embracing
their perception of actor dynamicities, this study attempted to compute community-aware
actor dynamicity. The term ‘community dynamicity’ in this study denotes the degree of
evolutionary changes regarding an actor’s participation in communities or its clustering
tendency in SINs over time against the temporally aggregated network in conjunction
with the corresponding neighborhood changes over time. An example of an aggregated
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network is portrayed in Figure 1B, where the network is the union of G1 and G2. The
rationale behind using the aggregated network is that the link prediction mechanism of
network science predominantly deals with network growth, and in dynamic network
analysis, links are aggregated by considering an aggregation window size to accumulate
links temporally. In network theory, the actor’s clustering coefficient measures the degree
to which actors in networks tend to cluster together. Since in social networks, actors tend
to build friendships with other friends of their friends, this coefficient measures the extent
to which one actor’s friends are also friends. Considering complex social networks, this
measure is an important metric to characterize both global and local cliquishness of actors
and the network in regards to the triadic closure mechanism that characterizes the network
evolution. Triadic closure emerges when friends to a common friend become a friend as
well, and this is a general phenomenon in social networks. This study considers the local
clustering coefficient with a view to understanding the actor-level evolution instead of
the network itself. The clustering coefficient of an actor v in a network snapshot Gt at the
timestamp t is defined as:

CCv(t) =
2Tv

Dv(t)[Dv(t)− 1]
(1)

where Tv is the number of triangles an actor v is part of, and Dv(t) is the degree of the
actor v (i.e., the number of direct neighbors of actor v) in a network snapshot Gt at time t.
Note that a triangle is a set of three actors where each actor has a link to the other two. In
graph theory, it is sometimes referred to as a 3-clique. Subsequently, an actor’s community
dynamicity using its clustering coefficient is measured in a SIN at timestamp t as follows:

δv(t) =
[
|CCv(t)− CCv(t − 1)|

CCv(T)

]e

[
2|Nv(t)∩Nv(t−1)|

Dv(t)+Dv(t−1)

]
(2)

where CCv(t) represents the local clustering co-efficient, and Nv(t) denotes the neigh-
borhood of actor v in SIN Gt at timestamp t, and CCv(T) denotes the local clustering
co-efficient of the actor v in an aggregated network. The aggregated network is the union
of two SINs at two adjacent timestamps (i.e., Gt ∪ Gt−1). The numerator in the base part of
Equation (2) represents the ratio of the rate of clustering coefficient changes in an actor in
two adjacent SINs at timestamps t and t− 1. On the other hand, the denominator represents
the clustering coefficient of that actor in an aggregated network consisting of SINs at those
timestamps. The denominator basically normalizes the difference in the numerator by
using the cliquishness of the actor by what it ought to achieve in a static network without
losing any links. This score is further amplified by an exponent measuring the neighbor-
hood achievement and retention score of that actor at two adjacent timestamps using the
Sorensen index [44] of the actor’s neighborhood in Gt−1 and Gt. For example, from Figure 1,
the community dynamicity, as defined in Equation (2), of the actor a10 at timestamp t = 2

is calculated as
[
(0.40−1.0)

0.50

]e[
2×2
2+5 ]

= 1.381 in G2. Similarly, for actor a4, at timestamp t = 2,

the community dynamicity value is measured as
[
(0.19−0.10)

0.19

]e[
2×4
5+7 ]

= 0.233. In this way,
a time series of community dynamicity values for each actor considering SINs at each
timestamp of a given dynamic network was built to develop dynamic features.

3.2. Time Series Forecasting

Researchers have used time series analyses and forecasting methods to model the
changing behavior of network structure and predict its future values of topological alter-
ation [19,20]. According to them, using time series to acquire historical information in
relation to the topological changes of non-connected node pairs can increase the perfor-
mance of time-series-based link prediction. In time series forecasting, past observations
of a time variable can be analyzed to develop a model that describes the underlying re-
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lationship, and extrapolation can be used to predict the future values of the variable. In
this study, a univariate time series of actor-specific community dynamicity measures was
considered to emulate the evolution of actors’ positions or behaviors in evolving commu-
nities. A well-known forecasting model known as exponential smoothing [45] was used
to predict the future values of community dynamicity values. In this method, forecasts
are the weighted averages of historical observations and the weights of the observations
decay exponentially with time. Single exponential smoothing (SES) with a weight of α is
the simplest exponential smoothing method. The forecast equation can be defined as:

ŷt = αyt−1 + (1 − α)ŷt−1 (3)

where ŷt represents the forecasted value that depends on both the previous observations
and previous forecasts. Linear exponential smoothing (LES) is a variation of this method
that refines SES with a β component and considers any short trends in the series. The
forecasting equation for LES can be described as:

ŷt+h|t = lt + hbt (4)

where lt = αyt + (1 − α)(lt−1 + bt−1) and bt = β(lt − lt−1) + (1 − β)bt−1. Here, lt is an
estimate of the level of the series at time t, bt denotes an estimate of the trend (i.e., the slope)
of the series at time t, α is the smoothing parameter for the level, and β is the smoothing
parameter for the trend in which 0 < α, β ≤ 1. Notably, there are 15 variations of the
exponential smoothing process (interested readers should refer to the work by Hyndman
and Athanasopoulos [46] on forecasting methods and principles).

3.3. Dynamic Similarity Metrics

This subsection describes methodologies followed in this study to build dynamic
similarity metrics or dynamic features used for dynamic link prediction. Three dynamic
features were developed: first, by computing the temporal similarity; second, by measuring
the correlation between temporal sequences of community-dynamicity values; and finally,
considering temporal community-aware information in SINs over time incident to both
actors of a non-connected actor pair.

3.3.1. Temporal Similarity of Community Dynamicity

In this approach, to define the similarity and/or proximity between actor pairs, this
study compares the time series information comprised of the community dynamicity
values, as calculated from the aforementioned section, incident to non-connected actor
pairs. The temporal similarity or proximity between actor pairs was defined regarding
the similarity of their community dynamicity values over time computed by the dynamic
programming-based time series similarity approach. In time series analyses, dynamic time
warping (DTW) provides intuitive distance measurements between temporal sequences by
ignoring global and local deviations in the time dimension [47]. It measures the similarity
between two time series by shrinking or expanding or simply “warping” the time axis of
one (or both) sequences to achieve better alignment.

Considering two different time intervals (t1, t′), (t′, t′1), where t1 < t′ < t′1 and a
finite set of discrete time points within the range [t1 − t′] as T = t1, (t1 + τ), (t1 + 2τ), . . . ,
(t1 + nτ), . . . , (t′ − τ), t′, where τ denotes the temporal sampling interval, a dynamic social
network GT = (V, ET) consists of a set of uniquely labeled actors V = {v1, v2, v3, . . . , vn}
and ET = {et(vi, vj, t)|vi, vj ∈ V; t ∈ T}, where t represents the timestamp of a link e be-
tween a pair of actors (vi, vj) in Gt. In addition, dynamic networks can be undirected, where
e = (vi, vj) and e = (vj, vi) denote identical or directed links where these two links are not
the same. Thus, the dynamic network is composed of an evolutionary sequence of net-
work snapshots GT = {Gt1 , Gt1+τ , Gt1+2τ . . . Gt1+nτ . . . Gt′−τ , Gt′} known as short-interval
networks (SIN). Fluctuations in the total number of actors are taken into consideration
across the time series of network snapshots. Any link may appear in multiple network
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snapshots at different timestamp(s). Considering this temporal sequence of network snap-
shots GT = {Gt1 , Gt1+τ , Gt1+2τ . . . Gt1+nτ . . . Gt′−τ , Gt′}, for a given pair of actors (vi, vj),
dynamic link prediction attempts to predict the link probability between them during the
interval (t′, t′1) in GT+1 by analyzing the link formation and the temporal information in
GT at timestamps [t1 − t′] as T = t1, (t1 + τ), (t1 + 2τ), . . . , (t1 + nτ), . . . , (t′ − τ), t′. Here,
GT [t1, t′] and GT [t′, t′1] are considered as the networks in the training and testing phases, re-
spectively. For each SIN at different discrete time intervals of GT and for the network GT+1
in the test phase, this study built two time series of community dynamicity values incident
to actor a and b that are Xa = x1, x2, x3, . . . xm, Ya = x1, x2, x3, . . . xm. Here Xa and Yb are
time series of length |m|, and |n| consists of community dynamicity measures for actors a
and b using Equation (2) where m, n ≤ N, and N is the total number of network snapshots
in the training and the test phase. Note that Xm and Yn are the forecasted community
dynamicity values generated by the exponential smoothing process. A local cost/distance
measure d(xi, yj) was defined to compare two different points in Xa and Yb. The goal of the
DTW technique is to find an optimal alignment between Xa and Yb with a minimum overall
distance. The notion of this alignment depends on the definition of an (m, n)-warping path,
which is a sequence p = p1, p2, p3, . . . , pl with pl = (ml , nl) ∈ [1 : m][1 : n] for l ∈ [1 : L]
where L denotes the length of the warping path. The optimal warping path between Xa and
Yb is defined as a warping path p∗ with the minimum distance among all possible warping
paths. To accomplish that, it may encounter that a single point in one time series may
be mapped to multiple points of the other. Figure 2 presents a visual presentation of the
framework to generate the first dynamic similarity metric constructed in this study. In this
figure, the solid green and red lines represent the community dynamicity values at each
SIN during the training period, and the dotted lines represent the forecasted dynamicity
values for the corresponding actor. The black arrow lines represent the mapping path
utilized to measure the similarity between actor a and b using the DTW method. The
similarity score, calculated by dynamic similarity metrics, is generated by the accumulated
distance cost of this optimal mapping path. The temporal similarity between the time
series of actors’ community dynamicity values represents the similarity between actors in
regard to their evolutionary community-aware information. Therefore, the value of the
first dynamic similarity metric for actor pairs a and b considering community dynamicity
values is defined as follows:

sim1(a, b) = dp∗(δ
a
i , δb

j ) = min[
L

∑
l=1

d(δa
ml , δb

nl)] (5)

where p is in (m, n) warping path

3.3.2. Correlation-Based Similarity

Correlation analysis is a statistical evaluation method that is used to quantify the
strength and direction of the linear association between two variables. It is widely used
in financial network analysis, asset allocation, portfolio optimization, and risk manage-
ment [48]. This study applied correlation analysis to measure the affinities or similarities
between actor pairs in the temporal sequences of dynamicity values in all SIN. The assump-
tion here is that two actors are similar if they fluctuate in a similar fashion considering
the community dynamicity measurement (i.e., dynamicity values of one actor increase
or decrease with the other at the same time). If δa(t) and δb(t) denote the community
dynamicity values of actor a and b at time t, then the evolution similarity between them
is computed by using the Pearson correlation coefficient. Therefore, the second dynamic
similarity metric to measure the similarity between actor pair a and b in this study is
computed as follows:

sim3(a, b) = ∑t[(δ
a(t)− δa)(δb(t)− δb)]√

∑t(δ
a(t)− δa)2

√
∑t(δ

b(t)− δb)2
(6)
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Figure 2. A visual representation of the framework to generate dynamic features by considering
the temporal similarity of community dynamicity values. The solid green and red lines represent
network measures (e.g., degree centrality) of actor a and b in short-interval networks during the
training phase. The dotted lines represent the forecasted network measures during the test phase.
The black lines represent the mapping path considering similar points of two time series using the
dynamic time-warping technique.

3.3.3. Temporal Community-Aware Network Structure

In order to employ community-aware information in link prediction tasks, it is im-
perative to partition a network into communities. Most community-aware link prediction
methods exploit an existing community detection algorithm to compute the similarity
among actor pairs considering the community-oriented structural information. For exam-
ple, the “InfoMap” [49] algorithm minimizes the length of random walks and is mostly
used in information theory. Likewise, Valverde-Rebaza and Lopes [50] used the ‘Label
Propagation’-based community detection method [51] to develop a similarity measure for
the purpose of link prediction in static networks. Following them, this study used the
Louvain algorithm [52] and the greedy agglomerative hierarchical community detection
algorithm proposed by Newman [53] for community detection purposes. The former
method has been successfully and widely used for detecting communities in many different
types of large networks with millions of actors and links. As a greedy optimization method,
the Louvain method optimizes the modularity by looking for smaller communities locally
with optimized modularity (i.e., numerical index to evaluate partitions in a network) and
aggregating actors belonging to the same community to build a network where individual
communities act as an actor. The latter method of community detection follows a greedy
approach to optimize and maximize the modularity and produces a tree-like dendrogram
to present the hierarchical rendering of the network communities. This algorithm can effi-
ciently cluster a large number of actors while generating the given number of communities
and is also known well for its scaling capability. The third and final dynamic similarity
metric in this study was computed using the community-aware information extracted
from the communities detected by the aforementioned algorithms in each SIN of a given
dynamic network. For each non-connected actor pair, in each SIN using the identified
communities, the similarity between a pair of actors was computed depending on their
community participation, including the structures of communities. Before delving into the
actual similarity/proximity score between actor pairs, let us first define a few preliminary
concepts and notations that are used in the following sections with the help of Figure 3.

Peripheral Actors: If an actor simultaneously belongs to more than one community or
resides in one community but belongs to one end of a link where the other end belongs to
another actor from a different community, that actor is considered a peripheral actor. Simi-
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larly, if an actor is connected to another actor that has multiple community memberships, it
is also considered a peripheral actor. For example, the green-colored actor a4 in Figure 3 is
a peripheral actor that has multiple community memberships. Similarly, the red-colored
actors a3, a5, a7, a8, a9, a14, and a15 are considered peripheral actors for their respective
communities since they are either part of links transcending more than one community
or connected to an actor having multiple community memberships. If Ci and Cj are two
communities in a SIN Gt and Vi and Vj denote the set of actors belonging to these two

communities, then a peripheral actor is denoted by vi,j
t . A set of peripheral actors between

two communities Ci and Cj in a SIN Gt is denoted by |Vt(i, j)|, where i ̸= j.

Figure 3. Community-aware network architecture supporting link prediction. The orange-
colored actor a6 is an actor with multiple community memberships. The red-colored actors
(i.e., a3, a5, a7, a8, a9, a14, a15) in each community represent the peripheral actors in each commu-
nity and the red-colored dotted links denote the bilateral links bridging two communities. It is
noteworthy that links connected to actor a6 from every individual community are also considered
bilateral links. a1–a5 belong to the green community, a7–a13 belong to the grey community, and
a14–a19 belong to the blue community.

Bilateral Links: The number of links connecting two different communities. The actor
on both ends of these links belongs to different communities. Similarly, in the presence of
an actor with multiple community memberships, all links from a community connecting
to that actor are also considered bilateral links. For example, in Figure 3, the red-colored
dotted links (e.g.,(a3, a15),(a5, a8),(a9, a14)) are bilateral links as they are connecting two
communities. Likewise, links, including (a5, a6), (a6, a15),(a6, a14),(a3, a6), are considered
bilateral links since these contain an actor with multiple memberships at one end of
them. If Ci and Cj are two communities in a SIN Gt, then a bilateral link between these

two communities is denoted by ei,j
t where i ̸= j. A set of bilateral links between two

communities Ci and Cj is denoted by |Et(i, j)|.
Actor Connectivity: The actor connectivity between two actors a and b in a SIN Gt at

timestamp t is the sum of the minimum number of actors and links that must be removed
to disconnect all paths from actor a to b. If Et(a, b) denotes the set links and Vc

t (a, b) denotes
the set of actors of minimum cardinality such that when removed, they would sever off the
connectivity between actor a and b, then the actor connectivity between these two actors is
defined as:

λt(a, b) = |Et(a, b)|+ |Vt(a, b)| (7)

A large value of λt(a, b) denotes that there are many different alternative paths in a
SIN Gt that are defined to maintain the connectivity between actor a and b.
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To measure similarity/proximity between non-connected actor pairs using temporal
community-aware network structural information using the aforementioned concepts,
three different contexts were taken into consideration. First, if both actors belong to the same
community within a SIN; if both actors belong to the same community within a SIN, then
their similarity score for that SIN is strengthened by the rate of the clustering tendency of
their common neighbors within the same community. However, the score is weakened by
a dividing factor that represents the clustering tendency of the common neighbors residing
in other communities different from the community where the corresponding actor pair
belongs. The assumption here is that if more neighbors of the common neighbors, incident
to a non-connected actor pair, perform triadic closure, then the possibility of that actor pair
closing the triangle between them is amplified, and so is the probability of forming a link
between them. Valverde-Rebaza and Lopes [50] exploited a similar concept where common
neighbors within the same community strengthen twice more in the similarity/proximity
score. Second, if both actors in a pair reside in different communities within a SIN; if both
actors in a pair reside in different communities, then the similarity score between them is
computed considering the number of peripheral actors, bilateral links, path length between
actors, and their actor connectivity score. Finally, if there is no path defined between a pair
of actors residing in a different community within any SIN Gt; in that case, a score of zero is
assigned to denote their proximity in that particular SIN.

If Ci(t) denotes the ith community, ηi
t(a) denotes the neighborhood of actor a in a SIN

Gt at timestamp t, and Pt(a, b) denotes the geodesic path length between actor a and b, then
by considering the aforementioned three different contexts, the final similarity metric using
community-related and network structural information in every SIN is defined as follows:

sim3(a, b) =


∑T

t=1

∑x∈ηi
t(a)∩ηi

t(b)
CCt(x)

∑n
j=1,j ̸=i ∑

y∈η
j
t (a)∪η

j
t (b)

CCt(y)
a, b ∈ Ci(t)

∑T
t=1,i ̸=j|Vt(i, j)|+ |Et(i, j)|+ λt(a,b)

Pt(a,b) a ∈ Ci(t), b ∈ Cj(t), i ̸= j
0 a ∈ Ci(t), b ∈ Cj(t), Pt(a, b) = ∅

(8)

Considering Equation (8), if two actors belong to the same community in a SIN
Gt at timestamp t, then the similarity between them is increased by the increasing rate
of the clustering tendency of the intra-community common neighbors incident to both
actors but decreased by the clustering tendency of the inter-community neighbors in them
who belong to other communities. The assumption here is if neighbors of the common
neighbors, incident to the non-connected actor pair within the same community tend to
close triangles, then the possibility of forming links between them is enhanced. Conversely,
if they belong to different communities, then the similarity is calculated as the total of
the number of peripheral actors, bilateral links, and actor connectivity score for the actor
pair in conjunction with the inverse of the geodesic distance between both actors. The
assumption here by considering the social network structure is that the peripheral actors
are considered intercessors or negotiators between two distant actors, and bilateral links
signify the common attributes or properties between communities. Furthermore, the higher
the actor connectivity between non-connected actor pairs, the higher the probability of
emerging links between them since there are more possible ways actors can reach each
other. On the other hand, the connectivity score is undermined by the length of the geodesic
distance between the corresponding actors. The rationale behind this part of the equation
is that despite a higher connectivity score, if the corresponding actor resides in the furthest
corner from each other, then the possibility of forming a link between them is reduced.

Since this study used two community detection methods, for the sake of simplicity,
in the rest of the study, simh

3(a, b) is used to denote the third dynamic similarity metric
generated by considering the agglomerative hierarchical community detection method, and
siml

3(a, b) denotes the same metric that is generated by considering the Louvain community
detection algorithm.
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4. Experimental Settings

The dynamic features in this study, constructed above, were applied to five undirected
dynamic network datasets in a supervised link prediction setup, and the performances were
compared against a well-known topological similarity metric known as “ResourceAlloca-
tion”, which is widely used for link prediction purposes in cross-sectional networks. The
prediction performance profiles of dynamic similarity metrics were also compared against
a time-series-based dynamic link prediction approach [19], where a time series of a selected
topological similarity metric (i.e., Jaccard coefficient) is constructed considering a series of
SINs for a given network, and a time series forecasting method (i.e., ARIMA) is applied
to predict the future values of that selected metric to train the classifier in supervised link
prediction. Before delving into the supervised experimental setup, the dynamic network
datasets, used in this study, are described below:

4.1. Network Datasets

The first four dynamic network datasets were selected from our previous study [54],
where a novel method was proposed to determine the optimal sliding window size to
sample a given dynamic network. The first undirected network dataset comes from a reality
mining project at the Massachusetts Institute of Technology (MIT) in 2004, where the actors
were tracked with the help of their personal smartphones to study interpersonal interaction.
In this undirected network, an actor in the network represents a person, and a link indicates
physical contact between two persons. The second dataset comes from internal email
communications among employees of a mid-sized manufacturing company where actors
represent employees and links mean individual emails between two employees. The next
dataset contains undirected network data from a Facebook-like social network originating
from an online community for students at the University of California, Irvine, where
actors represent students within the community and a link represents that two students
communicated via a message. The last undirected network dataset is a very small subset of
the total “Facebook” friendship graph where an actor represents a Facebook user, and a link
represents a friendship between two users. For the sake of brevity, this study names these
four networks as GMIT , GEmail , GUCI , and GFF to denote the network originated from MIT
reality project, a small manufacturing company, University of California Irvine and real
Facebook Friendships, respectively, in the rest of the study. In these network datasets, links
are date stamped with individual dates, and the smallest temporal granularity of these
networks is a day. In addition to these four network datasets, this study also considered
one collaboration network of authors of scientific papers in “arXiv” in the high energy
physics—theory (Hep-th) section. A link between two authors in these networks represents
a joint publication where both authors have co-authored. Similar to the other four, this
study uses Gth in the rest of the study to denote this network. Table 1 sets out the basic
statistics of these network datasets.

Table 1. Basic Statistics of network datasets used in this study. The training duration represents the
interval used to generate temporal short-interval networks, and the sampling interval denotes the
sliding window sizes used to sample dynamic networks. SINs represent the number of short-interval
networks or network snapshots generated using the corresponding window size.

Dataset Actors Links
Training Duration
dd/mm/yy

Test Duration
dd/mm/yy Window Size # SINs

Start End Start End

GMIT 96 1,086,404 14/09/04 31/01/05 01/02/05 05/05/05 Monthly 5

GEmail 167 82,927 02/01/10 31/07/10 01/08/10 30/09/10 Monthly 8

GUCI 1899 61,734 24/03/04 31/05/04 01/06/04 26/10/04 Daily 45

GFF 11,715 42,698 01/01/07 31/03/07 01/04/07 30/04/07 Daily 90

Gth 6798 290,597 01/10/93 31/12/98 01/01/99 10/12/99 Yearly 6
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4.2. Dynamic Networks

A dynamic network evolves over time among a set of actors where the network activ-
ities (i.e., link formation or deletion) have a temporal pattern. Thus, a dynamic network
consists of a temporal sequence or time series of smaller network snapshots. As mentioned
earlier, these snapshots are known as short-interval networks (SIN). One important aspect
of dynamic network design is the selection of sliding window size (i.e., the amount of time
lapse between the aggregations of links) used to sample large cross-sectional networks with
timestamped links to generate SINs. From the dynamic network perspective, the order
and frequency of actors and the temporal duration of active links can directly affect the
associated network properties and dynamics. The selection of aggregation granularity to
bin micro-scale network activities can also have a large impact on the expected outcome of
the dynamic network study since it may lead to under- or oversampling of the network
activities. In this study’s perspective, since the dynamic similarity metrics are constructed
by considering the evolutionary aspects, incident to individual actors, measured in each
SIN of a time series of SINs, therefore, choosing the optimal window size can effectively
regulate the generated metric values. Furthermore, the sampling resolution used to accu-
mulate microscale network data can induce the mesoscale network properties of SIN(s).
Considering the aforementioned aspects, and since the first four datasets are selected from
the same study that deals with the time scale detection problem in dynamic networks, this
study attempted to adhere to the same window size determined for each of these four
datasets in [54]. The contenders are daily window sizes for GUCI and GFF and monthly
window sizes for GMIT and GEmail . On the other hand, since the temporal granularity of
the co-authorship network Gth is a year, this study sampled dynamic networks considering
yearly duration as the window size. In Table 1, this study also provides the number of SINs
generated for the corresponding network datasets when the whole network was sampled
by considering the selected time scale.

4.3. Supervised Link Prediction

The primary objective of the link prediction mechanism is to analyze the network
structure and actors’ attributes in the training phase [t1, t′] to predict the possibility of
future links in the test phase [t′, t2]. From a dynamic network perspective, the network
in the training phase GT [t1, t′] is sampled using an aggregation granularity (i.e., sliding
window size) to generate evolutionary network snapshots (i.e., SIN). As mentioned earlier,
to split the network GT and generate time series of SINs, this study used the optimal
window size as described in Table 1. Supervised methods for link prediction problems
need to predict emerging links by successfully discriminating positive and negatively
labeled links within a classification dataset. Hence, supervised link prediction is considered
a binary classification task by learning positive and negative instances with the help of
interesting features describing each instance. In a supervised link prediction setup, this
study built classification datasets consisting of positive and negative instances where
each instance is a non-connected actor pair from the network in the test phase GT+1[t1, t′].
Instances had positive labels if they appeared during the test phase and negative labels,
providing that they were absent in both the training and test phases. This study considered
a workload ratio of positive vs. negative instances as 1:5 for GMIT , GEmail , GUCI , and GFF .
Thus, the number of negatively labeled links is five times higher than the positively
labeled ones in each classification dataset. However, in the case of the co-authorship
network Gth, the workload ratio is 1:2. For the sake of simplicity in the link prediction
problem, loops (i.e., links where source and destination are the same actors) were ignored,
and unique links in GT+1 were considered (i.e., links not present in GT) as positive instances.
Choosing the appropriate feature set to describe instances in the classification dataset
and to train classifiers is one of the most important tasks in supervised link prediction.
In each classification dataset of this study, both positively and negatively labeled actor-
pair instances were described using features computed using Equations (5), (6), and (8),
described in Section 2. This study constructed a single classification dataset consisting
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of instances, and dynamic features describing those instances, depending on the selected
optimal window size for each network.

4.4. The Classifiers

In regards to classifiers, this study used simple logistic regression, random forest,
and bagging algorithms. Logistic regression is a statistical method that uses the logistic
function (sigmoid function) to build classification models for data that are linearly sep-
arable. It describes the relationship between one dependent variable with one or more
independent variables where the dependent variable is either dichotomous or categorical
and the independent variables can be nominal, ordinal, or interval type. The sigmoid
function maps the predicted values to probabilities ranging from 0 to 1. This study con-
sidered the well-known machine learning library WEKA [55] for logistic regression with
the default parameters. The WEKA workbench supports classes for building and using
multinomial logistic regression models with ridge estimators [56] to improve the parameter
estimates and to diminish the error made by further predictions For the rest of the two
classifier algorithms, this study again relied on the same workbench. For random forest,
the two most important parameters that the workbench used are the maximum depth of
the tree and the number of features to be used. The former was set to 0, which denotes
the unlimited number of trees and the latter used ⌊log2(n) + 1⌋ formula to automatically
calculate the number of features (i.e., predictors) to be considered, where n denotes the
number of predictors. The bagging algorithm is an ensemble-based method that works
as an ensemble meta-estimator fitting base classifier(s) on random subsets of the original
dataset. It finally aggregates the predictions made by the base classifiers via voting or
averaging to generate the final prediction. This classifier can reduce the variance of a
black-box estimator (e.g., a decision tree) through the introduction of randomization and
then make an ensemble out of it. This study considered the decision tree as the only base
classifier with unlimited tree depth. The rest of the parameters for all three classifiers in the
workbench were left to the default values. This study considered a k-fold cross-validation
with k = 10 to estimate the skill of the machine learning models built via three classifiers
on unseen data. This means that the training dataset was split into k = 10 smaller sets
followed by a classifier training via k − 1 of the folds as training data. The resulting model
performance is then validated on the remaining fold of the data.

4.5. Performance Evaluation

As mentioned earlier, this study utilized dynamic similarity metrics as dynamic
features, as constructed in Section 2, to describe both positively and negatively labeled
instances (i.e., non-connected actor pairs or links) in the classification datasets. Dynamic
feature values were normalized such that the distribution has zero mean and one standard
deviation. For the validation purpose, this study considered a 10-fold cross-validation
and the mean scores to determine the accuracy of the results, AUCROC (“Area Under the
Curve” of the “Receiver Operating Characteristic” curve), and AUCPR (“Area Under the
Curve” of the “Precision and recall” curve). While the AUCROC measure is the de facto
standard for measuring supervised learning-based classification, AUCPR is reported for a
more differentiated view in regard to the learning task in the imbalanced dataset. Despite
its criticism [57], AUCROC is a popular metric (after accuracy) used in binary classification.
Accuracy only classifies the class label as right or wrong; however, AUCROC quantifies the
uncertainty associated with classifiers by introducing a probability value. As an important
traditional measure, the AUCROC score is interpreted as the probability that a randomly
chosen missing link (i.e., link to be predicted) in the test phase that belongs to GT+1 is given
a higher probability score than a randomly chosen non-existent link that is absent both in
the training GT and test network GT+1. The formula to calculate AUCROC is defined as
AUCROC = n′+0.5n′′

n , where n denotes the number of independent comparisons, n′ denotes
the times where when a missing link in the test network has been given a higher score, and
n′′ denotes the times when a non-existent link has been given a higher score. The AUCROC
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curve demonstrates how the number of correctly classified positive examples varies with
the number of incorrectly classified negative examples and shows an overly optimistic
view of an algorithm’s performance, whereas, the area under the precision–recall (P-R)
curve (i.e., AUCPR) often serves as summary statistics while comparing the performances
of several different algorithms. The minimum value of AUCPR can be determined as
AUCPRmin = 1 + (1−ϕ)ln(1−ϕ)

ϕ with skew ϕ = positivesamples
n , where n = total number of

samples in the classification dataset [21]. According to this equation, considering the ratio
of positive and negative samples as 1:5 (i.e., the ratio of positive and negative samples is 1:5
in this study) in the classification datasets of GMIT , GEmail , GUCI , and GFF with the value
of the skew ϕ = 0.167, the minimum value of AUCPR in these datasets should be 0.09.
However, for the co-authorship network (i.e., Gth), since the skew ϕ = 0.33 (i.e., ratio 1:2),
the minimum value of AUCPR should be 0.189.

For comparison’s sake, this study compared the performances of dynamic features
with a well-known metric, "ResourceAllocation" [58], which is widely used for link pre-
diction purposes in static networks and has demonstrated improved performance. The
current study also implemented the link prediction strategy in dynamic networks proposed
by Soares and Prudêncio [19], where the authors built time series of traditional topological
metrics (e.g., Jaccard coefficient) for non-connected actor pairs for each SIN in the training
phase and used a time series forecasting method (e.g., ARIMA) to predict the final score of
the topological metrics and used those forecasted values to train the classifier. Different
variations of this method are also extensively followed by other authors to support link
prediction in dynamic networks [20,59]. For the sake of brevity, the rest of the study used
simRA(a, b) and simSoares(a, b) to denote the values computed for the positively and nega-
tively labeled actor pairs considering the "ResourceAllocation" metric and dynamic link
prediction strategy proposed by Soares and Prudêncio. It is noteworthy that to compute
simSoares, the current study considered the well-known "Jaccard Coefficient" measure as
the topological similarity metric and used the ARIMA forecasting method to predict the
future values of the selected metric incident to actor pairs. This study used the Relative
Performance Index (RPI) to investigate how good the underlying link prediction approach is
compared with others across various research datasets. In doing so, the lowest-performing
approach for a given dataset is considered the baseline. They proposed this RPI variant to
compare various K-nearest neighbors algorithms for disease risk prediction. The following
equation describes this measure for a given link prediction approach:

RPI = ∑d
i=1

ai−a∗i
d where a∗i is the minimum accuracy/AUCROC/AUCPR value

among all link prediction approaches for dataset i, ai is the accuracy/AUCROC/AUCPR
value for the link prediction approach under consideration for dataset i, and d is the number
of datasets considered in this study. This study then adds the RPI scores for all machine
learning methods (RF, bagging, and LR). This allows for the comparison of different link
prediction approaches across various datasets using different performance measures. A
higher RPI value indicates the prediction superiority (higher prediction performance) of
the link prediction approach under consideration and vice versa. In (Table 1), the summary
of six dynamic similarity metrics/dynamic features constructed in this study to measure
the similarity/proximity between non-connected actor pairs is presented.

5. Results

Table 2 sets out the performance scores of three different classifiers in classifying
positively and negatively labeled links using the dynamic features simd(a, b), a topological
similarity metric simRA(a, b) known as “ResourceAllocation”, and a time series forecasting-
based metric simSoares(a, b) for link prediction in dynamic networks. Note that simd(a, b)
denotes all dynamic features (i.e., sim1(a, b), sim2(a, b), simh

3(a, b), and siml
3(a, b)). The met-

ric simRA(a, b) was computed by considering an aggregated network consisting of all SINs
in the training phase of each network dataset. On the other hand, to compute simSoares(a, b),
as mentioned earlier, for each pair of actors in the classification dataset, the Jaccard coeffi-
cient was calculated for each SIN to build a time series of topological similarity metrics,
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followed by the ARIMA forecasting method to predict future values of this co-efficient.
These forecasted values were fed into the classifiers for training purposes. The classifiers’
performances are demonstrated by considering three different performance metrics (i.e.,
accuracy, AUCROC, AUCPR), as described before. In regards to the accuracy score, this
study observed that both linear and ensemble-based classifiers performed reasonably well
using the dynamic similarity metrics/dynamic features constructed in this study com-
pared to the other two. In each row of Table 2, for each dataset (GEmail , GFF , GMIT , GUCI ,
and Gth), the highest score for three different evaluation metrics (i.e., accuracy, AUCROC,
and AUCPR), the top-performing metric (i.e., simd(a, b), simRA(a, b), and simSoares(a, b))
are presented in bold-faced numbers. For example, in GEmail , for the bagging classifier,
simSoares(a, b) was the highest performer in accuracy score (i.e., 77.26), simd(a, b) was the
highest performer in AUCROC (i.e., 0.617), and simRA(a, b) was the best performer in
terms of AUCPR (i.e., 0.26) Alternatively, according to each classifier, irrespective of the
datasets, the highest score for each evaluation metric category is colored red, and the
second highest is colored green. For example, considering the same bagging classifier,
the highest (i.e., 93.24) and the second-highest accuracy scores (i.e., 90.82) were recorded
in the co-authorship dataset Gth. However, the highest and the second-highest AUCROC
scores for the same classifier (bagging) were recorded in the co-authorship dataset Gth and
the Facebook dataset GFF , respectively (i.e., 0.876, and 0.655). Conversely, the highest and
the second-highest AUCPR scores for the same classifier (bagging) were recorded in the
Facebook dataset alone GFF .

Table 2. Classification performances by three classifiers in classification datasets of five network
datasets. simd represents the classification performance demonstrated by the dynamic features
(i.e., sim1(a, b), sim2(a, b), simh

3(a, b), and siml
3(a, b)), simRA denotes the performance of the “Re-

sourcecAllocation” topological metric in a cross-sectional network consisting of the aggregation of all
SINs during the training phase, and finally, simSoares denotes the scores developed by following a
time-series-forecasting-based dynamic link prediction method. The highest and the second-highest
scores in each evaluation metric category in all datasets are colored red and green, respectively.

Random Forest
Dataset Accuracy AUCROC AUCPR

simd simRA simSoares simd simRA simSoares simd simRA simSoares

GEmail 79.19 77.92 67.99 0.706 0.678 0.552 0.33 0.33 0.23
GFF 88.13 81.51 75.56 0.550 0.655 0.511 0.62 0.61 0.58

GMIT 72.60 66.85 70.13 0.571 0.645 0.541 0.33 0.39 0.29
GUCI 84.64 83.59 84.63 0.734 0.569 0.501 0.26 0.20 0.18
Gth 91.46 90.72 90.67 0.885 0.617 0.603 0.51 0.27 0.29

Bagging
GEmail 75.32 72.86 77.26 0.617 0.608 0.576 0.24 0.26 0.22

GFF 77.15 81.23 75.61 0.541 0.655 0.509 0.61 0.66 0.56
GMIT 69.52 56.00 61.94 0.590 0.583 0.487 0.40 0.37 0.25
GUCI 82.90 82.59 84.47 0.579 0.484 0.498 0.24 0.16 0.18
Gth 93.24 90.82 90.63 0.876 0.587 0.557 0.60 0.30 0.28

Logistic Regression
GEmail 78.23 78.55 78.12 0.663 0.721 0.577 0.31 0.40 0.20

GFF 77.00 75.82 75.54 0.549 0.655 0.516 0.62 0.67 0.58
GMIT 70.58 72.21 71.12 0.529 0.621 0.527 0.40 0.42 0.34
GUCI 84.52 84.59 84.64 0.620 0.503 0.562 0.23 0.19 0.20
Gth 91.11 90.48 90.52 0.852 0.618 0.601 0.39 0.25 0.26

By considering the dynamic features, and the accuracy scores, the highest accuracy-
based performance was achieved in the co-authorship dataset Gth using the bagging



Mathematics 2024, 12, 285 17 of 24

classifier, and the lowest performance was recorded in GMIT considering the linear classifier
logistic regression. Considering the AUCROC scores, the highest performance was also
achieved in the Gth dataset using the random forest classifier, whereas the lowest was
logged again in GMIT by considering the linear classifier logistic regression. Considering
the lowest AUCPR score as defined earlier, most of the classifiers demonstrated optimal
performances exceeding the minimum values calculated earlier (i.e., 0.189 for Gth and 0.167
for the rest of the datasets); however, the highest value was recorded in the GFF dataset
using both the ensemble classifier random forest and the linear classifier logistic regression.
Conversely, the lowest was recorded in GUCI considering both the ensemble classifiers.
Regarding different classifiers, using the random forest classifier, the dynamic similarity
metrics outperformed both simSoares(a, b) and simRA(a, b) in all datasets in regards to the
accuracy scores. However, considering the AUCPR and AUCROC, it is four out of five
(i.e., simRA(a, b) exceeded simd(a, b) in GMIT). On the other hand, considering the bagging
algorithm, simd(a, b) was outperformed by the other metrics in three out of five datasets
in regards to the accuracy score, two out of five in regards to the AUCPR, and only in
GFF considering the AUCROC score. Overall, simd(a, b) showed superior performance
compared with the other two approaches considered in this study. However, in a few cases,
simRA(a, b) and simSoares(a, b) outperformed simd(a, b). Therefore, a further comparison of
these three approaches is needed.

Table 3 serves this purpose by taking RPI to compare these link prediction approaches
across three performance measures. According to this table, the proposed dynamic attribute-
based link prediction approach outperformed the other two considered in this study. In
summary, our proposed approach for dynamic link prediction in complex networks showed
superior performance by a large margin compared with two other existing well-known
approaches across three performance measures (i.e., accuracy, AUCROC, and AUCPR).

Table 3. Comparison of the relation performance index score for different dynamic link prediction
approaches considering the three performance measures and five datasets used in this research.
The higher the score (red colored), the better the performance.

simd(a, b) simRA(a, b) simSoares(a, b)

Accuracy 54.00 24.15 17.24

AUCROC 1.82 1.15 0.073

AUCPR 1.51 0.90 0.060

Considering the accuracy scores, the worst performance, although the extent was
insignificant, was noticed in the case of logistic regression where simd(a, b) was overtaken
by the other metrics in three datasets out of five. With regard to the AUCROC and AUCPR,
a similar performance was observed by the linear classifier. From the aforementioned
performance observations, it is evident that the dynamic features constructed in this study
undoubtedly outperformed the existing metrics, used in link prediction, in most cases by
considering the ensemble classifiers. In the case of the linear classification, the rivalry be-
tween three different features (i.e., simd(a, b), simSoares(a, b), simRA(a, b)) were competitive.
Nevertheless, the performance demonstrated by the logistic regression algorithm is better
than a random classifier and justifies the fact that the dynamic features of this study can be
effective in predicting emerging links in dynamic networks, even by considering a simple
linear classifier. In the case of the ensemble-based classifiers, bagging, where a decision
tree was used as a base classifier, is susceptible to overfitting and computationally expen-
sive, as it considers all the available features to split a node in decision trees. Conversely,
the random forest, a special case of bagging, randomly considers only a subset of the best
features of those available. Therefore, it performed superior to bagging in some cases.
In the co-authorship networks, considering the dynamic features, the bagging algorithm
observed better performance by considering all three performance metrics.
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In Gth, considering all three performance metrics and all three classifiers, improved
performances were demonstrated, as in Figure 4. This study presents the ROC and P-R
curves of the other four datasets to portray a comparable picture of the three classifiers’
performances. It is noteworthy that in P-R plots, curves tend to lie in the bottom left corner
of the graph. The closer a curve is to the diagonal line, the higher the classifier’s perfor-
mance in classification. Conversely, in ROC plots, curves tend to lie in the top-left region of
the plots. The higher the curve is from the diagonal line, the better the predictor’s perfor-
mance. Apart from GFF , considering both the P-R and ROC curves in the other datasets,
logistic regression was found to compete with the random forest algorithm for superiority,
whereas bagging was found comparably to be the least-performing one in most cases. In
GFF , considering the ROC plots, it is observed that all classifiers tend to perform similarly
and closer to a random classifier, which can achieve a maximum AUCROC score of 0.50.
However, the best performance was observed in the P-R curve (i.e., closer to the diagonal
line), which established the fact found in Table 2 in regards to the AUCPR score. Further
study can reveal the underlying reason behind the classification performance differences,
demonstrated by different classifiers; however, from the aforementioned classification
performances, demonstrated in the table and figure, it can be concluded that the dynamic
similarity metrics constructed in this study can be successfully employed to predict future
links in dynamic networks.

After the performance measurement of the dynamic features, at this stage, this
study attempted to determine the relative importance of four different dynamic features
(i.e., sim1(a, b), sim2(a, b), simh

3(a, b), and siml
3(a, b)) to assess their relative competency in

dynamic link prediction tasks in all five datasets. For this purpose, this study took advan-
tage of two different algorithms (i.e., information gain and chi-square evaluation) provided
in the WEKA machine learning software (https://sourceforge.net/projects/weka/files/).
Table 4 provides a comparable picture of these features regarding their rank of impor-
tance obtained by these algorithms. The ranks of the features are assigned in decreasing
order, with one denoting the highest ranking. Information gain and chi-square evalua-
tor algorithms evaluate the worthiness of a feature by calculating the information gain
and chi-square statistics for the class variables. On the other hand, the last two columns
denote the rank of a feature regarding the support vector machine (SVM) and random
forest classifier. Finally, all the ranks for the four algorithms were aggregated to generate
the final rank. From this table, it is observable that sim2(a, b), which represents the dy-
namic similarity metric, constructed by considering the correlation between time series
of actor-level community dynamicity values, became the most prominent feature in two
datasets (i.e., GMIT , GEmail), and the second-best in the co-authorship datasets Gth. On
the other hand, sim1(a, b), the dynamic similarity metric constructed by considering the
temporal similarity of community dynamicity values of actor pairs using the DTW method,
became the leading feature in Gth, GUCI , and GFF . Among the dynamic features, generated
by considering the temporal community-aware network structures and with the help of
two different community detection algorithms, the feature constructed by considering the
Louvain algorithm was found to be more effective than the other.

To answer the second research issue of this study, as described in the introduction
section, distributions of dynamic feature values are represented in Figure 5. For each
network dataset, the first and second-best-performing features were selected from Table 4;
for example, sim2(a, b) and siml

3(a, b) for the GEmail dataset. This study observed from
this figure that it is not always obvious whether either dissimilar or distant actors in
regards to their dynamic feature values (i.e., lower values) or similar and closer actors
(i.e., higher feature values) participate in emerging links considering any particular feature.
For example, in GUCI , considering sim1(a, b) (i.e., the temporal similarity of community
dynamicity values computed by the DTW method), the non-participating actor pairs
(i.e., negatively labeled links in the classification datasets) had higher values than the actors’
genuinely formed links in the test phase. This signifies that actors with dissimilar temporal
evolution had a higher possibility of forming emerging links. Conversely, in the same

https://sourceforge.net/projects/weka/files/
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dataset, considering siml
3(a, b) (i.e., temporal community-aware network-structure-based

features constructed by considering the Louvain community detection method), the picture
is the opposite. In this case, the positively labeled links (i.e., actors participating in emerging
links) had higher values. On the other hand, in the case of Gth, from the distribution of
sim1(a, b), this study observed that actors having similar temporal evolution had a higher
possibility of forming links.

Figure 4. A Visual representation of P-R (i.e., precision–recall) (left column) and ROC curves (right
column) for four network datasets considering three classifiers.
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Table 4. The rank of different dynamic features constructed in this study using different algorithms.
Ranks are in decreasing order with number one denoting the highest ranking. The “Total” column
represents the aggregation of all ranking scores to generate the final ranking. The red-colored row
denotes the highest ranked (most important) feature in each dataset.

Feature Name Information Gain Chi-Square Evaluation SVM Evaluator Random Forest Evaluator Total
GEmail

sim1(a, b) 2 2 3 4 11
sim2(a, b) 1 1 1 1 4

simh
3(a, b) 4 4 4 2 14

siml
3(a, b) 3 3 2 3 11

GFF

sim1(a, b) 1 1 1 1 4
sim2(a, b) 4 4 4 4 16
simh

3(a, b) 2 2 3 3 10
siml

3(a, b) 3 3 2 2 10
GMIT

sim1(a, b) 2 2 4 4 12
sim2(a, b) 1 1 2 3 7

simh
3(a, b) 4 4 3 2 13

siml
3(a, b) 3 3 1 1 8

GUCI

sim1(a, b) 1 1 3 1 6
sim2(a, b) 4 4 4 4 16
simh

3(a, b) 3 3 2 3 11
siml

3(a, b) 2 2 1 2 7
Gth

sim1(a, b) 1 1 4 1 7
sim2(a, b) 2 2 3 2 9

simh
3(a, b) 4 3 2 4 13

siml
3(a, b) 3 4 1 3 11

Figure 5. Distribution of dynamic feature values in each network dataset for both positively and
negatively labeled links in the classification dataset. Each column represents a network dataset where
the top plot visualizes the distribution of the most important feature and the bottom plot visualizes
the second-best performing dynamic feature in the corresponding dataset. The red label denotes the
classification instances with negative labels and the blue represents the positively labeled ones.

6. Discussion and Conclusions

The link prediction problem in social networks has gained considerable interest from
various domains, and consequently, divergent prediction strategies, metrics and method-
ologies have emerged in aiding this problem of network science. The ineptness of these
strategies in accommodating the associated dynamicity and evolutionary information in
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dynamic networks has led them to be incompetent in dynamic link prediction, despite their
compliance with the performance expectations. Therefore, the “time” component needs to
be integrated as a parameter to the dynamic link prediction problem to better approximate
the temporal network evolution. Consequently, researchers complied with this requirement
and applied both time series analyses and evolutionary aspects (e.g., temporal link decay,
duration of link activeness) in the link prediction task in dynamic networks. Although
the topological information and actor attributes are predominantly the principal sources
of information used in the prediction problem, however, due to the modular structure of
social networks, community information can also be effectively exploited for this purpose.
The dominant rationales behind this are: (i) community structure manifests the information
about actors with similar behavior that can be conducive to predicting their future interac-
tion [41] and (ii) the high and low condensation of links among actors can be an effective
prophecy towards emerging links [60]. Furthermore, incorporating community-related
structural information can drastically improve the accuracy of link prediction [61]. There-
fore, scholars tend to acknowledge that emerging links can be predicted by mining the
evolutionary information extracted from the network snapshots over time, in association
with dynamic network topology, evolutionary mesoscale network structure, and temporal
actor-level neighborhood changes. Motivated by the aforementioned phenomenon, this
study attempted to propose a novel solution to the problem of dynamic link prediction
by defining dynamic similarity metrics using the dynamic community-aware information
extracted both at the local (i.e., actor-level) and global (i.e., network) level. In addressing
the problem of dynamic link prediction, this study first defined an actor-level measure
to render the temporal community-aware evolution, known as community dynamicity.
It also considered the rate of changes concerning the actor’s cliquishness, community
participation, and associated neighborhood changes. These attributes were later used to
develop evolutionary features. Since these features were constructed by considering the
temporal evolution experienced by actors, it is noteworthy that one of the important aspects
of dynamic network analysis is to define the optimal time scale to sample the network
to generate time series of network snapshots (i.e., SIN). For this purpose, we selected a
method from the literature. Once the optimal temporal window size was defined, three
different dynamic features were constructed: first, by measuring the temporal similar-
ity of both temporal sequences of community dynamicity values, incident to a pair of
non-connected actors, with the help of the DTW method; and second, by computing the
correlation between both sequences. Finally, with the help of two different existing com-
munity detection algorithms, by integrating evolutionary community-aware topologies in
conjunction with both inter- and intra-community network structures. In a supervised link
prediction setup, these features were applied to five different undirected social networks
of different sizes and domains. Two ensemble-based classifiers and one linear classifier
were used to measure the performance of the dynamic features. Needless to mention
here, since time series analysis is well-adopted in dynamic link prediction tasks, this study
used a well-defined time series forecasting method, known as exponential smoothing,
to predict the future values of actor-level community dynamicity. However, unlike other
dynamic link prediction strategies, instead of using these predicted values to train the
classifiers, it computed the similarity between two time series with the help of DTW and
Pearson correlation measures and used these similarity measures to train the classifiers.
By considering the performance metrics, this study observed that these features could be
indulged for dynamic link prediction purposes and can effectively support modeling the
network growth. The performance of dynamic features was also compared with a tradi-
tional topological metric (i.e., ResourceAllocation), which is widely used for link prediction
purposes in cross-sectional networks. We also considered a time-series-based dynamic link
prediction strategy as a baseline method. In both cases, this study observed that dynamic
features, constructed by leveraging the evolutionary community-aware aspect of actors,
performed not only as outstanding as the existing ones but also, surprisingly in most cases,
outweighed them to demonstrate superior prediction performance. This study can further
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be extended in different ways. For example, instead of the temporal clustering tendency of
actors, other network structures or topology (e.g., assortativity) can be exploited, including
other time series forecasting methods (e.g., ARIMA) instead of exponential smoothing, and
other similarity measures (e.g., Euclidean, Manhattan) can be employed to measure the
similarity between temporal information. In the case of the third metric, other community
detection algorithms (e.g., edge betweenness) can be used to enhance the prediction perfor-
mance. Finally, like many other applications of link prediction problems, this study can
be valuable to help define new dynamic similarity metrics for dynamic link predictions
in networks that inherently evolve over time, including terrorist networks, online social
networks (e.g., Twitter), scholarly and knowledge networks (e.g., keyword network), and
collaborative filtering to model the consumers’ buying behavior.
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