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Abstract: Generally, stochastic functional differential equations (SFDEs) pose a challenge as they
often lack explicit exact solutions. Consequently, it becomes necessary to seek certain favorable
conditions under which numerical solutions can converge towards the exact solutions. This article
aims to delve into the convergence analysis of solutions for stochastic functional differential equations
by employing the framework of G-Brownian motion. To establish the goal, we find a set of useful
monotone type conditions and work within the space Cr((−∞, 0]; Rn). The investigation conducted
in this article confirms the mean square boundedness of solutions. Furthermore, this study enables
us to compute both L2

G and exponential estimates.

Keywords: G-Brownian motion; exponential and L2
G estimates; boundedness; convergence

MSC: 39B52; 60H10; 60H35; 60G65

1. Introduction

Stochastic functional differential equations (SFDEs) find applications in various fields
of engineering and science, such as neural networks [1], financial assets [2–4], population
dynamics [5,6], and gene expression [7]. These dynamic systems are also used in the study
of turbulent flow analysis and modeling [8]. A vast amount of literature exists on moment
estimates, convergence, stability, and existence of solutions for SFDEs [9–13]. The study
of SFDEs driven by G-Brownian motion is relatively new, dating back to the invention
of G-Brownian theory in 2006 [14]. In [2,15], the classical Lipschitz condition and linear
growth condition were used to establish the existence-uniqueness theorem for SFDEs in the
space BC((−∞, 0]; Rn). The study of SFDEs under the G-framework with non-Lipschitz
conditions and mean square stability was investigated in [16]. The work in [17–19] provides
insights into pth moment estimates, the Cauchy–Maruyama approximation scheme, and ex-
ponential estimates for solutions to SFDEs within the framework of G-Brownian motion.
Asymptotic estimates were studied in [20], while SFDEs under the G-Lévy processes were
investigated in [21].

In this article, we introduce some useful monotone type conditions to study SFDEs
under the G-framework within the space Cr((−∞, 0]; Rn). Our findings contribute to
the growing body of research on SFDEs driven by G-Brownian motion and deepen our
understanding of the role of G-framework in stochastic analysis. We study the conver-
gence of solutions for a SFDEs using the framework of G-Brownian motion. Our analysis
results in the mean square boundedness of solutions and allows us to compute both L2

G
and exponential estimates. Consider a matrix A; its transpose is denoted by AT . Let
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C((−∞, 0]; Rn) denotes the set of continuous mappings from (−∞, 0] to Rn. Define the
space Cr((−∞, 0]; Rn), r > 0 as

Cr((−∞, 0]; Rn) = {α ∈ C((−∞, 0]; Rn) : lim
σ→−∞

erσα(σ) exists in Rn},

Associated with norm ∥α∥r = sup−∞<σ≤0 erσ|α(σ)| < ∞, the space Cr((−∞, 0]; Rn) is a
Banach space of bounded continuous mappings. For each 0 < r1 ≤ r2 < ∞, Cr1 ⊆ Cr2 [22,23].
Represent the σ-algebra of Cr by B(Cr) and C0

r = {α ∈ Cr : limσ→−∞ erσα(σ) = 0}. Let
L2(Cr) denote the space of all F -measurable stochastic processes α taking values in Cr,
such that Ê|α|2r < ∞. Similarly, let L2(C0

r ) denote the space of all F -measurable stochastic
processes α taking values in C0

r , such that E|α|2r < ∞. Let (Ω,F , P) be a complete probabil-
ity space, where F is a sigma-algebra of subsets. The natural filtration Ft on (Ω,F , P) is
defined as the sigma-algebra, denoted by Ft = σB(v) : 0 ≤ v ≤ t, where B(v) represents
the Borel sigma-algebra of Cr. We use P to represent the set of all probability measures
on (Cr,B(Cr)). Additionally, Lb(Cr) denotes the collection of continuous bounded func-
tionals on Cr. Finally, let Λ0 be the collection of probability measures on (−∞, 0] satisfying∫ 0
−∞ µ(dσ) = 1 for every µ ∈ Λ0. We define

Λk = {µ ∈ Λ0 : µ(k) =
∫ 0

−∞
e−kσµ(dσ) < ∞}, (1)

where Λk0 ⊂ Λk ⊂ Λ0 for any k ∈ (0, k0) [23]. Let κ : Cr((−∞, 0]; Rn) → Rn, η :
Cr((−∞, 0]; Rn) → Rn and γ : Cr((−∞, 0]; Rn) → Rn be Borel measurable. Consider
the SFDEs driven by G-Brownian motion of the form

dz(t) = κ(zt)dt + η(zt)d⟨B, B⟩(t) + γ(zt)dB(t), (2)

on t ≥ 0 where zt = {z(t + θ) : −∞ < θ ≤ 0}. Equation (2) has the starting value
z0 = ζ ∈ Cr((−∞, 0]; Rn). Let ⟨B, B⟩(t) denote the quadratic variation process of the
G-Brownian motion B(t) defined on a complete probability space (Ω,F , P), where B(t) is
a one-dimensional process under the filtration Ft≥0 satisfying the usual conditions. This
paper presents the analysis of solutions for equations of the type (2). The remaining paper
is arranged as follows. Section 2 presents the basic results. In Section 3, some useful
lemmas are given. Section 4 investigates the mean square boundedness and convergence
of solutions. In Section 5, we first study the L2

G estimate and then derive the exponential
estimate. Section 6 contains conclusions.

2. Basic Notions and Results

This section presents some fundamental concepts and results that we utilize in the
following research work of this article [14,24,25]. The following two basic lemmas can be
utilized in forthcoming sections of this paper [9].

Lemma 1. Let c, l ≥ 0 and δ ∈ (0, 1). Then

(c + l)2 ≤ c2

δ
+

l2

1 − δ
.

Lemma 2. Let p ≥ 2 and δ̂, c, l > 0. Then,

(i) cp−1l ≤ (p−1)δ̂cp

p + lp

pδ̂p−1 .

(ii) cp−2l2 ≤ (p−2)δ̂cp

p + 2lp

pδ̂
p−2

2
.

Let H be a space of real mappings defined on a non-empty set Ω.
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Definition 1. ∀ x, y ∈ H, a functional Ê : H → R assuring the below given features are called
a G-expectation

1. Ê[y] ≥ Ê[x] whenever y ≥ x.
2. Ê[m1] = m1, for any m1 ∈ R.
3. Ê[m2y] = m2Ê[y], for any m2 ∈ R+.
4. Ê[y + x] ≤ Ê[y] + Ê[x].

Suppose that Ω is the space of Rn-valued continuous paths (w(t))t≥0 such that
w(0) = 0 associated with the norm

D(w1, w2) =
∞

∑
j=1

2−j
(

max
t∈[0,j]

|w1(t)− w2(t)| ∧ 1
)

.

Choose ΩT = {ω ∧ T : ω ∈ Ω} [14]. Assume the canonical process B(t) = B(t, w)
where t ≥ 0 and w ∈ Ω. Let λ ∈ Cb.Lip(Rn×d) and t1, t2, . . . , tn ∈ [0, T], then

L0
ip(ΩT) =

{
λ(B(t1), B(t2), . . . , B(tn)) : n ≥ 1

}
.

Notice that L0
ip(Ωt) ⊆ L0

ip(ΩT), L0
ip(Ω) = ∪∞

m=1L0
ip(Ωm) and the completion of

L0
ip(Ω) associated with Ê[|.|p]

1
p , p ≥ 1 is Lp

G(Ω). Related to {B(t)}t≥0, we can express the
filtration as Ft = σ{B(u), 0 ≤ u ≤ t} where F = {Ft}t≥0. Let 0 ≤ t0 ≤ t1 ≤ . . . ≤ tN < ∞
and △T = {t0, t1, . . . , tN} is a partition of [0, T]. Let p ≥ 1, then Mp,0

G (0, T) is given by

Mp,0
G (0, T) = {ρt(w) =

N−1

∑
o=0

ϑj(w)I[to ,to+1]
(t) : ϑo ∈ Lp

G(Ωto ), o = 0, 1, . . . , N − 1},

The space Mp
G(0, T) is the completion of Mp,0

G (0, T) under the norm ∥ρ∥ ={ ∫ T
0 E[|ρs|p]ds

}1/p
, p ≥ 1.

Definition 2. The G-Brownian motion is an n-dimensional stochastic process {B(t)}t≥0 fulfilling
the following characteristics:

(i) B(0) = 0.
(ii) B(t + v)− B(t) is G-normally distributed and independent of B(t1), B(t2), . . . . . . B(tn) for

any n ∈ N and 0 ≤ t1 ≤ t2 ≤, . . . ,≤ tn ≤ t.

Definition 3. Let ρ(t) ∈ M2,0
G (0, T). The G-Itô integral I(ρ) is defined as the stochastic integral

of a function ρ with respect to G-Brownian motion given by

I(ρ) =
∫ T

0
ρ(s)dBa(s) =

N−1

∑
k=0

ξk

(
Ba(tk+1)− Ba(tk)

)
,

One can extend I : M2,0
G (0, T) 7→ L2

G(FT) to I : M2
G(0, T) 7→ L2

G(FT), where for
ρ ∈ M2

G(0, T) we have

∫ T

0
ρ(s)dBa(s) = I(ρ).

Definition 4. Let ⟨Ba⟩(0) = 0. The G-quadratic variation process {⟨Ba⟩(t)}t≥0 is given as follows:

⟨Ba⟩(t) = lim
N→∞

N−1

∑
j=0

(
Ba(tN

j+1)− Ba(tN
j )

)2
= Ba(t)2 − 2

∫ t

0
Ba(s)dBa(s).
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Consider a function K0,T : M0,1
G (0, T) 7→ L2

G(FT) given as

K0,T(ρ) =
∫ T

0
ρ(s)d⟨Ba⟩(s) =

N−1

∑
i=0

ξi

(
⟨Ba⟩(ti+1)− ⟨Ba⟩(ti)

)
.

One can extend K0,T to M1
G(0, T). For ρ ∈ M1

G(0, T), and it is given by

∫ T

0
ρ(s)d⟨Ba⟩(s) = K0,T(ρ).

Lemma 3 ([14]). Assume that γ ∈ Mp
G(0, T) and p ≥ 2. Then

Ê
[

sup
0≤t≤T

∣∣∣ ∫ t

0
γ(s)dB(s)

∣∣∣p]
≤ a3Ê

[ ∫ t

0
|γ(s)|2ds

] p
2
,

where a3 ∈ (0, ∞) is a p dependent constant.

Lemma 4 ([14]). Assume that γ ∈ Mp
G(0, T), p ≥ 1. Then,

Ê
[

sup
0≤t≤T

∣∣∣ ∫ t

0
γ(s)d⟨B, B⟩(s)

∣∣∣p]
≤ a2Ê

[ ∫ t

0
|γ(s)|2ds

] p
2
,

where a2 ∈ (0, ∞) depends on p.

Lemma 5 ([26]). Let p ≥ 0, z ∈ Lp
G. For each m1 > 0,

ν(|z| > m1) ≤
Ê[|z|p]

m1
,

where Ê|z|p < ∞.

3. Some Useful Results

In this section, we introduce and discuss some important assumptions and establish
two lemmas. We consider the following hypotheses:

(H) Let ai > 0, i = 1, 2, . . . , 5 and α(σ)− β(σ) = Ψ(σ). For any α, β ∈ Cr((−∞, 0]; Rn)and f or
any probability measure µ1, µ2, µ3 ∈ Λ2r the f ollowing inequalities hold

[Ψ(0)]T [κ(α)− κ(β)] ≤ −a1|Ψ(0)|2 + a2

∫ 0

−∞
|Ψ(σ)|2µ1(dσ), (3)

[Ψ(0)]T [η(α)− η(β)] ≤ −a3|Ψ(0)|2 + a4

∫ 0

−∞
|Ψ(σ)|2µ2(dσ), (4)

|γ(α)− γ(β)|2 ≤ a5

∫ 0

−∞
|Ψ(σ)|2µ3(dσ). (5)

Lemma 6. Let a < pr and p ≥ 1. Then,

∥zt∥p
r ≤ e−at∥ζ∥p

r + sup
0<u≤t

|z(u)|p,

where ζ ∈ Cr((−∞, 0]; Rn).
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Proof. Suppose pr > a. We can deduce the following by employing the definition of norm
∥ · ∥r:

∥zt∥p
r =

[
sup

−∞<σ≤0
erσ|z(t + σ)|

]p
≤ sup

−∞<σ≤0
eaσ|z(t + σ)|p

≤ sup
0<u≤t

e−a(t−u)|z(u)|p + sup
−∞<u≤0

e−a(t−u)|z(u)|p

= e−at∥ζ∥p
r + e−at sup

0<u≤t
eas|z(u)|p

≤ sup
0<u≤t

|z(u)|p + e−at∥ζ∥p
r .

The proof stands completed.

Throughout this paper, we let that for any p ≥ 1, a < pr.

Lemma 7. Let a < pr, p ≥ 2 and µi ∈ Λk, ∀ i ∈ N. Then,

∫ t

0

∫ 0

−∞
|z(σ + s)|pµi(dσ)ds ≤

µ
(pr)
i
pr

∥ζ∥p
r +

∫ t

0
|z(s)|pds, (6)

∫ t

0

∫ 0

−∞
eas|z(σ + s)|pµi(dσ)ds ≤

µ
(pr)
i

pr − a
∥ζ∥p

r + µ
(pr)
i

∫ t

0
eas|z(s)|pds, (7)

where ζ ∈ Cr((−∞, 0]; Rn).

Proof. As for each i ∈ Z+, µi ∈ Λpr and ζ ∈ Cr((−∞, 0]; Rn), by using the Fubini theorem
and the definition of norm, it follows that∫ t

0

∫ 0

−∞
|z(σ + s)|pµi(dσ)ds

=
∫ t

0

[ ∫ −s

−∞
epr(σ+s)|z(σ + s)|pe−pr(s+σ)µi(dσ) +

∫ 0

−s
|z(σ + s)|pµi(dσ)

]
ds

≤ ∥ζ∥p
r

∫ t

0
e−prsds

∫ 0

−∞
e−prσµi(dσ) +

∫ 0

−∞
µi(dσ)

∫ t

0
|z(s)|pds.

Observing that
∫ 0
−∞ µi(dσ) = 1 and

∫ 0
−∞ e−prσµi(dσ) = µ

(pr)
i , i ∈ N, it follows that

∫ t

0

∫ 0

−∞
|z(s + σ)|pµi(dσ)ds ≤

µ
(pr)
i
pr

∥ζ∥p
r +

∫ t

0
|z(s)|pds.

The proof of (6) is complete. Using similar arguments as used above we determine∫ t

0

∫ 0

−∞
eas|z(σ + s)|pµi(dσ)ds

=
∫ t

0
easds

[ ∫ −s

−∞
|z(σ + s)|pµi(dσ) +

∫ 0

−s
|z(σ + s)|pµi(dσ)

]
=

∫ t

0
easds

∫ −s

−∞
|z(σ + s)|pµi(dσ) +

∫ 0

−t
µi(dσ)

∫ t

−σ
eas|z(σ + s)|pds

≤
∫ t

0
easds

∫ −s

−∞
epr(σ+s)|z(s + σ)|pe−pr(σ+s)µi(dσ) +

∫ 0

−∞
µi(dσ)

∫ t

0
ea(s−σ)|z(s)|pds

≤ ∥ζ∥p
r

∫ t

0
e−(pr−a)sds

∫ 0

−∞
e−prσµi(dσ) +

∫ 0

−∞
e−aσµi(dσ)

∫ t

0
eas|z(s)|pds.
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With reference to Equation (1), and taking note that pr > a, we can conclude that

∫ t

0

∫ 0

−∞
eas|z(σ + s)|pµi(dσ)ds ≤

µ
(pr)
i

pr − a
∥ζ∥p

r + µ
(pr)
i

∫ t

0
eas|z(s)|pds.

The proof of (7) is complete.

4. Convergence and Mean Square Boundedness

Firstly, let us derive the mean square boundedness for the solutions to Equation (2).

Theorem 1. Let the inequalities (3)–(5) be satisfied. Assume Equation (2) with initial condition
ζ ∈ Cr((−∞, 0]; Rn) has just one solution z(t). Let ai, i = 1, 2, . . . , 5 assure 2a1 > 2a2µ

(2r)
1 +

2b1a4µ
(2r)
2 + b1a5µ

(2r)
3 − 2b1a3. Then there is a ∈ (0, (2a1 + 2b1a3 − 2a2µ

(2r)
1 − 2b1a4µ

(2r)
2 −

b1a5µ
(2r)
3 ) ∧ 2r) so that

Ê[|z(t)|2] ≤ c1 + c2e−at, (8)

where
c1 =

1
a

(1
δ
|κ(0)|2 + b1

δ1
|η(0)|2 + b1

δ2
|γ(0)|2

)
and

c2 = Ê|z(0)|2 +
2a2µ

(2r)
1

2r − a
Ê∥ζ∥2

r +
2b1a4µ

(2r)
2

2r − a
Ê∥ζ∥2

r +
b1a5µ

(2r)
3

(2r − a)(1 − δ2)
Ê∥ζ∥2

r .

The values of δ,δ1 and δ2 are sufficiently small so that

2a1 − δ − a − b1δ1 + 2b1a3 − 2a2µ
(2r)
1 − 2b1a4µ

(2r)
2 − b1a5

1 − δ2
µ
(2r)
3 > 0.

Proof. By using the G-Itô formula, G-Itô integral and Lemma 4, it follows

Ê[eat|z(t)|2] ≤ Ê|z(0)|2 + Ê
∫ t

0
eas

[
a|z(s)|2 + 2zT(s)κ(zs)

]
ds

+ b1Ê
∫ t

0
eas

[
2zT(s)η(zs) + |γ(zs)|2

]
ds.

(9)

Utilizing (3), (4) and Lemma 2, we determine

zT(t)κ(zt) ≤ (
δ

2
− a1)|z(t)|2 +

1
2δ

|κ(0)|2 + a2

∫ 0

−∞
|z(t + σ)|2µ1(dσ),

zT(t)η(zt) ≤ (
δ1

2
− a3)|z(t)|2 +

1
2δ1

|η(0)|2 + a4

∫ 0

−∞
|z(t + σ)|2µ2(dσ).

It follows from Lemma 1 and the condition given in (5) that

|γ(zt)|2 ≤ 1
δ2
|γ(0)|2 + a5

1 − δ2

∫ 0

−∞
|z(t + σ)|2µ3(dσ).
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Using the above inequalities, (9) becomes

Ê[eat|z(t)|2] ≤ Ê|z(0)|2 + 1
a

(1
δ
|κ(0)|2 + b1

δ1
|η(0)|2 + b1

δ2
|γ(0)|2

)
(eat − 1)

+ (δ + a − 2a1 + b1δ1 − 2b1a3)Ê
∫ t

0
eas|z(s)|2ds

+ 2a2Ê
∫ t

0
eas

∫ 0

−∞
|z(s + σ)|2µ1(dσ)ds

+ 2b1a4Ê
∫ t

0
eas

∫ 0

−∞
|z(s + σ)|2µ2(dσ)ds

+ b1
a5

1 − δ2
Ê
∫ t

0
eas

∫ 0

−∞
|z(s + σ)|2µ3(dσ)ds.

(10)

In view of Lemma 7, it follows∫ t

0

∫ 0

−∞
eas|z(s + σ)|2µi(dσ)ds ≤ 1

2r − a
∥ζ∥2

r µ
(2r)
i + µ

(2r)
i

∫ t

0
eas|z(s)|2ds. (11)

Substituting (11) in (10), we derive

Ê[eat|z(t)|2] ≤ Ê|z(0)|2 +
2a2µ

(2r)
1

2r − a
Ê∥ζ∥2

r +
2b1a4µ

(2r)
2

2 − ra
Ê∥ζ∥2

r +
b1a5µ

(2r)
3

(2r − a)(1 − δ2)
Ê∥ζ∥2

r

+
1
λ

(1
δ
|κ(0)|2 + b1

δ1
|η(0)|2 + b1

δ2
|γ(0)|2

)
(eat − 1)

− (2a1 − δ − a − b1δ1 + 2b1a3 − 2a2µ
(2r)
1 − 2b1a4µ

(2r)
2 − b1a5

1 − δ2
µ
(2r)
3 )Ê

∫ t

0
eas|z(s)|2ds.

As 2a1 > 2a2µ
(2r)
1 + 2b1a4µ

(2r)
2 + b1a5µ

(2r)
3 − 2b1a3 and a ∈ (0, (2a1 + 2b1a3 − 2a2µ

(2r)
1 −

2b1a4µ
(2r)
2 − b1a5µ

(2r)
3 ) ∧ 2r). Selecting δ, δ1 and δ2 sufficiently small so that

2a1 − δ − a − b1δ1 + 2b1a3 − 2a2µ
(2r)
1 − 2b1a4µ

(2r)
2 − b1a5

1 − δ2
µ
(2r)
3 > 0,

we obtain the desired result:
Ê[|z(t)|2] ≤ c1 + c2e−at,

where
c1 =

1
a

(1
δ
|κ(0)|2 + b1

δ1
|η(0)|2 + b1

δ2
|γ(0)|2

)
and

c2 = Ê|z0|2 +
2a2µ

(2q)
1

2r − a
Ê∥ζ∥2

r +
2b1a4µ

(2r)
2

2r − a
Ê∥ζ∥2

r +
b1a5µ

(2r)
3

(2r − a)(1 − δ2)
Ê∥ζ∥2

r .

Theorem 1 describes that Equation (2) has a mean square bounded solution. The fol-
lowing Theorem 2 expresses that any two distinct solutions of Equation (2) are convergent.

Theorem 2. Assuming that all hypotheses of Theorem 1 are satisfied, let z(t) and y(t) be two
solutions of Equation (2) associated with initial values ζ and ξ, respectively. Then, we have

Ê[|z(t)− y(t)|2] ≤ c3Ê|ξ − ζ|2r e−at, (12)

where c3 = 1 + 1
2r−a (2a2µ

(2r)
1 + 2b1a4µ

(2r)
2 + b1a5µ

(2r)
3 ).



Mathematics 2024, 12, 279 8 of 12

Proof. Define ϕ(t) = z(t)− y(t), γ̂(t) = γ(zt)− γ(yt), κ̂(t) = κ(zt)− κ(yt), and η̂(t) =
η(zt)− η(yt). Utilizing the G-Itô integral, Lemma 4, and G-Itô formula, it follows that

Ê[eat|ϕ(t)|2] ≤ Ê|ξ(0)− ζ(0)|2 + Ê
∫ t

0
eas[a|ϕ(s)|2 + 2ϕT(s)κ̂(s)]ds

+ b1Ê
∫ t

0
eϕs[2ϕT(s)η̂(s) + |γ̂(s)|2]ds.

(13)

From hypothesis H, we derive

ϕT(t)κ̂(t) ≤ −a1|ϕ(t)|2 + a2

∫ 0

−∞
ϕ(σ + t)µ1(dσ),

ϕT(t)η̂(t) ≤ −a3|ϕ(t)|2 + a4

∫ 0

−∞
ϕ(σ + t)µ2(dσ)

and

|γ̂(t)|2 ≤ a5

∫ 0

−∞
ϕ(t + σ)µ3(dσ).

Utilizing the above inequalities, (13) becomes

Ê[eat|ϕ(t)|2] ≤ Ê|ξ(0)− ζ(0)|2 + (a − 2a1 − 2b1a3)Ê
∫ t

0
eas|ϕ(s)|2ds

+ 2a2Ê
∫ t

0

∫ 0

−∞
easϕ(s + σ)µ1(dσ)ds + 2b1a4Ê

∫ t

0

∫ 0

−∞
easϕ(s + σ)µ2(dσ)ds

+ k1a5Ê
∫ t

0

∫ 0

−∞
easϕ(s + σ)µ3(dσ)ds.

(14)

From Lemma 7 for i = 1, 2, 3, it follows∫ t

0

∫ 0

−∞
eas|ϕ(s + σ)|2µi(dσ)ds ≤ 1

2q − a
∥ζ − ξ∥2

r µ
(2r)
i + µ

(2r)
i

∫ t

0
eas|ϕ(s)|2ds. (15)

Plugging (15) in (14), we determine

eatÊ|ϕ(t)|2 ≤ Ê|ξ(0)− ζ(0)|2 + 1
2r − a

[2a2µ
(2r)
1 + 2b1a4µ

(2r)
2 + b1a5µ

(2r)
3 ]Ê∥ζ − ξ∥2

r

− (2a1 + 2b1a3 − a − 2a2µ
(2r)
1 − 2k1a4µ

(2r)
2 − b1a5µ

(2r)
3 )Ê

∫ t

0
eas|ϕ(s)|2ds.

As 2a1 > 2a2µ
(2r)
1 + 2b1a4µ

(2r)
2 + b1a5µ

(2r)
3 − 2b1a3 and a ∈ (0, (2a1 + 2b1a3 − 2a2µ

(2r)
1 −

2b1a4µ
(2r)
2 − b1a5µ

(2r)
3 ) ∧ 2r) it follows that

Ê|ϕ(t)|2 ≤ [1 +
1

2r − a
(2a2µ

(2r)
1 + 2b1a4µ

(2r)
2 + b1a5µ

(2r)
3 )]Ê∥ζ − ξ∥2

r e−at,

consequently, we derive the following required result

Ê|z(t)− y(t)|2 ≤ c3Ê∥ζ − ξ∥2
r e−at,

where c3 = 1 + 1
2r−a (2a2µ

(2r)
1 + 2b1a4µ

(2r)
2 + b1a5µ

(2r)
3 ).

If κ(0) = η(0) = γ(0) = 0, then from Theorem 2 we can obtain that the trivial solution
of Equation (2) is mean square exponentially stable.
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Example 1. Consider z(t) and y(t) as two solutions of the equation

dz(t) = ztdt + sin(zt)d⟨B⟩(t) + ztdB(t)

with initial values ζ and ξ, respectively. Define ϕ(t) = z(t)− y(t), η̂(t) = γ̂(t) = zt − yt and
κ̂(t) = sin(zt) − sin(yt). Under the given hypothesis one can easily derive that y(t) is mean
square convergent to z(t).

5. The Exponential Estimate

Firstly, let us determine the L2
G estimates. Let Equation (2) with initial condition

ζ ∈ Cr((−∞, 0]; Rn) has just one solution z(t) on t ∈ [0, ∞).

Theorem 3. Assume that the hypothesis H holds and E∥ζ∥2
r < ∞. For every t ≥ 0,

Ê
[

sup
−∞<s≤t

|z(t)|2
]
≤ [Ê∥ζ∥2

r + m1]em2t,

where m1 = c + 2
r [r + a2µ

(2r)
1 + b1(a5µ

(2r)
3 + µ

(2r)
2 ) + 2b3a5µ

(2r)
3 ]Ê∥ζ∥2

r , c = 2[|κ(0)|2 +
b1(|η(0)|2 + 2|γ(0)|2) + 4b3|γ(0)|2]T and m2 = 2[2a2 − 2a1 + 1+ b1(2a5 − 2a3 + 3) + 4b3a5].

Proof. Using the G-Itô formula and properties of the G-expectation, it follows that

Ê
[

sup
0≤s≤t

|z(t)|2
]
≤ Ê|z(0)|2 + 2Ê

[
sup

0≤s≤t

∫ t

0
zT(s)κ(zs)ds

]
+ Ê

[
sup

0≤s≤t

∫ t

0
(2zT(s)η(zs) + |γ(zs)|2)d⟨B, B⟩(s)

]
+ 2Ê

[
sup

0≤s≤t

∫ t

0
zT(s)γ(zs)dB(s)

]
.

(16)

From our assumption H, 2a1a2 ≤ ∑2
i=1 a2

i and (∑2
i=1 ai)

2 ≤ 2 ∑2
i=1 a2

i , it follows that

zT(t)κ(zt) ≤ −(a1 −
1
2
)|z(t)|2 + 1

2
|κ(0)|2 + a2

∫ 0

−∞
|z(t + σ)|2µ1(dσ), (17)

zT(t)η(zt) ≤ −(a3 −
1
2
)|z(t)|2 + 1

2
|η(0)|2 + a4

∫ 0

−∞
|z(t + σ)|2µ2(dσ), (18)

|γ(zt)|2 ≤ 2|γ(0)|2 + 2a5

∫ 0

−∞
|z(t + σ)|2µ3(dσ). (19)

In view of (17) and (11), we determine that

2Ê
[

sup
0<s≤t

∫ t

0
zT(s)κ(zs)ds

]
≤ |κ(0)|2T +

a2

r
Ê∥ζ∥2

r µ
(2r)
1 + (2a2 − 2a1 + 1)Ê

∫ t

0
|z(s)|2ds.

Utilizing (18), (19), (11) and Lemma 4, it follows that

Ê
[

sup
0≤s≤t

∫ t

0
(2zT(s)η(zs) + |γ(zs)|2)d⟨B, B⟩(s)

]
≤ b1Ê

[ ∫ t

0
(2zT(s)η(zs) + |γ(zs)|2)

]
ds

≤ b1[|η(0)|2 + 2|γ(0)|2]T + b1
1
r
(a5µ

(2r)
3 + µ

(2r)
2 )Ê∥ζ∥2

r

+ b1(2a5 − 2a3 + 3)Ê
∫ t

0
|z(s)|2ds.
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The inequality a1a2 ≤ 1
2 ∑2

i=1 ai, Lemma 3 and (19) give

2Ê
[

sup
0<s≤t

∫ t

0
zT(s)γ(zs)dB(t)

]
≤ 2b2Ê

[ ∫ t

0
|zT(s)γ(zs)|2ds

] 1
2

≤ 1
2
Ê
[

sup
0<s≤t

|z(s)|2
]
+ 4b2

2|γ(0)|2T + 4b2
2a5Ê

∫ t

0

∫ 0

−∞
|z(s + σ)|2µ3(dσ)ds.

Using Lemma 7, we derive

2Ê
[

sup
0<s≤t

∫ t

0
zT(s)γ(zs)dB(s)

]
≤ 1

2
Ê
[

sup
0<s≤t

|z(s)|2
]
+ 4b3|γ(0)|2T +

4b3a5

2r
µ
(2r)
3 Ê∥ζ∥2

r + 4b3a5Ê
∫ t

0
|z(s)|2ds,

(20)

where b3 = b2
2. By substituting the aforementioned inequalities into Equation (16), and let-

ting m1 = c+ 2
r [r + a2µ

(2r)
1 + b1(a5µ

(2r)
3 + µ

(2r)
2 ) + 2b3a5µ

(2r)
3 ]E∥ζ∥2

r , m2 = 2[2a2 − 2a1 + 1+
b1(2a5 − 2a3 + 3) + 4b3a5], we can evaluate the result:

Ê[ sup
0≤s≤t

|z(t)|2] ≤ m1 + m2

∫ t

0
Ê
[

sup
0≤s≤t

|z(s)|2
]
ds, (21)

where c = 2
[
|κ(0)|2 + b1(|η(0)|2 + 2|γ(0)|2) + 4b3|γ(0)|2

]
T. By observing that

Ê[ sup
−∞<s≤t

|z(s)|2
]
≤ Ê∥ζ∥2

r + Ê
[

sup
0≤s≤t

|z(s)|2],

it follows that

Ê
[

sup
−∞<s≤t

|z(s)|2
]
≤ Ê∥ζ∥2

r + m1 + m2

∫ t

0
Ê
[

sup
0≤s≤t

|z(s)|2
]
ds

≤ Ê∥ζ∥2
r + m1 + m2

∫ t

0
Ê
[

sup
−∞<s≤t

|z(s)|2
]
ds.

Finally, the required result is obtained by using the Grownwall inequality.

Theorem 4. Under the conditions of Theorem 3, it follows that

lim
t→∞

sup
1
t

log|z(t)| ≤ α,

where α = 2a2 − 2a1 + 1 + b1(2a5 − 2a3 + 3) + 4b3a5 and a1, a2, . . . are positive constants.

Proof. Assuming that m1 = m + 2
r [r + a2µ

(2r)
1 + b1(a5µ

(2r)
3 + µ

(2r)
2 ) + 2b3a5µ

(2r)
3 ]E∥ζ∥2

r and
m2 = 2[2a2 − 2a1 + 1 + b1(2a5 − 2a3 + 3) + 4b3a5] then from the inequality (21), we can
conclude that

Ê
[

sup
0≤s≤t

|z(s)|2
]
≤ m1em2t, (22)

where m = 2
[
|κ(0)|2 + b1(|η(0)|2 + 2|γ(0)|2) + 4b3|γ(0)|2

]
T. For each q = 1, 2, 3, . . . ,

from (22) it follows that
Ê
[

sup
q−1≤t≤q

|z(t)|2
]
≤ m1em2q.
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By utilizing Lemma 5 for every given δ > 0, we obtain

ν
{

w : sup
q−1≤t≤q

|z(t)|2 > e(m2+δ)q
}
≤

Ê
[

supq−1≤t≤q |z(t)|2
]

e(m2+δ)q

≤ m1em2q

e(m2+δ)q

= m1e−δq.

But the Borel–Cantelli lemma gives that for almost every w ∈ Ω there is a random
number q0 = q0(w) ∈ Z in a manner that when q ≥ q0, then

sup
q−1≤t≤q

|z(t)|2 ≤ e(m2+δ)q,

which implies

lim
t→∞

sup
1
t

log|z(t)| ≤ m2 + δ

2

= 2a2 − 2a1 + 1 + b1(2a5 − 2a3 + 3) + 4b3a5 +
δ

2
,

as δ is arbitrary and letting α = 2a2 − 2a1 + 1 + b1(2a5 − 2a3 + 3) + 4b3a5, we can con-
clude that

α ≥ lim
t→∞

sup
1
t

log|z(t)|.

The proof stands completed.

The lemma above expresses that the second moment of the Lyapunov exponent,
as defined in [27] as limt→∞ sup 1

t log |z(t)|, is bounded above by α.

6. Conclusions

Several stochastic functional differential equations (SFDEs) in financial mathematics
do not hold the standard Lipschitz assumption such as the Cox–Ingersoll–Ross, Heston
and Ait–Sahalia models. In this article, some useful monotone-type conditions have been
introduced. We have proved that any two solutions of SFDEs in the G-framework under
distinct initial conditions are convergent. The solutions are mean square bounded. The L2

G
and exponential estimates have been calculated. We anticipate that the findings presented
in this article will offer valuable insights into the analysis of equations, even when not
under the constraints of standard assumptions. This contribution is poised to have a
substantial positive impact on the examination of various unresolved inquiries, including
the investigation into the existence, uniqueness, convergence and stability of solutions for
backward and forward stochastic dynamic systems driven by G-Brownian motion with
conditions of a monotone nature.
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