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Abstract: “Linearly many faults” is a phenomenon observed by Cheng and Lipták in which a
specific structure emerges when a graph is disconnected and often occurs in various interconnection
networks. This phenomenon means that if a certain number of vertices or edges are deleted from
a graph, the remaining part either stays connected or breaks into one large component along with
smaller components with just a few vertices. This phenomenon can be observed in many types of
graphs and has important implications for network analysis and optimization. In this paper, we
first validate the phenomenon of linearly many faults for surviving graph of a burnt pancake graph
BPn when removing any edge subset with a size of approximately six times λ(BPn). For graph G,
the ℓ-component edge connectivity denoted as λℓ(G) (resp., the ℓ-extra edge connectivity denoted
as λ(ℓ)(G)) is the cardinality of a minimum edge subset S such that G − S is disconnected and has
at least ℓ components (resp., each component of G − S has at least ℓ+ 1 vertices). Both λℓ(G) and
eλ(ℓ)(G) are essential metrics for network reliability assessment. Specifically, from the property of
“linearly many faults”, we may further prove that λ5(BPn) = λ(3)(BPn) + 3 = 4n − 3 for n ⩾ 5;
λ6(BPn) = λ(4)(BPn) + 4 = 5n − 4 and λ7(BPn) = λ(5)(BPn) + 5 = 6n − 5 for n ⩾ 6.

Keywords: burnt pancake graph; component edge connectivity; extra edge connectivity; linearly
many faults; conditional connectivity

MSC: 05C40; 05C75; 68R10

1. Introduction

Investigating interconnection networks and their intrinsic properties is crucial for
developing efficient parallel and distributed computer systems. A simple undirected graph
represents the underlying topology of such a system called an interconnection network,
where vertices represent a processor, and edges represent communication links between
processors. Therefore, a well-structured network topology can lead to higher benefits for
the system operation, including fault-tolerant data transmission and system reliability. For
convenience, the terms graphs and networks are used interchangeably.

1.1. Background

It is almost impossible to design a multiprocessor system without defects. Connectivity
κ(G) and edge connectivity λ(G) are used to adjudicate a network’s reliability and fault
tolerance. Usually, a fundamental property of an interconnection network is that it must
possess regularity (i.e., every vertex in the network has the same degree). In particular, it
is better if it meets the maximal connectivity (i.e., the connectivity equals the regularity of
the graph). It is interesting to think about what would happen if we were to remove more
than n vertices or edges from an n-regular graph. In such cases, two possible scenarios
could arise. Either the resulting graph would remain connected, or it would split into
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several components, with the smaller component containing just a singleton. Further, one
may wonder what exactly would happen if about 2n, 3n, 4n, 5n, . . . or more vertices or
edges were further removed. When multiple failures occur at the same time and the graph
becomes disconnected, the best-case scenario is when a large component containing most
of the remaining vertices is retained, along with some smaller components. This way, the
subnetwork represented by the large component can continue to function effectively. In
fact, this phenomenon of a disconnected graph caused by failures was first discovered
in the pioneering work of Yang et al. [1]. Later, Cheng and Lipt’ak [2] popularized this
concept and formally called this phenomenon the “linear many faults” property. Since
then, this property has attracted much attention in the research for other networks, e.g.,
Cayley graphs generated by transposition trees [2], 2-tree [3], transposition triangle free
unicyclic graphs [4], (n, k)-star graphs [5], arrangement graphs [6], augmented cubes [7],
and dual-cube-like networks [8]. Mainly, this property can export network metrics related to
fault tolerance [9–12].

Regarding Cayley graphs generated by transposition trees, we let Γ be a finite group
and S a subset of Γ. The Cayley digraph of Γ generated by S, denoted by Cay(Γ, S), is digraph
with vertex set Γ and arc set {(γ, γs) | γ ∈ Γ and s ∈ S}. If S does not include the identity
and S = S−1 = {s−1 | s ∈ S}, then Cay(Γ, S) is an undirected simple graph. We let
[n] = {1, 2, . . . , n}, Sym(n) be the symmetric group on [n], and T be a set of transpositions
of Sym(n). Then, Cay(Sym(n), T) is called the Cayley graphs generated by transposition tree
T if G(T) is a tree with the vertex set [n] such that edge uv ∈ E(G(T)) if and only if the
corresponding transposition (uv) ∈ T.

To better understand the reliability of networks, Harary [13] proposed a concept
called conditional connectivity which involves attaching certain conditions to connected
components. Additionally, Fábrega and Fiol [14] introduced two generalizations of classical
connectivity, namely extra connectivity and extra edge connectivity, which help to ensure
the scale of each component. Later on, Sampathkumar [15] and Chartrand et al. [16]
independently introduced a generalization of classical (edge) connectivity regarding the
number of components for disconnected graphs, the former called general connectivity and
the latter called generalized connectivity. Henceforth, we adopt appropriate terms called
component connectivity and component edge connectivity, suggested by Hsu et al. [17] and
Zhao et al. [18], respectively. For the recent results of interconnection networks, please
refer to [19–23] for extra (edge) connectivity, [24–29] for component (edge) connectivity,
and [12,30–32] for relationship between these two kinds of (edge) connectivity. In addition,
for research on connectivity related to diverse graph indices (such as the Wiener index, the
Zagreb index, the Randic index, etc.) with fuzzy information and their applications, please
refer to [33–36].

This paper investigates the “linear many faults” property on a burnt pancake graph
BPn, which is the Cayley graph of the group of signed permutations generated by prefix
reversals and defined by Gates and Papadimitriou in 1979 [37]. BPn attracts the attention
of researchers mainly because of another accompanying interesting definition called the
pancake graph, which refers to the mathematic puzzle of sorting a pile of unordered pancakes
in the size order. In this case, a spatula could be inserted anywhere in the pancake stack
to flip all the pancakes above it. The minimum number of flips required to sort the given
pancakes is called the pancake number. Hence, the operation of flips is called the prefix
reversal when we treat the stack of pancakes as a sequence of symbols, and acquiring
the pancake number is equal to obtaining the diameter of the pancake graph. Then, BPn
introduces the change in positive and negative signs, making this question more interesting.
However, there has yet to be a general solution to the diameter problem of these two classes
of graphs so far [38].

For burnt pancake graphs, the earliest research mainly pursued their diameters, while
the current research focuses on exploring fault tolerance [39,40] and diagnosis [40,41]. In
addition, many diverse connectivities have been investigated in the literature, including
spanning connectivity [42], structure connectivity [43], neighbor connectivity [44,45], and
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component connectivity [25,28]. Following the direction of probing connectivity, this paper
first proves that when removing any edge subset with a size of approximately six times
λ(BPn), the surviving graph possesses the “linearly many faults” property. According to
this characteristic, we obtain component edge connectivity and extra edge connectivity
of BPn for certain dimensions n, extending the results of [30]. Specifically, we prove that
λ5(BPn) = λ(3)(BPn) + 3 = 4n − 3 for n ⩾ 5; λ6(BPn) = λ(4)(BPn) + 4 = 5n − 4 and
λ7(BPn) = λ(5)(BPn) + 5 = 6n − 5 for n ⩾ 6.

1.2. Organization

Section 2 introduces definitions and necessary terminologies and notations. Also,
burnt pancake graphs and related properties are given. Section 3 shows the existence of
the “linearly many faults” property for the surviving graph of BPn when the removal of an
edge subset with a size of approximately six times λ(BPn). Section 4 obtains some relations
between component edge connectivity and extra edge connectivity of BPn through the
derived property. Finally, we add concluding remarks in Section 5.

2. Preliminaries
2.1. Definitions and Terminologies

Let G = (V(G), E(G)) be a graph. Two vertices u and v are adjacent if they are joined
by an edge, where u and v are called neighbors to each other. For vertex u ∈ V(G), let NG(u)
be the set of neighbors of u in G. For U ⊆ V(G), the open neighborhood of U in G is defined
as NG(U) = ∪u∈U NG(u)− U. The edge neighborhood of U in G, denoted as NE(G)(U) (or
NE(U)), is the set of edges incident with at least one vertex of U in G. Also, denote G[U]
the subgraph of G induced by U. For two disjoint subgraphs (or vertex sets) H1 and H2, let
E(H1, H2) be the set of edges with one end in H1 and the other in H2. A cycle (resp., path)
of length k is called a k-cycle (resp., k-path), denoted by Ck (resp., Pk).

Let G be a graph. The connectivity (resp., edge connectivity) of G, denoted by κ(G)
(resp., λ(G)), is the minimum number of vertices (resp., edges) that need to be removed to
disconnect G or become a trivial graph. For S ⊆ V(G) (resp., S ⊆ E(G)), let G − S be the
graph that removes vertices (resp., edges) of S from G. Particularly, S is a vertex-cut (resp.,
edge-cut) of G provided G − S is disconnected. In G − S, the component with the largest
number of vertices is called the large component, and a component that is not the largest one
is called the smaller component.

Graph G is super h-vertex-connected (resp., super h-edge-connected) of order q if, after
deleting at most h vertices (resp., h edges), the resulting graph is either connected or has
one large component along with smaller components containing totally at most q vertices.
In other words, the resulting graph has a component of size at least |V(G − F)| − q with
|F| ⩽ h. The following result is helpful throughout the paper.

Proposition 1 ([9]). Let q ⩾ 1 be an integer. If a connected graph G with at least max{m + 2q +
4, 3q + 1} vertices is super-m-vertex-connected of order q, then G is super-m-edge-connected of
order q.

Definition 1 (see [17]). Let G be a connected graph and F ⊂ E(G). If G − F is disconnected and
has at least ℓ components, then F is called an ℓ-component edge-cut. The ℓ-component edge
connectivity of G, denoted by λℓ(G), is the cardinality of a minimum ℓ-component edge-cut of G.
Obviously, λℓ+1(G) ⩾ λℓ(G) and λ2(G) = λ(G) for every positive integer ℓ.

Definition 2 (see [14]). Let G be a connected graph and F ⊂ E(G). If G − F is disconnected
and every component of G − F has at least h + 1 vertices, then F is called an h-extra edge-cut.
The h-extra edge connectivity of G, denoted by λ(h)(G), is the cardinality of a minimum h-extra
edge-cut, if it exists. Obviously, λ(h+1)(G) ⩾ λ(h)(G) and λ(0)(G) = λ(G).
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Lemma 1 (see [30]). Let H be a connected graph and k < |V(H)|/2 be an integer. Let

X∗ = arg min
X⊆V(H)

{|E(X, H − X)| : |X| = k, H[X] and H − X are connected subgraphs},

h = |E(X∗, H − X∗)|, and ℓ = |E(H[X∗])|. If H fulfills the following:

(i) For F ⊆ E(H) with |F| ⩽ h − 1, H − F has a large component along with small components
containing totally at most k − 1 vertices;

(ii) For F′ ⊆ E(H) with |F′| ⩽ h + ℓ− 1, H − F′ has at most k components;

then λk+1(H) = h + ℓ = λ(k−1)(H) + ℓ.

2.2. Burnt Pancake Graphs BPn

We put a negative sign on the top of a symbol for notational convenience, e.g., k = −k.
We let [n] = {1, 2, . . . , n} and ⟨n⟩ = [n] ∪ {k : k ∈ [n]}. A signed permutation of [n] is an
permutation x1x2 · · · xn of ⟨n⟩ such that |x1||x2| · · · |xn| (each element takes the absolute
value) forms a permutation of [n]. For signed permutation x = x1x2 · · · xi · · · xn of ⟨n⟩ and
integer i ∈ [n], the ith prefix reversal of x is defined by xi = xixi−1 · · · x1xi+1 · · · xn.

Definition 3 (see [37]). An n-regular graph BPn with n!2n vertices is called the n-dimensional
burnt pancake network if every vertex of BPn has a unique label from the signed permutation of
⟨n⟩ such that uv ∈ E(BPn) if and only if ui = v for i ∈ [n]. The edge uv is called an i-dimensional
edge and u is called the i-neighbor of v, and vice versa.

Figure 1 depicts BPn for all n ∈ [3], where we use different types of line to draw
distinct dimensional edges. Clearly, every vertex of BPn has a unique k-neighbor for k ∈ [n].
By definition, BPn is decomposed into 2n vertex-disjoint subgraphs BPk

n for k ∈ ⟨n⟩ such
that every vertex in a subgraph fixes the symbol k in the rightmost position. Clearly, BPk

n is
isomorphic to BPn−1. An external edge of BPn is one whose two ends are in distinct BPk

ns.
For u ∈ V(BPi

n), the unique neighbor outside BPk
n is called the external neighbor of u. Indeed,

an external edge is an n-dimensional edge. Also, Ej,k(BPn) denotes the set of edges between

BPj
n and BPj

n for j, k ∈ ⟨n⟩ with j ̸= k.

1 1
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Figure 1. Burnt pancake graphs of small dimensions.

Lemma 2 (see [39,42,46]). For BPn, the following properties hold:
(1) BPn is an n-regular graph with n × 2n−1 × n! edges. |Ej,k(BPn)| = 2n−2 × (n − 2)! if j ̸= k,

and |Ej,k(BPn)| = 0.
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(2) For n ⩾ 2, κ(BPn) = λ(BPn) = n.

(3) For n ⩾ 2, the girth of BPn is g(BPn) = 8.

Lemma 3 (see [40,41]). For n ⩾ 4, we let F be a vertex-cut of BPn. The following properties hold:

(1) If |F| ⩽ 2n − 2, BPn − F has two components, one of which is a singleton or an edge.
Furthermore, if the small component is an edge, then F is the neighborhood of this edge and
|F| = 2n − 2.

(2) If |F| ⩽ 3n − 5, BPn − F has a large component along with smaller components containing
totally at most two vertices.

(3) If |F| ⩽ 4n − 7, BPn − F has a large component along with smaller components containing
totally at most three vertices.

Lemma 4 (see [28]). For n ⩾ 5, we let F be a vertex-cut of BPn. If |F| ⩽ 5n − 9, BPn − F
contains a large component along with smaller components containing totally at most four vertices.

Lemma 5. For n ⩾ 4, we let F be an edge-cut of BPn. The following properties hold:

(1) If |F| ⩽ 2n − 2, BPn − F has two components, one of which is a singleton or an edge.
Furthermore, if the small component is an edge, then F is the neighborhood of this edge and
|F| = 2n − 2.

(2) If |F| ⩽ 3n − 5, BPn − F has a large component along with smaller components containing
totally at most two vertices.

(3) If |F| ⩽ 4n − 7, BPn − F has a large component along with smaller components containing
totally at most three vertices.

Proof. By Lemma 3, BPn is super-(2n − 3)-vertex-connected of order 1, (3n − 5)-vertex-
connected of order 2, and (4n − 7)-vertex-connected of order 3, respectively. We note
that |V(BPn)| = n!2n > max{(2n − 3) + 2 × 1 + 4, 3 × 1 + 1} (resp., n!2n > max{(3n −
5) + 2 × 2 + 4, 3 × 2 + 1} and n!2n > max{(4n − 7) + 2 × 3 + 4, 3 × 3 + 1}) for n ≥ 4. By
Proposition 1, BPn is super-(2n − 3)-edge-connected of order 1, (3n − 5)-edge-connected of
order 2, and (4n − 7)-edge-connected of order 3, respectively. Thus, the lemma follows.

Lemma 6. For n ⩾ 5, we let F be an edge-cut of BPn. If |F| ⩽ 5n − 9, BPn − F has a large
component along with smaller components containing totally at most four vertices.

Proof. By Lemma 4, BPn is super-(5n − 9)-vertex-connected of order 4. We note that
|V(BPn)| = n!2n > max{(5n − 9) + 2 × 4 + 4, 3 × 4 + 1} = max{5n + 3, 13} for n ≥ 5. By
Proposition 1, BPn is super-(5n − 9)-edge-connected of order 4, and the result holds.

3. Linearly Many Faults in Burnt Pancake Graphs

In this section, we focus on the linearly many faults in burnt pancake graphs.

Lemma 7. For BPn with n ⩾ 4 and X ⊂ V(BPn), if |X| = 4, then |E(X, BPn − X)| ⩾ 4n − 6
and |NE(BPn)(X)| ⩾ 4n − 3.

Proof. Let X = {u, v, x, y}. Note that BPn has no k-cycle for k ⩽ 4. By Lemma 2, κ(BPn) =
λ(BPn) = n and g(BPn) = 8.

If BPn[X] contains four singletons, then |E(X, BPn − X)| = |NE(BPn)(X)| = 4n.
If BPn[X] contains two singletons and an edge, then |E(X, BPn − X)| = 2n + 2(n −

1) = 4n − 2 and |NE(BPn)(X)| = 4n − 2 + 1 = 4n − 1.
If BPn[X] contains (i) two edges or (ii) a 2-path and a singleton, then |E(X, BPn − X)| =

2(n − 1) + 2(n − 1) = 4n − 4 and |NE(BPn)(X)| = 4n − 4 + 2 = 4n − 2.
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If BPn[X] contains (i) a 3-path or (ii) a graph isomorphic to K1,3, then |E(X, BPn −X)| =
2(n − 1) + 2(n − 2) = 4n − 6 and |NE(BPn)(X)| = 4n − 6 + 3 = 4n − 3.

Table 1 lists all cases of BPn[X]. Hence, |E(X, BPn − X)| ⩾ 4n − 6 and |NE(BPn)(X)| ⩾
4n − 3.

Table 1. All cases of BPn[X] for X = {x, y, u, v}.

BPn[X] E(X, BPn − X) NE(BPn)(X)

1 four singletons 4n 4n

2 an edge and two singletons 4n − 2 4n − 1

3 a 2-path and a singleton 4n − 4 4n − 2

4 two edges 4n − 4 4n − 2

5 a graph isomorphic to K1,3 4n − 6 4n − 3

6 a 3-path 4n − 6 4n − 3

Lemma 8. For BPn with n ⩾ 4 and X ⊂ V(BPn), if |X| = 5, then |E(X, BPn − X)| ⩾ 5n − 8
and |NE(BPn)(X)| ⩾ 5n − 4.

Proof. Let X = {x, y, z, u, v}. Note that BPn has no k-cycle for k ⩽ 5. By Lemma 2,
κ(BPn) = λ(BPn) = n and g(BPn) = 8.

If BPn[X] contains five singletons, then |E(X, BPn − X)| = |NE(BPn)(X)| = 5n.
If BPn[X] contains three singletons and an edge, then |E(X, BPn − X)| = 3n + 2(n −

1) = 5n − 2 and |NE(BPn)(X)| = 5n − 2 + 1 = 5n − 1.
If BPn[X] contains (i) two edges and a singleton or (ii) a 2-path and two singletons,

then |E(X, BPn − X)| = 2(n − 1) + 2(n − 1) + n = 5n − 4 (resp., |E(X, BPn − X)| = 2(n −
1) + (n − 2) + 2n = 5n − 4) and |NE(BPn)(X)| = 5n − 4 + 2 = 5n − 2.

If BPn[X] contains (i) a 2-path and an edge, (ii) a 3-path and a singleton, or (iii) a graph
isomorphic to K1,3 and a singleton, then |E(X, BPn − X)| = 2(n − 1) + 2(n − 1) + n − 2 =
5n − 6 and |NE(BPn)(X)| = 5n − 6 + 3 = 5n − 3.

If BPn[X] contains (i) a 4-path, (ii) a graph isomorphic to K1,4, or (iii) a tree with
five vertices, then |E(X, BPn − X)| = 2(n − 1) + 3(n − 2) = 5n − 8 and |NE(BPn)(X)| =
5n − 8 + 4 = 5n − 4.

All cases of the induced subgraph BPn[X] are listed in Table 2 (see Figure 2a–c). Hence,
|E(X, BPn − X)| ⩾ 5n − 8 and |NE(BPn)(X)| ⩾ 5n − 4.

Table 2. All cases of BPn[X] for X = {x, y, z, u, v}.

BPn[X] E(X, BPn − X) NE(BPn)(X)

1 five singletons 5n 5n

2 an edge and three singletons 5n − 2 5n − 1

3 two edges and a singleton 5n − 4 5n − 2

4 a 2-path and two singletons 5n − 4 5n − 2

5 a 2-path and an edge 5n − 6 5n − 3

6 a 3-path and a singleton 5n − 6 5n − 3

7 a graph isomorphic to K1,3 and a singleton 5n − 6 5n − 3

8 a 4-path, Figure 2a 5n − 8 5n − 4

9 a graph isomorphic to K1,4, Figure 2c 5n − 8 5n − 4

10 a tree with 5 vertices, Figure 2b 5n − 8 5n − 4
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Lemma 9. For BPn with n ⩾ 4 and X ⊂ V(BPn), if |X| = 6, then |E(X, BPn − X)| ⩾ 6n − 10
and |NE(BPn)(X)| ⩾ 6n − 5.

Figure 2. (a–c) Three trees with five vertices.

Proof. Let X = {x, y, z, u, v, w}. Note that BPn has no k-cycle for k ⩽ 6. By Lemma 2,
κ(BPn) = λ(BPn) = n and g(BPn) = 8.

If BPn[X] contains six singletons, then |E(X, BPn − X)| = |NE(BPn)(X)| = 6n.
If BPn[X] contains four singletons and an edge, then |E(X, BPn − X)| = 4n + 2(n −

1) = 6n − 2 and |NE(BPn)(X)| = 6n − 2 + 1 = 6n − 1.
If BPn[X] contains (i) two edges and two singleton or (ii) a 2-path and three singletons,

then |E(X, BPn − X)| = 2(n − 1) + 2(n − 1) + 2n = 6n − 4 (resp., |E(X, BPn − X)| =
2(n − 1) + (n − 2) + 3n = 6n − 4) and |NE(BPn)(X)| = 6n − 4 + 2 = 6n − 2.

If BPn[X] contains (i) a 3-path and two singletons, (ii) three edges, or (iii) an edge, a
2-path and a singleton, then |E(X, BPn − X)| = 2(n − 1) + 2(n − 2) + 2n = 6n − 6 and
|NE(BPn)(X)| = 6n − 6 + 3 = 6n − 3.

If BPn[X] contains (i) a singleton and a tree with five vertices Figure 2a–c, (ii) an edge
and a 3-path or a graph isomorphic to K1,3, or (iii) two 2-paths, then |E(X, BPn − X)| =
2(n − 1) + 2(n − 1) + 2(n − 2) = 6n − 8 and |NE(BPn)(X)| = 6n − 8 + 4 = 6n − 4.

If BPn[X] contains (i) a 5-path, (ii) a graph isomorphic to K1,5, or (iii) a tree with 6
vertices, isomorphic to one of Figure 3b–d, then |E(X, BPn − X)| = 2(n − 1) + 4(n − 2) =
6n − 10 and |NE(BPn)(X)| = 6n − 10 + 5 = 5n − 5.

All cases of the induced subgraph BPn[X] are listed in Table 3 (see Figure 3). Hence,
|E(X, BPn − X)| ⩾ 6n − 10 and |NE(BPn)(X)| ⩾ 6n − 5.

Table 3. All cases of BPn[X] for X = {x, y, z, u, v, w}.

BPn[X] E(X, BPn − X) NE(BPn)(X)

1 six singletons 6n 6n

2 an edge and four singletons 6n − 2 6n − 1

3 a 2-path and three singletons 6n − 4 6n − 2

4 a 3-path and two singletons 6n − 6 6n − 3

5 two singletons and two edges 6n − 4 6n − 2

6 a 4-path and a singleton 6n − 8 6n − 4

7 a singleton and a graph isomorphic to K1,4 6n − 8 6n − 4

8 a singleton and a tree with 5 vertices, Figure 2b 6n − 8 6n − 4

9 three edges 6n − 6 6n − 3

10 an edge and 3-path 6n − 8 6n − 4

11 an edge and a graph isomorphic to K1,3 6n − 8 6n − 4

12 an edge, a singleton and 2-path 6n − 6 6n − 3

13 two 2-paths 6n − 8 6n − 4

14 a 5-path, Figure 3a 6n − 10 6n − 5

15 a graph isomorphic to K1,5, Figure 3f 6n − 10 6n − 5

16 a tree with 6 vertices, isomorphic to one of 6n − 10 6n − 5Figure 3b–d
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Figure 3. (a–f) Six trees with six vertices.

Lemma 10. For BPn with n ⩾ 4 and W ⊂ V(BPn), if |W| = 7, then |E(W, BPn − W)| ⩾
7n − 12 and |NE(BPn)(W)| ⩾ 7n − 6.

Proof. By Lemma 2, we have g(BPn) = 8. We let H be a connected subgraph of BPn that
does not contain a 6-path. Then, any vertex x ∈ V(BPn) \ V(H) can connect to at most
one vertex in H; otherwise, the subgraph induced by V(H) ∪ {x} produces a cycle of
length of less than 8. Particularly, we consider H a component of BPn[X], where X is a
subset of V(BPn) with |X| = 6 shown in Table 3. We let t be the number of components
of BPn[X] and let W = X ∪ {x}, where x ∈ V(BPn) \ X. Clearly, |E(x, BPn − {x})| =
|NE(BPn)(x)| = n and, from the above reasoning, x may connect to at most t vertices of X
in BPn, i.e., |E({x}, X)| ⩽ t. By checking all sixteen cases in Table 3, we have |E(X, BPn −
X)| − 2|E({x}, X)| ⩾ |E(X, BPn − X)| − 2t ⩾ 6n − 12 and |NE(BPn)(X)| − |E({x}, X)| ⩾
|NE(BPn)(X)| − t ⩾ 6n − 6. Thus,

|E(W, BPn − W)| = |E(X ∪ {x}, BPn − (X ∪ {x}))|
= |E(x, BPn − {x})|+ |E(U, BPn − X)| − 2|E({x}, X)|
⩾ n + (6n − 12)

= 7n − 12

and

|NE(BPn)(W)| = |NE(BPn)(X ∪ {x})|
= |NE(BPn)(x)|+ |NE(BPn)(X)| − |E({x}, X)|
⩾ n + (6n − 6)

= 7n − 6,

as desired.

We recall that BPn is decomposed into 2n vertex-disjoint subgraphs BPi
n for i ∈ ⟨n⟩ by

fixing symbol i in the rightmost position for each vertex where each BPi
n is isomorphic to

BPn−1. Henceforth, we consider F to be an edge-cut of BPn and let Fi = F ∩ E(BPi
n) and

fi = |Fi| for each i ∈ ⟨n⟩. We let Fc = F − ∑
i∈⟨n⟩

Fi and fc = |Fc|. We let I = {i ∈ ⟨n⟩ : fi ⩾

n − 1} and J = ⟨n⟩ \ I. Also, we define

FI =
⋃
i∈I

Fi, FJ =
⋃
j∈J

Fj, f I = |FI |, f J = |FJ |, and BPJ
n = BPn

[ ⋃
j∈J

V(BPj
n)
]
.

Theorem 1. For n ⩾ 5, we let BPn be the n-dimensional burnt pancake graph and F ⊂ E(BPn)
be an arbitrary edge set. If |F| ⩽ 6n − 11, then BPn − F either is connected to or contains a large
component along with smaller components containing totally at most five vertices.
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Proof. We suppose that BPn − F is disconnected and let M be the union of smaller com-
ponents of BPn − F. By the definition of M, it suffices to show that |V(M)| ⩽ 5. Since
|F| ⩽ 6n − 11 and fi ⩾ n − 1 for i ∈ I, we have |I| ⩽ 5. Then, |J| = 2n − |I| ⩾ 2n − 5 ⩾ 5
when n ⩾ 5. For each j ∈ J, as each subgraph BPj

n is isomorphic to BPn−1, by Lemma 2(2),
we have f j < n − 1 = λ(BPn−1), and thus BPj

n − Fj is connected. We claim that the
following remark holds.

Remark 1. BPJ
n − FJ is connected.

For j, k ∈ J and j ̸= k, by Lemma 2(1), we have |Ej,k(BPn)| = (n− 2)!× 2n−2 > 6n− 11

when n ⩾ 5. Thus, BPj
n − Fj is connected with BPk

n − Fk through an external edge. Moreover,

since |J| ⩾ 5, if k, k ∈ J, there exists j ∈ J \ {k, k} such that BPj
n − Fj is connected to each of

BPk
n − Fk and BPk

n − Fk through external edges. Therefore, BPJ
n − FJ is connected.

We prove the theorem by induction on n, and the proof is separated into two parts:
Part I for base case (n = 5) and Part II for induction step (n ⩾ 6).

For base case, if n = 5, then |F| ⩽ 6n − 11 = 19. We note that BP5 can be decomposed
into 10 vertex-disjoint subgraphs, denoted by BPi

5, by fixing symbol i in the rightmost
position of each vertex for i ∈ ⟨5⟩. Obviously, BPi

5 is isomorphic to BP4. As I = {i ∈
⟨5⟩ : fi ⩾ n − 1 = 4}, we have |I| ⩽ 4; otherwise, |F| ⩾ (n − 1)|I| ⩾ 4 × 5 > 19. By
Remark 1, BPJ

5 − FJ is connected. If |I| = 0, then BP5 − F = BPJ
5 − FJ is connected; the

result holds. We now consider 1 ⩽ |I| ⩽ 4. For each i ∈ I, we let Si ⊂ V(BPi
n) be the

set of vertices that do not belong to the large component of BPi
n − Fi. We consider the

following cases.
Case I-1. |I| = 1. We let I = {i}. For 4 ⩽ fi ⩽ 11 = 5(n − 1) − 9, if BPi

5 − Fi is
disconnected, by Lemma 6, it has a large component and is with |Si| ⩽ 4. Since every
vertex of BPi

5 has an external edge, there are 2n−1(n − 1)! = 4! × 24 edges between BPi
5 and

BPJ
5 − FJ . Also, since 4! × 24 > 19 ⩾ |F|, the large component of BPi

5 − Fi is connected to
BPJ

5 − FJ . This implies that |V(M)| ⩽ |Si| ⩽ 4 (see Figure 4a).

BP J
5 − FJ

BP i
5 − Fi

large
component

(a) (b)

BP J
5 − FJ

BP i
5 − Fi

large
component

Figure 4. A schematic concept to illustrate the proof of Case I-1: (a) |V(M)| ⩽ 4 when 4 ⩽ fi ⩽ 11;
(b) |V(M)| ⩽ 5 when 12 ⩽ fi ⩽ 19.

It remains to consider 12 ⩽ fi ⩽ 19. In this case, we have fc ⩽ |F| − fi ⩽ 19 − 12 = 7.
Since every vertex of M has exactly one external neighbor, we have |V(M)| ⩽ fc ⩽ 7.
If |V(M)| = 6, by Lemma 9, |F| ⩾ |E(V(M), BP5 − V(M))| ⩾ 6n − 10 = 20 > 19, a
contradiction. Similarly, if |V(M)| = 7, by Lemma 10, |F| ⩾ |E(V(M), BPn − V(M))| ⩾
7n − 12 = 23 > 19, a contradiction. This implies that |V(M)| ⩽ 5 (see Figure 4b).

Case I-2. |I| = 2. We let I = {i, j} and, without loss of generality, we suppose fi ⩽ f j.
Since |F| ⩽ 19, we have 4 ⩽ fi ⩽ 9; otherwise, fi + f j ⩾ 2 fi ⩾ 20. We first consider
4 ⩽ f j ⩽ 9. For each ℓ ∈ I, as fℓ ⩽ 9 = 4(n − 1) − 7, by Lemma 5(3), if BPℓ

5 − Fℓ is
disconnected, it has a large component and is with |Sℓ| ⩽ 3. Thus, |V(M)| ⩽ |Si|+ |Sj| ⩽ 6.
A proof similar to Case 1 shows that the large component of BPℓ

n − Fℓ is connected to



Mathematics 2024, 12, 268 10 of 18

BPJ
n − FJ . If |V(M)| = 6, by Lemma 9, |F| ⩾ |E(V(M), BPn −V(M))| ⩾ 6n − 10 = 20 > 19,

a contradiction. This implies that |V(M)| ⩽ 5.
It remains to consider 10 ⩽ f j ⩽ |F| − fi ⩽ 19 − 4 = 15. In this situation, fc ⩽

|F| − fi − f j ⩽ 19 − 4 − 10 = 5, which means that at most five faulty external edges. Since
every vertex in M has exactly one external neighbor, we have |V(M)| ⩽ fc ⩽ 5.

Case I-3. |I| = 3. We let I = {i, j, k}. Without loss of generality, we suppose
fi ⩽ f j ⩽ fk. Since |F| ⩽ 19, we have 4 ⩽ fi ⩽ f j ⩽ fk ⩽ 19 − 2 × 4 = 11. If f j ⩾ 8,
then |F| = fi + f j + fk ⩾ 4 + 2 × 8 = 20, a contradiction. Thus, 4 ⩽ fi ⩽ f j ⩽ 7.
We first consider 4 ⩽ fi ⩽ f j ⩽ fk ⩽ 7 = 3(n − 1) − 5. For each ℓ ∈ I, if BPℓ

n − Fℓ
is disconnected, by Lemma 5(2), it has large components and is with |Sℓ| ⩽ 2. Thus,
|V(M)| ⩽ |Si|+ |Sj|+ |Sk| ⩽ 6. A proof similar to Case 1 shows that the large component

of BPℓ
n − Fℓ is connected to BPJ

n − FJ . If |V(M)| = 6, by Lemma 9, |F| ⩾ |E(V(M), BPn −
V(M))| ⩾ 6n − 10 = 20 > 19, a contradiction. This implies that |V(M)| ⩽ 5.

It remains to consider 8 ⩽ fk ⩽ 11. In this situation, fc ⩽ |F| − fi − f j − fk ⩽
19− 2× 4− 8 = 3, which means that at most three faulty external edges. Since every vertex
in M has exactly one external neighbor, we have |V(M)| ⩽ fc ⩽ 3.

Case I-4. |I| = 4. We let I = {i, j, k, m}. As fℓ ⩾ 4 for each ℓ ∈ I, we have fc ⩽
|F| − fi − f j − fk − fm ⩽ 19 − 4 × 4 = 3, which means that at most three faulty external
edges. Since every vertex in M has exactly one external neighbor, we have |V(M)| ⩽ fc ⩽ 3.

For induction step, we assume n ⩾ 6 and the result holds for BPn−1. That is, for each
i ∈ I, if |Fi| ⩽ 6(n − 1)− 11, then BPi

n − Fi either is connected or contains a large component
and smaller components containing totally at most five vertices. We let Si ⊂ V(BPi

n) be the
set of vertices that do not belong to the large component of BPi

n − Fi. Obviously, if |I| = 0,
then BPn − F = BPJ

n − FJ is connected and the result holds. We consider the following cases:
Case II-1. |I| = 1. We let I = {i}. There are two subcases depending on the range

of fi.
Case II-1.1. n − 1 ⩽ fi ⩽ 6n − 17.
Since BPi

n is isomorphic to BPn−1 and fi ⩽ 6n − 17 = 6(n − 1) − 11, by induction
hypothesis, we have |Si| ⩽ 5. Since every vertex of BPi

n has an external edge, there are
2n−1(n − 1)! edges between BPi

n and BPJ
n − FJ . Also, since 2n−1(n − 1)! − |Si| ⩾ 2n−1(n −

1)! − 5 > 6n − 11 ⩾ |F| when n ⩾ 6, the large component of BPi
n − Fi is connected

to BPJ
n − FJ . As M is the union of smaller components of BPn − F, this implies that

|V(M)| ⩽ |Si| ⩽ 5.
Case II-1.2. 6n − 16 ⩽ fi ⩽ 6n − 11.
In this case, we have fc ⩽ |F| − fi ⩽ (6n − 11)− (6n − 16) = 5, which means that F

contains at most five faulty external edges. Since every vertex in M has exactly one external
neighbor, we have |V(M)| ⩽ fc ⩽ 5.

Case II-2. |I| = 2. We let I = {i, j} and, without loss of generality, we suppose
fi ⩽ f j. Since |F| ⩽ 6n − 11, we have n − 1 ⩽ fi ⩽ f j ⩽ (6n − 11)− (n − 1) = 5n − 10.
If fi ⩾ 4n − 11, then fi + f j ⩾ 2(4n − 11) = 8n − 22 > 6n − 11 ⩾ |F| for n ⩾ 6. Thus, it
requires that fi ⩽ 4n − 12. We consider the following two subcases.

Case II-2.1. n − 1 ⩽ f j ⩽ 4n − 11.
In this case, we have n − 1 ⩽ fi ⩽ f j ⩽ 4n − 11 = 4(n − 1)− 7. For each ℓ ∈ I, if

BPℓ
n − Fℓ is disconnected; by Lemma 5(3), it contains a large component and is with |Sℓ| ⩽ 3.

Then, via a proof similar to Case 1.1, we can show that the large component of BPℓ
n − Fℓ

is connected to BPJ
n − FJ . Thus, |V(M)| ⩽ |Si|+ |Sj| ⩽ 6. If |V(M)| = 6, by Lemma 9,

|F| ⩾ |E(V(M), BPn − V(M))| ⩾ 6n − 10, a contradiction. This implies that |V(M)| ⩽ 5.
Case II-2.2. 4n − 10 ⩽ f j ⩽ 5n − 10.
In this case, we have n − 1 ⩽ fi ⩽ min{(6n − 11)− (4n − 10), 4n − 12} = 2n − 1 <

4(n − 1) − 7 for n ⩾ 6. By Lemma 5(3), if BPi
n − Fi is disconnected, it contains a large

component and is with |Si| ⩽ 3. For 4n − 10 ⩽ f j ⩽ 5n − 14 = 5(n − 1)− 9, if BPj
n − Fj

is disconnected, by Lemma 6, it contains a large component and is with |Sj| ⩽ 4. Since
2n−1(n − 1)! − |Si| − |Sj| ⩾ 2n−1(n − 1)! − 7 > 6n − 11 ⩾ |F| when n ⩾ 6, the large
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component of BPℓ
n − Fℓ for ℓ ∈ {i, j} is connected to BPJ

n − FJ . Thus, |V(M)| ⩽ |Si|+ |Sj| ⩽
7. If |V(M)| = 6, by Lemma 9, |F| ⩾ |E(V(M), BPn − V(M))| ⩾ 6n − 10, a contradiction.
Similarly, if |V(M)| = 7, by Lemma 10, |F| ⩾ |E(V(M), BPn −V(M))| ⩾ 7n− 12 > 6n− 10
when n ⩾ 6, a contradiction. This implies that |V(M)| ⩽ 5.

It remains to consider 5n − 13 ⩽ f j ⩽ 5n − 10. In this situation, since |F| ⩽ 6n − 11
and fi ⩾ n − 1, it follows that fc ⩽ |F| − fi − f j = (6n − 11)− (n − 1)− (5n − 13) = 3.

Thus, at most three vertices in BPi
n ∪ BPj

n − (Fi ∪ Fj) cannot connect to BPJ
n − FJ in BPn − F,

i.e., |V(M)| ⩽ fc ⩽ 3.
Case II-3. |I| = 3. We let I = {i, j, k}. Without loss of generality, we suppose fi ⩽ f j ⩽

fk. Since |F| ⩽ 6n − 11, we have n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ (6n − 11)− 2(n − 1) = 4n − 9. If
f j ⩾ 3n − 7, then fi + f j + fk ⩾ (n − 1) + 2(3n − 7) = 7n − 15 > 6n − 11 ⩾ |F| for n ⩾ 6.
Thus, it requires that fi ⩽ f j ⩽ 3n − 8. We consider the following two subcases.

Case II-3.1. n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ 3n − 8 = 3(n − 1)− 5.
For each ℓ ∈ I, if BPℓ

n − Fℓ is disconnected, by Lemma 5(2), it contains a large compo-
nent and is with |Sℓ| ⩽ 2. Then, via a proof similar to Case 1.1, we can show that the large
component of BPℓ

n − Fℓ is connected to BPJ
n − FJ . Thus, |V(M)| ⩽ |Si|+ |Sj|+ |Sk| ⩽ 6. If

|V(M)| = 6, by Lemma 9, |F| ⩾ |E(V(M), BPn − V(M))| ⩾ 6n − 10, a contradiction. This
implies that |V(M)| ⩽ 5.

Case II-3.2. n − 1 ⩽ fi ⩽ f j ⩽ 3n − 8 < 3n − 7 ⩽ fk ⩽ 4n − 9
For each ℓ ∈ {i, j}, since n − 1 ⩽ fi ⩽ f j ⩽ 3n − 8 = 3(n − 1) − 5, if BPℓ

n − Fℓ is
disconnected, by Lemma 5(2), it contains a large component and is with |Sℓ| ⩽ 2. For 3n −
7 ⩽ fk ⩽ 4n − 11 = 4(n − 1)− 7, if BPk

n − Fk is disconnected, by Lemma 5(3), it contains a
large component and is with |Sk| ⩽ 3. Then, via a proof similar to Case 1.1, we can show that
the large component of BPℓ

n − Fℓ for ℓ ∈ {i, j, k} is connected to BPJ
n − FJ . Thus, |V(M)| ⩽

|Si|+ |Sj|+ |Sk| ⩽ 7. If |V(M)| = 6, by Lemma 9, |F| ⩾ |E(V(M), BPn −V(M))| ⩾ 6n− 10,
a contradiction. Similarly, if |V(M)| = 7, by Lemma 10, |F| ⩾ |E(V(M), BPn − V(M))| ⩾
7n − 12 > 6n − 10 when n ⩾ 6, a contradiction. This implies that |V(M)| ⩽ 5.

It remains to consider 4n − 10 ⩽ fk ⩽ 4n − 9. In this situation, since |F| ⩽ 6n − 11 and
f j ⩾ fi ⩾ n− 1, it follows that fc ⩽ |F| − fi − f j − fk ⩽ (6n− 11)− 2(n− 1)− (4n− 10) = 1.

Thus, at most one vertex in BPi
n ∪ BPj

n ∪ BPk
n − (Fi ∪ Fj ∪ Fk) cannot connect with BPJ

n − FJ
in BPn − F, i.e., |V(M)| ⩽ fc ⩽ 1.

Case II-4. |I| = 4. We let I = {i, j, k, m}. Without loss of generality, we suppose
fi ⩽ f j ⩽ fk ⩽ fm. Since |F| ⩽ 6n − 11, we have n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ fm ⩽ (6n −
11)− 3(n − 1) = 3n − 8. If fk ⩾ 2n − 4, then fi + f j + fk + fm ⩾ 2(n − 1) + 2(2n − 4) =
6n − 10 > 6n − 11 ⩾ |F| for n ⩾ 6. Thus, it requires that n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ 2n − 5. We
consider the following two subcases.

Case II-4.1. n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ fm ⩽ 2n − 5 < 2(n − 1)− 2.
For each ℓ ∈ I, if BPℓ

n − Fℓ is disconnected, by Lemma 5(1), it has two components,
one of which is a singleton, i.e., |Sℓ| = 1. A proof similar to Case 1.1 shows that the large
component of BPℓ

n − Fℓ is connected to BPJ
n − FJ . Clearly, |V(M)| ⩽ |Si| + |Sj| + |Sk| +

|Sm| ⩽ 4.
Case II-4.2. n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ 2n − 5 < 2n − 4 ⩽ fm ⩽ 3n − 8.
For each ℓ ∈ {i, j, k}, since n − 1 ⩽ fℓ ⩽ 2n − 5 < 2(n − 1) − 2, if BPℓ

n − Fℓ is
disconnected, by Lemma 5(1), it contains a large component and is with |Sℓ| = 1. Since
2n − 4 ⩽ fm ⩽ 3n − 8 = 3(n − 1) − 5, if BPm

n − Fm is disconnected, by Lemma 5(2), it
contains a large component and is with |Sm| ⩽ 2. A proof similar to Case 1.1 shows that
the large component of BPℓ

n − Fℓ for ℓ ∈ I is connected to BPJ
n − FJ . Thus, |V(M)| ⩽

|Si|+ |Sj|+ |Sk|+ |Sm| ⩽ 5.
Case II-5. |I| = 5. We let I = {i, j, k, m, p}. For each ℓ ∈ I, we let Sℓ ⊂ V(BPℓ

n) be the
set of vertices that do not belong to the large component of BPℓ

n − Fℓ. Since |F| ⩽ 6n − 11,
we have n − 1 ⩽ fℓ ⩽ (6n − 11) − 4(n − 1) = 2n − 7 < 2(n − 1) − 2 for n ⩾ 6. Since
fℓ ̸= 2(n − 1) − 2, if BPℓ

n − Fℓ is disconnected, by Lemma 5(1), it has two components,
one of which is a singleton, i.e., |Sℓ| = 1. A proof similar to Case 1.1 shows that the large
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component of BPℓ
n − Fℓ is connected to BPJ

n − FJ . Clearly, |V(M)| ⩽ |Si| + |Sj| + |Sk| +
|Sm|+ |Sp| ⩽ 5.

4. Applications to Extra Edge Connectivity and Component Edge Connectivity

As applications of Theorem 1, we determine the relation between λ(ℓ)(BPn) and
λℓ+2(BPn) for 3 ⩽ ℓ ⩽ 5.

4.1. Relation between λ(3)(BPn) and λ5(BPn)

Lemma 11. For n ⩾ 5, let BPn be the n-dimensional burnt pancake graph and F ⊂ E(BPn) be an
arbitrary edge set. If |F| ⩽ 4n − 4, then BPn − F has at most four components.

Proof. Note that |F| ⩽ 4n − 4 ⩽ 5n − 9 for n ⩾ 5. By Lemma 6, if BPn − F is disconnected,
it has a large component along with smaller components containing totally at most four
vertices. Suppose that BPn − S has five components, four of which are singletons. By
Lemma 7, isolating these four singletons requires the removal of at least 4n − 3 edges,
which contradicts that |F| ⩽ 4n − 4.

Theorem 2. λ5(BPn) = λ(3)(BPn) + 3 = 4n − 3 for n ⩾ 5.

Proof. Let s = 4 and S∗ = arg min
S⊆V(BPn)

{|E(S, G − S)| : |S| = s, BPn[S] and BPn − S are

connected subgraphs}. As |S∗| = 4 and BPn[S∗] is connected, observe from Table 1
that BPn[S∗] is a 3-path or a K1,3. By Lemma 7, let t = |E(S∗, G − S∗)| = 4n − 6 and
m = |E(BPn[S∗])| = 3. Let F be an edge-cut of BPn. By Lemma 5(3), if |F| ⩽ 4n − 7 =
(4n − 6)− 1 = t − 1, then BPn − F has a large component along with smaller components
containing totally at most s − 1 = 3 vertices. This fulfills the condition of Lemma 1(i). Also,
by Lemma 11, if |F| ⩽ 4n − 4 = (4n − 6) + 3 − 1 = t + m − 1, then BPn − F has at most
s = 4 components. This fulfills the condition of Lemma 1(ii). Therefore, by Lemma 1, have
λ4+1(BPn) = λ(4−1)(BPn) + m = t + m = (4n − 6) + 3 = 4n − 3 for n ⩾ 5.

4.2. Relation between λ(4)(BPn) and λ6(BPn)

Lemma 12. For n ⩾ 6, let BPn be the n-dimensional burnt pancake graph and F ⊂ E(BPn) be an
arbitrary edge set. If |F| ⩽ 5n − 5, then BPn − F has at most five components.

Proof. Note that |F| ⩽ 5n − 5 ⩽ 6n − 11 for n ⩾ 6. By Theorem 1, if BPn − F is dis-
connected, it has a large component and smaller components containing totally at most
five vertices. Suppose that BPn − S has six components, five of which are singletons. By
Lemma 8, isolating these five singletons requires the removal of at least 5n − 4 edges, which
contradicts that |F| ⩽ 5n − 5.

Theorem 3. λ6(BPn) = λ(4)(BPn) + 4 = 5n − 4 for n ⩾ 6.

Proof. Let s = 5 and S∗ = arg min
S⊆V(BPn)

{|E(S, G − S)| : |S| = s, BPn[S] and BPn − S are

connected subgraphs}. As |S∗| = 5 and BPn[S∗] is connected, observe from Table 2
that BPn[S∗] is a 4-path or a tree with 5 vertices (including K1,4). By Lemma 8, let t =
|E(S∗, G − S∗)| = 5n − 8 and m = |E(BPn[S∗])| = 4. Let F be an edge-cut of BPn. By
Lemma 6, if |F| ⩽ 5n − 9 = (5n − 8)− 1 = t − 1, then BPn − F has a large component and
smaller components containing totally at most s − 1 = 4 vertices. This fulfills the condition
of Lemma 1(i). Also, by Lemma 12, if |F| ⩽ 5n − 5 = (5n − 8) + 4 − 1 = t + m − 1, then
BPn − F has at most s = 5 components. This fulfills the condition of Lemma 1(ii). Therefore,
by Lemma 1, have λ5+1(BPn) = λ(5−1)(BPn) + m = t + m = (5n − 8) + 4 = 5n − 4 for
n ⩾ 6.
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4.3. Relation between λ(5)(BPn) and λ7(BPn)

Lemma 13. For n ⩾ 6, let BPn be the n-dimensional burnt pancake graph and F ⊂ E(BPn) be an
arbitrary edge set. If |F| ⩽ 6n − 6, then BPn − F has at most six components.

Proof. Let M be the union of smaller components of BPn − F and let c(M) be the such
number of components in M. By the definition of M, it suffices to show that c(M) ⩽ 5.
Since |F| ⩽ 6n − 6 and fi ⩾ n − 1 for i ∈ I, have |I| ⩽ 6. Then, |J| = 2n − |I| ⩾ 2n − 6 ⩾ 5
when n ⩾ 6. With reasoning similar to Remark 1 in the proof of Theorem 1, it is shown that
BPj

n − Fj is connected for each j ∈ J and the following remark is further obtained.

Remark 2. BPJ
n − FJ is connected.

Obviously, if |I| = 0, then BPn − F = BPJ
n − FJ is connected and the result holds. Now

consider 1 ⩽ |I| ⩽ 6. For each i ∈ I, let Si ⊂ V(BPi
n) be the set of vertices that do not

belong to the large component of BPi
n − Fi.

Case 1. |I| = 1. Let I = {i}. There are two subcases depending on the range of fi.
Case 1.1. n − 1 ⩽ fi ⩽ 6n − 17 = 6(n − 1)− 11.
Since BPi

n is isomorphic to BPn−1, by Theorem 1, BPi
n − Fi has a large component and

is with |Si| ⩽ 5. As every vertex of BPi
n has an external edge, there are 2n−1(n − 1)! edges

between BPi
n and BPJ

n − FJ . Also, since 2n−1(n − 1)! − 5 > 6n − 6 ⩾ |F| when n ⩾ 6, the
large component of BPi

n − Fi is connected to BPJ
n − FJ . This implies that c(M) ⩽ |V(M)| ⩽

|Si| ⩽ 5.
Case 1.2. 6n − 16 ⩽ fi ⩽ 6n − 6.
In this case, there is fc ⩽ |F| − fi ⩽ (6n − 6)− (6n − 16) = 10, which means that F

contains at most ten faulty external edges. Since every vertex in M has exactly one external
neighbor, there is |V(M)| ⩽ fc ⩽ 10. If |V(M)| ⩽ 5, it is clear that c(M) ⩽ |V(M)| ⩽ 5.
If |V(M)| = 6, by Lemma 9, |F| ⩾ |NE(BPn)(V(M))| ⩾ 6n − 5 > 6n − 6, a contradiction.
Similarly, if |V(M)| = 7, by Lemma 10, |F| ⩾ |NE(BPn)(V(M))| ⩾ 7n − 6 > 6n − 6, a
contradiction. Now deal with the situations for 8 ⩽ |V(M)| ⩽ 10 as follows.

Case 1.2.1. |V(M)| = 8. Let V(M) = V(M1)∪ {x}, where |V(M1)| = 7. By Lemma 10,
|NE(BPn)(V(M1))| ⩾ 7n − 6. Clearly, |NE(BPn)(x)| = n and x may connect to at most
7 vertices in M1, i.e., |E({x}, M1)| ⩽ 7. Thus,

|NE(BPn)(V(M))| = |NE(BPn)(V(M1))|+ |NE(BPn)(x)| − |E({x}, M1)|
⩾ (7n − 6) + n − 7 = 8n − 13 > 6n − 6 ⩾ |F|

when n ⩾ 6, a contradiction.
Case 1.2.2. |V(M)| = 9. Let V(M) = V(M1) ∪ {x}, where |V(M1)| = 8. By Case 1.2.1,

|NE(BPn)(V(M1))| ⩾ 8n − 13. Clearly, |NE(BPn)(x)| = n and x may connect to at most
8 vertices in M1, i.e., |E({x}, M1)| ⩽ 8. Thus,

|NE(BPn)(V(M))| = |NE(BPn)(V(M1))|+ |NE(BPn)(x)| − |E({x}, M1)|
⩾ (8n − 13) + n − 8 = 9n − 21 > 6n − 6 ⩾ |F|

when n ⩾ 6, a contradiction.
Case 1.2.3. |V(M)| = 10. Let V(M) = V(M1) ∪ {x, y}, where |V(M1)| = 8. By

Case 1.2.1, |NE(BPn)(V(M1))| ⩾ 8n − 13. First, consider xy forms an edge in M. Then,
|NE(BPn)({x, y})| = 2n − 1 and x (resp., y) may connect to at most eight vertices or n − 1
vertices (if 6 ⩽ n ⩽ 8) in M1. That is, |E({x}, M1)| ⩽ min{8, n − 1} and |E({y}, M1)| ⩽
min{8, n − 1}. Since xy ∈ E(BPn) and the girth of BPn is 8, x and y cannot be adjacent to a
vertex in M1 simultaneously. Thus, |E({x, y}, M1)| ⩽ min{8, n − 1} ⩽ 8 and

|NE(BPn)(V(M))| = |NE(BPn)(V(M1))|+ |NE(BPn)({x, y})| − |E({x, y}, M1)|
⩾ (8n − 13) + (2n − 1)− 8 = 10n − 22 > 6n − 6 ⩾ |F|
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when n ⩾ 6, a contradiction. Next, suppose x and y are singletons in M. Then, |NE(BPn)

({x, y})| = 2n and |E({x, y}, M1)| ⩽ min{16, 2(n − 1)} ⩽ 16. Thus,

|NE(BPn)(V(M))| = |NE(BPn)(V(M1))|+ |NE(BPn)({x, y})| − |E({x, y}, M1)|
⩾ (8n − 13) + 2n − 16 = 10n − 29 > 6n − 6 ⩾ |F|

when n ⩾ 6, a contradiction.
Based on the discussion of the above situations, conclude c(M) ⩽ |V(M)| ⩽ 5.
Case 2. |I| = 2. Let I = {i, j} and, without loss of generality, suppose fi ⩽ f j. Since

|F| ⩽ 6n − 6, there is n − 1 ⩽ fi ⩽ f j ⩽ 6n − 6 − (n − 1) = 5n − 5. Consider the following
three subcases.

Case 2.1. n − 1 ⩽ fi ⩽ f j ⩽ 4n − 11.
In this case, there is n − 1 ⩽ fi ⩽ f j ⩽ 4n − 11 = 4(n − 1) − 7. For each ℓ ∈ I, if

BPℓ
n − Fℓ is disconnected, by Lemma 5(3), it contains a large component and is with |Sℓ| ⩽ 3.

Then, via a proof similar to Case 1.1, it can be shown that the large component of BPℓ
n − Fℓ

is connected to BPJ
n − FJ . Thus, |V(M)| ⩽ |Si|+ |Sj| ⩽ 6. If |V(M)| = 6, by Lemma 9,

|F| ⩾ |NE(BPn)(V(M))| = 6n − 5, a contradiction. This implies that c(M) ⩽ |V(M)| ⩽ 5.
Case 2.2. n − 1 ⩽ fi ⩽ 4n − 11 < 4n − 10 ⩽ f j ⩽ 5n − 5.
In this case, there is n − 1 ⩽ fi ⩽ 4n − 11 = 4(n − 1)− 7. By Lemma 5(3), if BPi

n − Fi is
disconnected, it contains a large component and is with |Si| ⩽ 3. For 4n − 10 ⩽ f j ⩽ 5n −
14 = 5(n − 1)− 9, if BPj

n − Fj is disconnected, by Lemma 6, it contains a large component
and is with |Si| ⩽ 4. Then, via a proof similar to Case 1.1, it can be shown that the large
component of BPℓ

n − Fℓ for ℓ ∈ I is connected to BPJ
n − FJ . Thus, |V(M)| ⩽ |Si|+ |Sj| ⩽ 7.

If 6 ⩽ |V(M)| ⩽ 7, a contradiction can be acquired through an argument similar to Case
1.2. This implies that c(M) ⩽ |V(M)| ⩽ 5.

It remains to consider 5n − 13 ⩽ f j ⩽ 5n − 5. In this situation, since |F| ⩽ 6n − 6,
there is fc ⩽ |F| − fi − f j ⩽ (6n − 6) − (n − 1) − (5n − 13) = 8. Thus, at most eight

vertices in BPI
n − FI cannot connect to BPJ

n − FJ in BPn − F, i.e., |V(M)| ⩽ fc ⩽ 8. If
6 ⩽ |V(M)| ⩽ 8,a contradiction can be acquired through an argument similar to Case 1.2.
Thus, c(M) ⩽ |V(M)| ⩽ 5.

Case 2.3. 4n − 10 ⩽ fi ⩽ f j ⩽ 5n − 5.
In this case, 6n − 6 ⩾ fi + f j ⩾ 2(4n − 10) = 8n − 20, which leads to 6 ⩽ n ⩽ 7. Note

that fc ⩽ |F| − fi − f j ⩽ (6n − 6)− 2(4n − 10) = 14 − 2n. Thus, 0 ⩽ fc ⩽ 2 and at most

two vertices in BPI
n − FI cannot connect with BPJ

n − FJ in BPn − F, i.e., |V(M)| ⩽ fc ⩽ 2. It
is clear that c(M) ⩽ |V(M)| ⩽ 2.

Case 3. |I| = 3. Let I = {i, j, k}. Without loss of generality, suppose fi ⩽ f j ⩽ fk. Since
|F| ⩽ 6n − 6, there is n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ (6n − 6)− 2(n − 1) = 4n − 4. If fi ⩾ 3n − 7,
then fi + f j + fk ⩾ 3(3n − 7) = 9n − 21 > 6n − 6 ⩾ |F| for n ⩾ 6. Thus, it requires that
n − 1 ⩽ fi ⩽ 3n − 8. Consider the following three subcases.

Case 3.1. n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ 3n − 8 = 3(n − 1)− 5.
For each ℓ ∈ I, if BPℓ

n − Fℓ is disconnected, by Lemma 5(2), it contains a large compo-
nent and is with |Sℓ| ⩽ 2. Then, via a proof similar to Case 1.1, it can be shown that the large
component of BPℓ

n − Fℓ is connected to BPJ
n − FJ . Thus, |V(M)| ⩽ |Si|+ |Sj|+ |Sk| ⩽ 6. If

|V(M)| = 6, by Lemma 9, |F| ⩾ |NE(BPn)(V(M))| ⩾ 6n − 5 > 6n − 6, a contradiction. This
implies that c(M) ⩽ |V(M)| ⩽ 5.

Case 3.2. n − 1 ⩽ fi ⩽ f j ⩽ 3n − 8 < 3n − 7 ⩽ fk ⩽ 4n − 4.
For each ℓ ∈ {i, j}, since n − 1 ⩽ fi ⩽ f j ⩽ 3n − 8 = 3(n − 1) − 5, if BPℓ

n − Fℓ is
disconnected, by Lemma 5(2), it contains a large component and is with |Sℓ| ⩽ 2. For
3n − 7 ⩽ fk ⩽ 4n − 11 = 4(n − 1) − 7, if BPk

n − Fk is disconnected, by Lemma 5(3), it
contains a large component and is with |Sk| ⩽ 3. Then, via a proof similar to Case 1.1,
it can b shown that the large component of BPℓ

n − Fℓ for ℓ ∈ I is connected to BPJ
n − FJ .

Thus, |V(M)| ⩽ |Si|+ |Sj|+ |Sk| ⩽ 7. If 6 ⩽ |V(M)| ⩽ 7, a contradiction can be acquired
through an argument similar to Case 1.2. Thus, c(M) ⩽ |V(M)| ⩽ 5.
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It remains to consider 4n − 10 ⩽ fk ⩽ 4n − 4. In this situation, since |F| ⩽ 6n − 6
and f j ⩾ fi ⩾ n − 1, there is fc ⩽ |F| − fi − f j − fk ⩽ (6n − 6)− 2(n − 1)− (4n − 10) =

6. Thus, at most six vertices in BPI
n − FI cannot connect with BPJ

n − FJ in BPn − F, i.e.,
|V(M)| ⩽ fc ⩽ 6. If |V(M)| = 6, by Lemma 9, |F| ⩾ |NE(BPn)(V(M))| ⩾ 6n − 5 > 6n − 6,
a contradiction. This implies that c(M) ⩽ |V(M)| ⩽ 5.

Case 3.3. n − 1 ⩽ fi ⩽ 3n − 8 < 3n − 7 ⩽ f j ⩽ fk ⩽ 4n − 4.
In this case, 6n − 6 ⩾ fi + f j + fk ⩾ (n − 1) + 2(3n − 7) = 7n − 15, which leads to

6 ⩽ n ⩽ 9. Note that fc ⩽ |F| − fi − f j − fk ⩽ (6n − 6)− (n − 1)− 2(3n − 7) = 9 − n.

Thus, 0 ⩽ fc ⩽ 3 and at most three vertices in BPI
n − FI cannot connect with BPJ

n − FJ in
BPn − F, i.e., |V(M)| ⩽ fc ⩽ 3. It is clear that c(M) ⩽ |V(M)| ⩽ 3.

Case 4. |I| = 4. Let I = {i, j, k, m}. Without loss of generality, suppose fi ⩽ f j ⩽ fk ⩽
fm. Since |F| ⩽ 6n − 6, there is n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ fm ⩽ (6n − 6)− 3(n − 1) = 3n − 3.
If fi ⩾ 2n − 4, then fi + f j + fk + fm ⩾ 4(2n − 4) = 8n − 16 > 6n − 6 ⩾ |F| for n ⩾ 6.
Thus, it requires that n − 1 ⩽ fi ⩽ 2n − 5. Also, if fk ⩾ 3n − 7, then fi + f j + fk +
fm ⩾ 2(n − 1) + 2(3n − 7) = 8n − 16 > 6n − 6 ⩾ |F| for n ⩾ 6. Thus, it requires that
n − 1 ⩽ f j ⩽ fk ⩽ 3n − 8. Consider the following two subcases.

Case 4.1. n − 1 ⩽ fi ⩽ 2n − 5, n − 1 ⩽ f j ⩽ fk ⩽ fm ⩽ 3n − 8.
In this case, there is n − 1 ⩽ fi ⩽ 2n − 5 < 2(n − 1)− 2. If BPi

n − Fi is disconnected,
by Lemma 5(1), it has two components, one of which is a singleton, i.e., |Si| = 1. For
ℓ ∈ {j, k, m}, since n − 1 ⩽ fℓ ⩽ 3n − 8 < 3(n − 1)− 5, if BPℓ

n − Fℓ is disconnected, by
Lemma 5(2), it contains a large component and is with |Sk| ⩽ 2. A proof similar to Case 1.1
shows that the large component of BPℓ

n − Fℓ for ℓ ∈ I is connected to BPJ
n − FJ . Thus,

|V(M)| ⩽ |Si|+ |Sj|+ |Sk|+ |Sm| ⩽ 7. If 6 ⩽ |V(M)| ⩽ 7, a contradiction can be acquired
through an argument similar to Case 1.2. Thus, c(M) ⩽ |V(M)| ⩽ 5.

Case 4.2. n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ 3n − 8 < 3n − 7 ⩽ fm ⩽ 3n − 3.
In this case, fc ⩽ |F| − fi − f j − fk − fm ⩽ (6n − 6)− 3(n − 1)− (3n − 7) = 2. Thus, at

most two vertices in BPI
n − FI cannot connect with BPJ

n − FJ in BPn − F, i.e., |V(M)| ⩽ fc ⩽ 2.
It is clear that c(M) ⩽ |V(M)| ⩽ 2.

Case 5. |I| = 5. Let I = {i, j, k, m, p}. Without loss of generality, suppose fi ⩽ f j ⩽
fk ⩽ fm ⩽ fp. Since |F| ⩽ 6n − 6, there is n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ fm ⩽ fp ⩽ (6n − 6)−
4(n − 1) = 2n − 2. If fm ⩾ 2n − 4, then fi + f j + fk + fm + fp ⩾ 3(n − 1) + 2(2n − 4) =
7n − 11 > 6n − 6 ⩾ |F| for n ⩾ 6. Thus, it requires that n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ fm ⩽ 2n − 5.
Consider the following two subcases.

Case 5.1. n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ fm ⩽ fp ⩽ 2n − 5.
For each ℓ ∈ I, if BPℓ

n − Fℓ is disconnected, by Lemma 5(1), BPℓ
n − Fℓ has two compo-

nents, one of which is a singleton, i.e., |Si| = 1. A proof similar to Case 1.1 shows that the
large component of BPℓ

n − Fℓ is connected to BPJ
n − FJ . Thus, |V(M)| ⩽ 5. This leads to

c(M) ⩽ |V(M)| ⩽ 5.
Case 5.2. n − 1 ⩽ fi ⩽ f j ⩽ fk ⩽ fm ⩽ 2n − 5 < 2n − 4 ⩽ fp ⩽ 2n − 2.
In this case, fc ⩽ |F| − fi − f j − fk − fm ⩽ (6n − 6)− 4(n − 1)− (2n − 4) = 2. Thus, at

most two vertices in BPI
n − FI cannot connect with BPJ

n − FJ in BPn − F, i.e., |V(M)| ⩽ fc ⩽ 2.
It is clear that c(M) ⩽ |V(M)| ⩽ 2.

Case 6. |I| = 6. Let I = {i, j, k, m, p, q}. Since |F| ⩽ 6n − 6, there is fi = f j = fk =
fm = fp = fq = n− 1 and fc = 0. Since fℓ = n− 1 < 2(n− 1)− 2 for n ⩾ 6, by Lemma 5(1),
if BPℓ

n − Fℓ is disconnected, then BPℓ
n − Fℓ has two components, one of which is a singleton,

i.e., |Sℓ| = 1. As n ⩾ 6 = |I|, by Lemma 2(1), there exists ℓ′ ∈ ⟨n⟩ \ (I ∪ {ℓ}) such that
|Eℓ,ℓ′(BPn)| − ( fℓ + 1) = (n − 2)! × 2n−2 − (n − 1) − 1 > 0. This implies that the large
component of BPℓ

n − Fℓ is connected to BPJ
n − FJ . Thus, |V(M)| ⩽ 6. If |V(M)| = 6, by

Lemma 9, |F| ⩾ |NE(BPn)(V(M))| ⩾ 6n − 5 > 6n − 6, a contradiction. This implies that
c(M) ⩽ |V(M)| ⩽ 5.

Theorem 4. λ7(BPn) = λ(5)(BPn) + 5 = 6n − 5 for n ⩾ 6.
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Proof. Let s = 6 and S∗ = arg min
S⊆V(BPn)

{|E(S, G − S)| : |S| = s, BPn[S] and BPn − S are

connected subgraphs}. As |S∗| = 6 and BPn[S∗] is connected, it can be observed from
Table 3 that BPn[S∗] is a 5-path or a tree with 6 vertices (including K1,5). By Lemma 9, let
t = |E(S∗, G − S∗)| = 6n − 10 and m = |E(BPn[S∗])| = 5. Let F be an edge-cut of BPn. By
Theorem 1, if |F| ⩽ 6n − 11 = (6n − 10)− 1 = t − 1, then BPn − F has a large component
along with smaller components containing totally at most s − 1 = 5 vertices. This fulfills
the condition of Lemma 1(i). Also, by Lemma 13, if |F| ⩽ 6n − 6 = (6n − 10) + 5 − 1 =
t + m − 1, then BPn − F has at most s = 6 components. This fulfills the condition of
Lemma 1(ii). Therefore, by Lemma 1, there is λ6+1(BPn) = λ(6−1)(BPn) + m = t + m =
(6n − 10) + 5 = 6n − 5 for n ⩾ 6.

5. Concluding Remarks

For burnt pancake graph BPn, this paper shows that when removing any edge
subset with a size of approximately six times λ(BPn), the surviving graph possesses
the “linearly many faults" property. Applying this property, we attain λ(h)(BPn) and
λr(BPn). Specifically, we prove that λ5(BPn) = λ(3)(BPn) + 3 = 4n − 3 for n ⩾ 5;
λ6(BPn) = λ(4)(BPn) + 4 = 5n − 4 and λ7(BPn) = λ(5)(BPn) + 5 = 6n − 5 for n ⩾ 6,
as summarized in Table 4.

Table 4. The comparison of λ(h)(BPn) and λr(BPn).

λ(h)(BPn) Ref. λr(BPn) Ref.

λ(1)(BPn) = 2n − 2 [30] λ3(BPn) = 2n − 1 [30]
λ(2)(BPn) = 3n − 4 λ4(BPn) = 3n − 2

λ(3)(BPn) = 4n − 6 Theorem 2 λ5(BPn) = 4n − 3 Theorem 2
λ(4)(BPn) = 5n − 8 Theorem 3 λ6(BPn) = 5n − 4 Theorem 3
λ(5)(BPn) = 6n − 10 Theorem 4 λ7(BPn) = 6n − 5 Theorem 4

For ℓ-componen edge connectivity and h-extra edge connectivity with higher ℓ and
h, e.g., h = 6 and ℓ = 8, since we showed in Lemma 10 that E(W, BPn − W)| ⩾ 7n − 12
and |NE(BPn)(W)| ⩾ 7n − 6 for W ⊂ V(BPn) with |W| = 7, this prompts us to have the
following conjecture:

Conjecture 1. λ8(BPn) = λ(6)(BPn) + 6 = 7n − 6 for n ⩾ 6.

Obviously, to affirm the above conjecture is equivalent to showing that the following
two implications hold for n ⩾ 7 and any edge set F ⊂ E(BPn): (i) If |F| ⩽ 7n − 13, then
BPn − F either is connected or contains a large component along with smaller components
containing totally at most six vertices. (ii) if |F| ⩽ 7n − 7, then BPn − F has at most seven
components.

Similarly, as BPn is n-regular and its girth is eight, we are easy to check that |E(C8, BPn −
C8)| = 8n − 16 and |NE(BPn)(C8)| = 8n − 8. Based on the relationship of λ(h)(G) and λr(G)
for a regular graph G [30], we also have the following conjecture:

Conjecture 2. λ9(BPn) = λ(7)(BPn) + 8 = 8n − 8 for n ⩾ 6.

To prove this conjecture, we need to show that when removing any edge subset with
a size approximately of eight times λ(BPn), the surviving graph still retains the “linearly
many faults” property. With the increase in the removal of edges, the situation becomes
more complex, and it is an interesting and challenging research topic.

We conclude this paper by discussing some of its limitations against real-world in-
stances. Even though various interconnection networks have specific structural phenomena
when a linear number of vertices or edges fail, do these phenomena occur frequently? Since
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most research considers vertex or edge failures in a network to be random and uncorrelated,
it ignores possible events that cause components close to each other to fail simultaneously
with a higher probability. In this case, is there a more reasonable evaluation measure
combining h-extra edge connectivity or ℓ-component edge connectivity that can genuinely
reflect this phenomenon?
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