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Abstract: This article is devoted to the study of the existence of trajectory and global attractors in the
Kelvin–Voigt fluid model, taking into account memory along the trajectories of fluid motion. For the
model under study, the concept of a weak solution on a finite segment and semi-axis is introduced
and the existence of their solutions is proved. The necessary exponential estimates for the solutions
are established. Then, based on these estimates, the existence of trajectory and global attractors in the
problem under study is proved.
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1. Introduction

The study of mathematical fluid dynamics problems is one of the most important
problems in the field of mathematics. Of particular interest in the study of such problems is
the study of the limiting behavior of solutions, namely, the behavior of solutions as time
tends to infinity. In some problems, it is possible to prove that solutions can tend to a
certain set in the phase space. Here, a phase space is understood as a set whose elements
are identified with the states of the system. That is, regardless of the initial conditions of
the problem, its solutions turn out to be in this set, possibly after a sufficiently long time.
Such sets are called attractors because solutions are attracted to them. Thus, it is natural to
study the attractors of the system, since states that do not belong to attractors do not affect
the system.

One of the first papers on the theory of the attractors of fluid dynamics equations is
an article by Ladyzhenskaya [1]. In this work, the existence of a global attractor for the
two-dimensional Navier–Stokes system was proved. The proof is based on the theory of
dynamical systems. The idea of using the theory of dynamical systems for the study of
attractors for equations of mathematical physics was further developed in a large number
of papers; see, for more details, the review paper by Ladyzhenskaya [2] and monograph by
Temam [3]. We especially note paper [4], in which the existence of a global attractor for the
2D Bingham model was proved.

However, the theory of dynamical systems requires the uniqueness of a global solu-
tion to the problem under consideration. But for fluid dynamics equations, this property
turns out to be limiting and is often not satisfied. For example, for the 3D Navier–Stokes
system, the uniqueness of weak solutions has not been established, and for strong solu-
tions, non-local existence theorems have not been proved. Just for the 3D Navier–Stokes
system, in order to overcome these difficulties, Vishik and Chepyzhov created the theory of
trajectory attractors [5,6]. Around the same time, independently of these authors, a similar
theory for the 3D Navier–Stokes system was created by Sell [7].
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In the theory of trajectory attractors, instead of a semi-group of evolutionary operators,
a certain set of functions that depend on time and take values in the phase space is
considered. This set of functions is called the trajectory space, and the functions belonging
to it are called trajectories. Each trajectory represents a certain version of the system
development. The theory of trajectory spaces makes it possible to bypass the requirement
of uniqueness of the solution. In the case under consideration, several trajectories can
emerge from a certain point in the phase space. Or, what is the same, for the same initial
condition, there may be several solutions.

Subsequently, the theory of trajectory attractors was developed in the papers of Zvya-
gin and Vorotnikov [8,9]. In particular, they managed to abandon the condition of the
translational invariance of the trajectory space. This condition is unnecessarily restrictive
and is often not satisfied in fluid dynamics problems. The point is that the trajectory spaces
in the theory under consideration are usually constructed on the basis of energy estimates.
It is not always possible to obtain the required translation-invariant estimate. But it is often
possible to establish an exponential estimate, which, thanks to the results of Zvyagin and
Vorotnikov, turns out to be quite sufficient.

In real applications in chemistry, medicine and the pharmaceutical industry, fluid
models that do not satisfy the Newtonian rheological relation often arise. At the moment,
there is a fairly large number of models of such fluids, called non-Newtonian. This article
deals with one of such models, namely, the Kelvin–Voigt model of fluid motion of order
L, L = 1, 2, . . . with the full derivative with respect to time in the rheological relation:(

1 +
L

∑
i=1

λi
di

dti

)
σ(t, x) = 2

(
ν +

L+1

∑
i=1

κi
di

dti

)
E(v)(t, x), (t, x) ∈ [0, T]× Ω. (1)

Here, Ω ⊂ Rn, n = 2, 3, is a bounded domain with a smooth boundary ∂Ω, [0, T] is a
time interval, σ is the deviator of the stress tensor, E(v) is the strain rate tensor, λi, i = 1, L
are the relaxation times, ν is the fluid viscosity, κi, i = 1, L + 1 are the retardation times,
and d

dt =
∂
∂t + ∑n

i=1 vi
∂

∂xi
is the full (substantial) derivative with respect to time.

This model describes the motion of various solutions and melts of polymers, such
as solutions of polyethylene oxide, polyacrylamide and guar gum [10], and has been
confirmed experimentally [11,12]. It is one of the models of linear viscoelastic fluids with a
finite number of discretely distributed relaxation and retardation times. The general theory
of such fluids, including the Kelvin–Voigt model, was built on the basis of the Boltzmann
superposition principle. According to this principle, all influences on the medium are
independent and additive and the reactions of the medium to external influences are
linear [13].

From a mathematical point of view, various simplifications of this model began to be
studied in Oskolkov’s papers (see review paper [14] and references therein). Oskolkov’s
works considered a model in which the full time derivative in rheological relation (1) was
replaced with a partial one:(

1 +
L

∑
i=1

λi
∂i

∂ti

)
σ(t, x) = 2

(
ν +

L+1

∑
i=1

κi
∂i

∂ti

)
E(v)(t, x). (2)

From rheological relation (2), the stress tensor deviator σ can be expressed through E
as follows (see, for example, [15] for more details):

σ(t, x) = 2µ2
∂

∂t
E(v)(t, x) + 2µ1E(v)(t, x) + 2

∫ t

0

L

∑
i=1

βieαi(t−s)E(v)(s, x) ds + σ0(x). (3)

In this case, it is additionally assumed that the polynomial Q(p) = 1 + ∑L
i=1 λi pi,

defined by the left-hand side of (2) has real, negative and distinct roots αi, i = 1, L. Note
that this condition is completely consistent with the physical meaning of the problem and is
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not burdensome. The coefficients µ2, µ1 and βi, i = 1, L are real and are determined through
the coefficients of relation (2). The function σ0 is an expression of the initial conditions
on σ, E and their time derivatives. It is usually assumed for simplicity that these initial
conditions are chosen in such a way that σ0 ≡ 0. The integral term in (3) is responsible
for memory effects in the fluid. That is, the value of the stress tensor deviator σ at time t
depends on the values of the strain rate tensor E for all s ∈ [0, t].

For the system of equations obtained by substituting (3) into the system of equations
of an incompressible fluid motion, various initial boundary value problems were stud-
ied [14–17]. Also, for the resulting system of equations, questions about the existence of
attractors [18] were investigated. Let us also note that the model with rheological rela-
tion (2) for L = 1 is often called the Navier–Stokes–Voigt model. A large number of works
are devoted to the study of its solvability and questions about the limiting behavior of
solutions [19–23]. Let us also note papers [24,25] devoted to the study of the solvability of
the modified Kelvin–Voigt model. It is also necessary to mention papers [26–29] devoted to
the study of inhomogeneous incompressible Kelvin–Voigt fluid with rheological relation
(1) for various values of L and its generalizations.

Models with rheological relation (1) have not been studied in such detail at the moment.
The solvability of the initial boundary value problem for a model with a substantial time
derivative (1) for L = 1 was proved in [15,30]. For an arbitrary L, the solvability of the initial
boundary value problem for this model could not be proved for a long time. The point is that
in this case, under similar assumptions regarding the roots of the polynomial determined
from the left-hand side of (1), the deviator of the stress tensor σ can be expressed as follows
(see, for more details, [31]):

σ(t, x) = 2µ2
d
dt
E(v)(t, x) + 2µ1E(v)(t, x)

+ 2
∫ t

0

L

∑
i=1

βieαi(t−s)E(v)(s, z(s; t, x)) ds + σ0(x). (4)

Here, z is the solution to the following Cauchy problem in integral form:

z(τ; t, x) = x +
∫ τ

t
v(s, z(s; t, x))ds, 0 ⩽ t, τ ⩽ T, x ∈ Ω. (5)

In this case, the integral in (4) is taken along the trajectories of fluid motion, which
is of much greater interest from a physical point of view. Such models more accurately
describe the behavior of a fluid. In (4), the integral is taken along the trajectory z(s; t, x).
Let us explain that z(s; t, x) is the position of a particle at time s, provided that at time t it
was at point x. Thus, the deviator of the stress tensor at the moment t depends not only on
the value of the strain rate tensor at the moment t and its values on the interval [0, t], but
also on the trajectories of fluid particles. The dependence of stresses at the current moment
on the behavior of the fluid in the past is understood as the memory of the fluid.

But this integral term is precisely the main problem in proving the existence of weak
solutions to the corresponding initial boundary value problem. In order to find the trajec-
tories of motion of fluid particles, it is necessary to solve the Cauchy problem (5). Since
the weak solution belongs to W1

2 (Ω)n, this is not enough for the classical solvability of
(5). The way out of this situation is to use the theory of regular Lagrangian flows, created
in [32]. Based on this theory, in a recent paper [31], the solvability in the weak sense of the
initial boundary value problem for the Kelvin–Voigt model with rheological relation (1)
was established.

In this paper, the existence of trajectory and global attractors is established for a
system of equations corresponding to the Kelvin–Voigt model with rheological relation
(1) under certain conditions on the coefficients of the problem. The proof is carried out
using the approximation-topological approach to the study of fluid dynamic problems (see,
for example, [15]), as well as the theory of trajectory and global attractors for non-invariant
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trajectory spaces [8,33]. Namely, some problem that approximates the original one is
considered. Then, the operator interpretation of the considered and the approximation
problems is introduced. Using the Leray–Schauder fixed point theorem, the solvability
of the approximation problem on a finite segment is established. Then, conditions are
obtained for the coefficients, under which the exponential estimates necessary for applying
the abstract theory of attractors take place. Based on these estimates, the solvability of
the approximation problem on the semi-axis is proved. Then, using passage to the limit,
the weak solvability of the original problem on the semi-axis is proved. As a result, based
on the exponential estimates, a trajectory space is constructed and the existence of the
required attractors is established.

This paper consists of an introduction and seven sections. Section 2 provides a
statement of the problem under study. Section 3 contains necessary facts from the abstract
theory of attractors for non-invariant trajectory spaces. Section 4 gives necessary notations
and statements used in this paper. Section 5 contains a weak formulation of the considered
problem and an approximation problem. Section 6 is devoted to obtaining the necessary
estimates for solutions. In Section 7, theorems on the solvability of the considered problem
on the semi-axis are proved. Finally, in Section 8, theorems on the existence of attractors for
the problem under consideration are proved.

2. Problem Statement

Substituting σ from (4) into the equation of fluid motion, we obtain the following
system that describes the motion of the incompressible Kelvin–Voigt fluid with

∂v
∂t

− ν∆v +
n

∑
i=1

vi
∂v
∂xi

−κ ∂∆v
∂t

−2κDiv
(

vk
∂E(v)

∂xk

)
− 2Div

∫ t

0

L

∑
i=1

βie−αi(t−s)E(v)(s, z(s, t, x)) ds +∇p = f ; (6)

div v = 0, (t, x) ∈ QT = [0, T]× Ω; (7)

z(τ; t, x) = x +

τ∫
t

v(s, z(s; t, x))ds, 0 ⩽ t, τ ⩽ T, x ∈ Ω. (8)

Here, Ω is a convex bounded domain from Rn, n = 2, 3, with a smooth boundary ∂Ω,
v is the velocity vector of a fluid particle, p is the fluid pressure, f is the density of external
forces, ν > 0,κ > 0 are fluid viscosity and retardation time, respectively, and βi, αi, i = 1, L
are some constants. Based on the physical meaning, it is assumed that αi > 0, i = 1, L. For
convenience, we denoted the negative roots of the polynomial Q(p) (see Introduction for
more details) by −α1,−α2, . . . ,−αL, where αi > 0, i = 1, L are positive numbers. Function
z(τ; t, x) is the trajectory of fluid particles corresponding to the velocity field v.

System (6)–(8) is supplemented with the following initial and boundary conditions:

v|t=0 = a(x), x ∈ Ω, v|∂Ω×[0,T] = 0. (9)

3. Necessary Definitions and Statements from Attractor Theory

Let us present some facts from the theory of trajectory attractors. This presentation
does not pretend to be complete and contains only those facts that we will directly need
(for more details, see monograph [8], as well as articles [9,33]).

Let E, E0 be two Banach spaces. We will assume that the space E is reflexive and the
embedding E ⊂ E0 is continuous. Let R+ denote the non-negative semi-axis of R.

The space C(R+; E0) consists of continuous functions defined on R+ and taking values
in E0. Since the semi-axis R+ is non-compact, then in C(R+; E0) it is impossible to specify
the usual norm of the space of continuous functions. Consider in the space C(R+; E0) the
following family of semi-norms:
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∥u∥n = ∥u∥C([0,n],E0)
, n = 1, 2, . . . . (10)

Let us define the topology in C(R+; E0) by determining the convergence of sequences
with respect to the introduced semi-norms. Namely, the sequence {um} from C(R+; E0)
converges to the function u as m → ∞, if ∥um − u∥n → 0 for any n = 1, 2, . . . . The space
C(R+; E0) with family of semi-norms (10) is a countably normed space. The topology of
local uniform convergence in the space C(R+; E0) is metrizable with respect to the metric

ρ(u, v) = ∥u − v∥C(R+ ;E0)
=

∞

∑
n=1

2−n ∥v∥C([0,n],E0)

1 + ∥v∥C([0,n],E0)
.

The resulting metric space is a Fréchet space.
We use the already-traditional notation ∥u − v∥C(R+ ;E0)

for the metric in C(R+; E0).
This is due to the use of abstract concepts and statements from [8,33], in which this no-
tation is used. Note that the functional ∥ · ∥C(R+ ;E0)

is not a norm, since ∥λv∥C(R+ ;E0)
̸=

|λ|∥v∥C(R+ ;E0)
for λ ̸= ±1.

Denote by ΠM (M ⩾ 0) the operator of restriction of functions defined on R+, to
the interval [0, M]. The following criterion holds for the relative compactness of sets from
C(R+; E0).

Lemma 1. The set P ⊂ C(R+; E0) is relatively compact in C(R+; E0) iff for any M > 0 the set
ΠMP is relatively compact in C([0, M], E0).

L∞(R+; E) is the space of essentially bounded functions defined on R+ and taking
values in E with the norm ∥u∥L∞(R+ ;E) = ess sup

t∈R+

∥u(t)∥E. The space L∞(R+; E) is a Banach

space (see, for example, [34]).

Definition 1. Let J be a finite or infinite interval of the real axis, J be its closure and Y be a
Banach space. A function u : J → Y is called weakly continuous if for any tn → t, tn ∈ J, the
sequence u(tn) converges weakly to u(t) in Y. We will denote the set of weakly continuous functions
u : J → Y by Cw(J, Y).

We also need one well-known theorem (see, for example, [35]).

Theorem 1. Let E and E0 be two Banach spaces such that E ⊂ E0 and the embedding is continuous.
Let a function v belong to L∞(0, T; E) and be continuous as a function with values in E0. Then, v is
weakly continuous as a function with values in E, i.e., v ∈ Cw([0, T], E).

Therefore, the function v ∈ C(R+; E0) ∩ L∞(R+; E) is weakly continuous as a function
with values in E. Therefore, v(t) ∈ E for all t ∈ R+, and the following equality holds:

∥v∥C(R+ ;E0)∩L∞(R+ ;E) = sup
t∈R+

∥v(t)∥E.

Let us consider the shift operators T(h) (h ⩾ 0), which assign function f to a function
T(h) f such that T(h) f (t) = f (t + h). Let us note that T(h1)T(h2) = T(h1 + h2) and T(0) is
the identity operator.

Consider a non-empty family of functions

H+ ⊂ C(R+; E0) ∩ L∞(R+; E).

The set H+ is called the trajectory space, and the elements of H+ are called trajectories.
A natural condition is imposed on H+ that it is non-empty.

Let us give the main definitions.



Mathematics 2024, 12, 266 6 of 26

Definition 2. The set P ⊂ C(R+; E0) ∩ L∞(R+; E) is called an attracting set for the trajectory
space H+ if for any set B ⊂ H+ which is bounded in L∞(R+; E) it holds that

sup
u∈B

inf
v∈P

∥T(h)u − v∥C(R+ ;E0)
→ 0 as h → ∞.

Definition 3. The set P ⊂ C(R+; E0) ∩ L∞(R+; E) is called an absorbing set for the trajectory
space H+ if for any set B ⊂ H+ which is bounded in L∞(R+; E) there exists h ⩾ 0, such that for
all t ⩾ h it holds that T(t)B ⊂ P.

Every absorbing set is an attracting set.

Definition 4. The set P ⊂ C(R+; E0) ∩ L∞(R+; E) is called a trajectory semi-attractor of the
trajectory space H+ if the following are true:

(i) The set P is compact in C(R+; E0) and bounded in L∞(R+; E);
(ii) T(t)P ⊂ P for all t ⩾ 0;
(iii) P is the attracting set for H+.

Definition 5. The set P ⊂ C(R+; E0) ∩ L∞(R+; E) is called a trajectory attractor of the trajectory
space H+ if the following are true:

(i) The set P is compact in C(R+; E0) and bounded in L∞(R+; E);
(ii) T(t)P = P for all t ⩾ 0;
(iii) P is the attracting set for H+.

Definition 6. The minimal trajectory attractor of the trajectory space H+ is the smallest trajectory
attractor with respect to inclusion.

Definition 7. The set A ⊂ E is called a global attractor (in E0) of the trajectory space H+, if it
satisfies the following conditions:

(i) The set A is compact in E0 and bounded in E;
(ii) For every set B ⊂ H+ bounded in L∞(R+; E), the attraction condition is satisfied:

sup
u∈B

inf
y∈A

∥u(t)− y∥E0 → 0 as t → ∞;

(iii) The set A is the smallest due to the inclusion set satisfying conditions (i) and (ii).

Remark 1. If there is a minimal trajectory attractor or a global attractor, then it is unique.

Let us give one more statement ([33] (Lemma 4.2)) that we need to prove the main result.

Lemma 2. For the trajectory space H+, let P be an attracting (respectively, absorbing) set that
is relatively compact in C(R+; E0) and bounded in L∞(R+; E). Then, its closure P in the space
C(R+; E0) is the attracting (respectively, absorbing) set for H+, that is, P is compact in C(R+; E0)
and bounded in L∞(R+; E). If, in addition, the inclusion T(t)P ⊂ P holds for all t ⩾ 0, then P is a
semi-attractor.

The following theorems hold on the existence of a minimal trajectory and global attractor.

Theorem 2. Let there be a trajectory semi-attractor P of the trajectory space H+. Then, there is a
minimal trajectory attractor U of the trajectory space H+.

Theorem 3. Let there be a minimal trajectory attractor U of the trajectory space H+. Then, there is
a global attractor A of the trajectory space H+.
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4. Preliminaries

In what follows, we will need the definitions of some spaces. Denote by C∞
0 (Ω)n

the space of C∞ functions on Ω with values in Rn with compact support in Ω. Let us set
V = {v : v ∈ C∞

0 (Ω)n, divv = 0} and define V0 and V1 as the completion of V with respect
to the norms of L2(Ω)n and H1(Ω)n, respectively. Let V2 = H2(Ω)n ∩ V1.

Due to the Weyl decomposition of vector fields from L2(Ω)n (see, for example, [35,36]),
L2(Ω)n = V0 ⊕∇H1(Ω). Here, ∇H1(Ω) = {∇p : p ∈ H1(Ω)}. Consider in V the operator
A = −π∆. As it is well known (see [37,38]), the operator A extends in the space V0 to a
closed operator, which is a self-adjoint positive operator with a completely continuous
inverse. The domain of A coincides with V2. By the Hilbert Theorem on the spectral
decomposition of completely continuous operators, the eigenfunctions {ej} of the operator
A form an orthonormal basis in V0.

Let 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ≤ λk ≤ . . . be the eigenvalues of the operator A.
Denote by E∞ the set of finite linear combinations of ej. Define the space Vα, α ∈ R, as the

completion of E∞ with respect to the norm ∥v∥Vα =
(
∑∞

k=1 λα
k |vk|2

)1/2.
In [39], it was proved that the norm in Vα is equivalent to the norm ∥v∥Vα =

∥Aα/2v∥V0 .
To introduce a notion of a weak solution for the original and approximation problems

on an interval [0, T], we introduce the following spaces:

W1[0, T] = {v : v ∈ L∞(0, T; V1), v′ ∈ L∞(0, T; V−1)};

W2[0, T] = {v : v ∈ C([0, T], V5), v′ ∈ L∞(0, T; V5)}

with corresponding norms:

∥v∥W1[0,T] = ∥v∥L∞(0,T;V1) + ∥v′∥L∞(0,T;V−1);

∥v∥W2[0,T] = ∥v∥C([0,T],V5) + ∥v′∥L∞(0,T;V5).

To determine the weak solution on the semi-axis R+, we consider the spaces Wloc
1 (R+)

and Wloc
2 (R+). The space Wloc

1 (R+) consists of functions v, defined almost everywhere on
R+ and taking values in V1, such that the restriction of v to any interval [0, T] belongs to
W1[0, T]. The space Wloc

2 (R+) consists of functions v ∈ C(R+, V5), such that the restriction
of v to any interval [0, T] belongs to W2[0, T].

We need also the Aubin–Dubinsky–Simon Theorem [40].

Theorem 4. Let X ⊂ E ⊂ Y be Banach spaces such that the embedding X ⊂ E is compact and the
embedding E ⊂ Y is continuous. Let F ⊂ Lp(0, T; X), 1 ⩽ p ⩽ ∞. We will assume that for any
f ∈ F its generalized derivative in space D′(0, T; Y) belongs to Lr(0, T; Y), 1 ⩽ r ⩽ ∞. Next, let
the following hold:

(i) The set F is bounded in Lp(0, T; X);
(ii) The set { f ′ : f ∈ F} is bounded in Lr(0, T; Y).

Then, for p < ∞ the set F is relatively compact in Lp(0, T; E), and for p = ∞ and r > 1, the
set F is relatively compact in C([0, T], E).

Let us give the necessary statements about the solvability of the problem

z(τ; t, x) = x +
∫ τ

t
v(s, z(s; t, x)), ds, 0 ≤ t, τ ≤ T, x ∈ Ω. (11)

Let v ∈ L1(0, T; C(Ω)n). The solution of (11) is defined as the function z(τ) ≡
z(τ; t; x), τ, t ∈ [0, T], x ∈ Ω, such that z(τ) ∈ C([0, T], Ω) and satisfies (11).

Let
◦
C (Ω) be the set of continuous functions that vanish on ∂Ω. The following

lemma [41] holds:
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Lemma 3. Let v ∈ L1(0, T; C1(Ω)n∩
◦
C (Ω)) and ∂Ω ∈ C1. Then, (11) has a unique solution z.

Moreover, z, ∂z
∂x are continuous in the variables τ, t ∈ [0, T], x ∈ Ω.

However, in the case of only a summable function v, the situation becomes much more
complicated and it requires a much more general concept for the solution to problem (11).

Definition 8. Function z(τ; t, x) : [0, T]× [0, T]× Ω → Rn is called a regular Lagrangian flow,
corresponding to v, if the following conditions are satisfied:

(i) For almost all x and any t ∈ [0, T], the function γ(τ) = z(τ; t, x) is absolutely continuous
and satisfies (11);

(ii) For any τ, t ∈ [0, T] and an arbitrary Lebesgue measurable set B ⊂ Ω with Lebesgue
measure m(B), it holds that m(z(τ, t, B)) = m(B);

(iii) For any t1, t2, t3 ∈ [0, T] and almost all x ∈ Ω, it holds that z(t3, t1, x) = z(t3, t2, z(t2, t1, x)).

For the concept of regular Lagrangian flows, see, for example, [32]. Here, we consider
a special case of a bounded domain Ω and a divergence-free function v. Note also that in
the case of a smooth function v, the regular Lagrangian flow coincides with the classical
solution of (11).

We need the following theorem [32].

Theorem 5. Let v ∈ L1(0, T; W1
p(Ω)n), 1 ≤ p ≤ +∞, div v(t, x) = 0 and v(t, x)|∂Ω = 0.

Then, there is a unique regular Lagrangian flow z, corresponding to v. Moreover,

∂

∂τ
z(τ; t, x) = v(τ, z(τ; t, x)), t, τ ∈ Ω, for allmost all x ∈ Ω,

z(τ, t, Ω) = Ω (up to zero measure).

We also give one lemma [42], which is used in this paper.

Lemma 4. Let the sequence vm weakly converge to v in L2(0, T; V1) as m → ∞. Then,∫ t

0
E(vm)(s, zm(s; t, x))ds →

∫ t

0
E(v)(s, z(s; t, x))ds

weakly in L2(0, T; L2(Ω)n2
) as m → ∞. Here, zm is a regular Lagrangian flow generated by vm

and z is a regular Lagrangian flow generated by v.

5. Weak Problem Statement and Approximation

Let a ∈ V1, f ∈ V−1. Let us give the definition of a weak solution to problem (6)–(9)
on a finite segment [0, T] and on R+.

Definition 9. A weak solution to problem (6)–(9) on [0, T] is a function v ∈ W1[0, T] such that
the identity

〈
(J +κA)v′, φ

〉
−
∫
Ω

n

∑
i,j=1

vivj
∂φj

∂xi
dx + ν

∫
Ω

∇v : ∇φ dx

−κ
∫
Ω

n

∑
i,j,k=1

vk
∂vi
∂xj

∂2 φj

∂xi∂xk
dx −κ

∫
Ω

n

∑
i,j,k=1

vk
∂vj

∂xi

∂2 φj

∂xi∂xk
dx

+ 2
∫ t

0

L

∑
i=1

βie−αi(t−s)
∫

Ω
E(v)(s, z(s, t, x)) : E(φ)dxds = ⟨ f , φ⟩ (12)
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is satisfied almost everywhere on (0, T) for any function φ ∈ V3 and the function v satisfies the
initial condition

v(0) = a (13)

Here, z is a solution to problem (8), which exists due to Theorem 5.

Definition 10. The function v ∈ Wloc
1 (R+) is called the weak solution of problem (6)–(9) on the

semi-axis R+ if for every T > 0 the restriction of v to the interval [0, T] is a weak solution to
problem (6)–(9) on [0, T].

Let ε > 0. Consider the following approximation problem:

∂v
∂t

− ν∆v +
n

∑
i=1

vi
∂v
∂xi

−κ ∂∆v
∂t

+ εe−γt ∂∆4v
∂t

−2κDiv
(

vk
∂E(v)

∂xk

)
− 2Div

∫ t

0

L

∑
i=1

βie−αi(t−s)E(v)(s, z(s, t, x)) ds +∇p = f ; (14)

div v = 0, (t, x) ∈ QT ; (15)

z(τ; t, x) = x +

τ∫
t

v(s, z(s; t, x))ds, 0 ⩽ t, τ ⩽ T, x ∈ Ω; (16)

v|t=0 = b(x), x ∈ Ω; (17)

v|∂Ω×[0,T] = ∆v|∂Ω×[0,T] = ∆2v|∂Ω×[0,T] = ∆3v|∂Ω×[0,T] = 0. (18)

Here, γ is a constant for which the following inequality holds:

0 < γ ⩽ min
(

ν

K0 +κ , α1, α2, . . . αL

)
. (19)

Here, K0 is a constant from Poincaré’s inequality:

∥u∥2
V0 ⩽ K0∥u∥2

V1 . (20)

The exact choice of γ is described in the proof of Theorem 7.
Let us assume b ∈ V5, f ∈ V−1.

Definition 11. A function v ∈ W2 is called a solution to approximation problem (14)–(18) if it
satisfies, for any function φ ∈ V3 and for almost all t ∈ (0, T), the identity∫

Ω

v′φdx +κ
∫
Ω

∇(v′) : ∇φdx − εe−γt
∫
Ω

∇
(

∆2v′
)

: ∇(∆φ)dx −
∫
Ω

n

∑
i,j=1

vivj
∂φj

∂xi
dx

+ ν
∫
Ω

∇v : ∇φ dx −κ
∫
Ω

n

∑
i,j,k=1

vk
∂vi
∂xj

∂2 φj

∂xi∂xk
dx −κ

∫
Ω

n

∑
i,j,k=1

vk
∂vj

∂xi

∂2 φj

∂xi∂xk
dx

+ 2
∫ t

0

L

∑
i=1

βie−αi(t−s)
∫

Ω
E(v)(s, z(s, t, x)) : E(φ)dxds = ⟨ f , φ⟩ (21)

and the initial condition
v(0) = b. (22)

Here, z is the solution to problem (16). Due to the continuous embedding V5 ⊂
C1(Ω)n, problem (16) has a unique solution z, which exists by Lemma 3.
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Definition 12. A function v ∈ Wloc
2 (R+) is called a solution to approximation problem (14)–(18)

on the semi-axis R+ if for every T > 0 the restriction of v to the interval [0, T] is a solution to
approximation problem (14)–(18) on [0, T].

The following theorem holds.

Theorem 6. There is at least one solution to approximation problem (14)–(18).

Let us introduce operators using the following equalities:

A : V1 → V−1, ⟨Au, φ⟩ =
∫

Ω
∇u : ∇φdx, ∀u, φ ∈ V1;

A4 : V5 → V−3, ⟨A4u, φ⟩ = −
∫
Ω

∇(∆2u) : ∇(∆φ) dx, u ∈ V5, φ ∈ V3;

J : V1 → V−1, ⟨Ju, φ⟩ =
∫

Ω
uφdx, ∀u, φ ∈ V1;

B1 : L4(Ω)n → V−1, ⟨B1(u)(t), φ⟩ =
∫
Ω

n

∑
i,j=1

ui(t)u(t)j
∂φj

∂xi
dx, u ∈ L4(Ω)n, φ ∈ V1;

B2 : V1 → V−3, ⟨B2(u)(t), φ⟩ =
∫
Ω

n

∑
i,j,k=1

uk(t)
∂u(t)i

∂xj

∂2 φj

∂xi∂xk
dx, u ∈ V1, φ ∈ V3;

B3 : V1 → V−3, ⟨B3(u)(t), φ⟩ =
∫
Ω

n

∑
i,j,k=1

uk(t)
∂u(t)j

∂xi

∂2 φj

∂xi∂xk
dx, u ∈ V1, φ ∈ V3;

N : L2(0, T; V1) → L2(0, T; V−1),

⟨N(u)(t), φ⟩ = 2
∫ t

0

L

∑
i=1

βie−αi(t−s)
∫

Ω
E(u)(s, z(s, t, x)) : E(φ)dxds,

u ∈ L2(0, T; V1), φ ∈ V1.

Then, the solvability of problem (6)–(9) is equivalent to the existence of a function
v ∈ W1 which satisfies the operator equation

(J +κA)v′ + νAv − B1(v)−κB2(v)−κB3(v) + N(v) = f , (23)

as well as initial condition (13).
And the problem of finding a function v ∈ W2, satisfying for any test function φ ∈ V3

for almost all t ∈ (0, T) identity (21) and initial condition (22), is equivalent to the problem
of finding a function v ∈ W2 that is a solution to the operator equation

(J + εe−γt A4 +κA)v′ + νAv − B1(v)−κB2(v)−κB3(v) + N(v) = f , (24)

and that satisfies initial condition (22).
We need the following lemma about the properties of operators. Proof of these

properties can be found in [31].

Lemma 5.

(1) For any function v ∈ L2(0, T; V1), it holds that Av ∈ L2(0, T; V−1), the operator
A : L2(0, T; V1) → L2(0, T; V−1) is continuous and for almost all t ∈ (0, T) the fol-
lowing estimate holds:

∥Av(t)∥V−1 ⩽ ∥v(t)∥V1 . (25)
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(2) For any function v ∈ L2(0, T; V5), it takes place that A4v ∈ L2(0, T; V−3), the operator
A4 : L2(0, T; V5) → L2(0, T; V−3) is continuous and for almost all t ∈ (0, T) the following
estimate holds:

∥A4v(t)∥V−3 ⩽ ∥v(t)∥V5 . (26)

(3) For any function v ∈ L2(0, T; V−1), we obtain (J + κA)v ∈ L2(0, T; V−3), the operator
(J +κA) : L2(0, T; V−1) → L2(0, T; V−3) is continuous and for almost all t ∈ (0, T) the
following estimate holds:

C0∥v(t)∥V−1 ⩽ ∥(J +κA)v(t)∥V−3 . (27)

(4) For any function v ∈ L2(0, T; V5), it holds that (J + εe−γt A4 +κA)v ∈ L2(0, T; V−3), the
operator (J + εe−γt A4 +κA) : L2(0, T; V5) → L2(0, T; V−3) is continuous and invertible
and for almost all t ∈ (0, T) it satisfies the estimate

ε∥v(t)∥V5 ⩽ ∥(J + εe−γt A4 +κA)v(t)∥V−3 ⩽ (C1 + ε +κC2)∥v(t)∥V5 . (28)

(5) For any function v ∈ L2(0, T; V1), we obtain B1(v) ∈ L2(0, T; V−3), the mapping B1 :
L2(0, T; V1) → L2(0, T; V−3) is continuous and for almost all t ∈ (0, T) the following
estimate holds:

∥B1(v)(t)∥V−3 ⩽ C3∥v(t)∥V1 . (29)

(6) For any function v ∈ L2(0, T; V1), the value B2(v) belongs to L2(0, T; V−3), the mapping
B2 : L2(0, T; V1) → L2(0, T; V−3) is continuous and for almost all t ∈ (0, T) the following
estimate takes place:

∥B2(v)(t)∥V−3 ⩽ C4∥v(t)∥V1 . (30)

(7) For any function v ∈ L2(0, T; V1), it holds that B3(v) ∈ L2(0, T; V−3). The mapping
B3 : L2(0, T; V1) → L2(0, T; V−3) is continuous and for almost all t ∈ (0, T) it satisfies
the inequality

∥B3(v)(t)∥V−3 ⩽ C4∥v(t)∥V1 . (31)

The inequality obtained in the following lemma is important for obtaining the neces-
sary a priori estimates for solutions.

Lemma 6. The operator N : L2(0, T; V1) → L2(0, T; V−1) is continuous, and for all t ∈ [0, T]
the following inequality holds:

∥N(v)(t)∥V−1 ⩽ C5

(∫ t

0
e−γ(t−s)∥v(s)∥2

V1 ds
)1/2

. (32)

Proof. The continuity of the operator is proved similarly to [31] (Lemma 10).
Let us prove the validity of the required inequality. For any t ∈ [0, T], by definition of

the operator N, due to Hölder’s inequality, we have

|⟨N(v)(t), φ⟩| =
∣∣∣∣∣2
∫ t

0

L

∑
i=1

βie−αi(t−s)
∫

Ω
E(v)(s, z(s, t, x)) : E(φ)dxds

∣∣∣∣∣
⩽ 2

L

∑
i=1

|βi|
∫ t

0
e−αi(t−s)

(∫
Ω
|E(v)(s, z(s, t, x))|2dx

)1/2(∫
Ω
|E(φ)|2dx

)1/2
ds.

In the first of these two integrals, we make the change of variables y = z(s, t, x). Since
divv = 0, then det ∂z

∂x = 1. Therefore, for this integral, we have∫
Ω
|E(v)(s, z(s, t, x))|2dx =

∫
Ω
|E(v)(s, y))|2dy = ∥E(v)(s)∥2

L2(Ω)n2 .
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Thus,

|⟨N(v)(t), φ⟩| ⩽ 2
L

∑
i=1

|βi|
∫ t

0
e−αi(t−s)∥E(v)(s)∥L2(Ω)n2 ds∥E(φ)∥L2(Ω)n2

⩽ 2
L

∑
i=1

|βi|
∫ t

0
e−αi(t−s)∥v(s)∥V1 ds∥φ∥V1 .

Here, we used the inequality ∥E(v)∥L2(Ω)n2 ⩽ ∥v∥V1 .

Therefore, for each t ∈ [0, T], the following inequality holds:

∥N(v)(t)∥V−1 ⩽ 2
L

∑
i=1

|βi|
∫ t

0
e−αi(t−s)∥v(s)∥V1 ds. (33)

For each i = 1, L, due to Hölder’s inequality and (19), we have

∫ t

0
e−αi(t−s)∥v(s)∥V1 ds =

∫ t

0
e−(αi−γ/2)(t−s)e−(t−s)γ/2∥v(s)∥V1 ds

⩽
(∫ t

0
e−2(αi−γ/2)(t−s)ds

)1/2(∫ t

0
e−γ(t−s)∥v(s)∥2

V1 ds
)1/2

=

(
1 − e−2(αi−γ/2)t

2αi − γ

)1/2(∫ t

0
e−γ(t−s)∥v(s)∥2

V1 ds
)1/2

⩽
1√

2αi − γ

(∫ t

0
e−γ(t−s)∥v(s)∥2

V1 ds
)1/2

.

From here and from (33), the required inequality (32) follows.

6. Estimates of Solutions

In this section, we establish the estimates necessary to determine trajectory spaces.
Conditions are also formulated for the coefficients of problem (14)–(18) under which these
estimates take place.

Theorem 7. Let v be the solution to approximation Equation (24), and let the coefficients of problem
(14)–(18) satisfy the following conditions:

ναi > 4L|βi|, i = 1, L. (34)

Then, for all τ ∈ [0, T], the following estimate holds:

κ∥v(τ)∥2
V1 + εe−γτ∥v(τ)∥2

V4 + λ1ν
∫ τ

0
e−γ(τ−t)∥v(t)∥2

V1 dt

⩽ C7 + e−γτ
(

C6∥v(0)∥2
V1 + ε∥v(0)∥2

V4

)
. (35)

Here, C7 =
∥ f ∥2

V−1

γν(1 − λ1 − λ2)
, C6 = (K0 +κ), K0 is a constant from Poincaré’s inequality

(20), and λ1, λ2 are some constants such that λ1 > 0, λ2 > 0, 0 < λ1 + λ2 < 1.

Proof. Let v be the solution to Equation (24). Apply (24) to v. We obtain

⟨Jv′ + εe−γt A4v′ +κAv′ + νAv − B1(v)−κB2(v)−κB3(v) + N(v), v⟩ = ⟨ f , v⟩. (36)



Mathematics 2024, 12, 266 13 of 26

Let us transform the terms from the last equality as follows:

⟨Jv′, v⟩ =
∫

Ω
v′vdx =

1
2

d
dt
∥v∥2

V0 ;

ν⟨Av, v⟩ = ν∥v∥2
V1 ;

εe−γt⟨A4v′, v⟩ = −εe−γt
∫

Ω
∇
(

∆3v′
)

: ∇vdx = εe−γt
∫

Ω
∆3v′∆v dx

= −εe−γt
∫

Ω
∇(∆2v′) : ∇∆vdx = εe−γt

∫
Ω

∆2v′∆2vdx =
εe−γt

2
d
dt
∥v∥2

V4 ;

κ⟨Av′, v⟩ = κ
∫

Ω
∇(v′) : ∇vdx =

κ
2

d
dt
∥v∥2

V1 .

The following equalities also hold (see [31], for example, for a complete proof):

⟨B1(v), v⟩ = 0; ⟨B2(v) + B3(v), v⟩ = 0.

Similar to the proof of Lemma 6 for the last term on the left-hand side of (36), we have

|⟨Nv, v⟩| ⩽ 2
L

∑
i=1

|βi|
∫ t

0
e−αi(t−s)∥v(s)∥V1 ds∥v(t)∥V1 .

Let λ1, λ2 be numbers such that λ1 > 0, λ2 > 0, 0 < λ1 + λ2 < 1, and the exact value
of λ1 and λ2 will be indicated below. Let us estimate the right-hand side of (36) as follows:

⟨ f , v⟩ ⩽ ∥ f ∥V−1∥v(t)∥V1 ⩽
ν(1 − λ1 − λ2)∥v(t)∥2

V1

2
+

∥ f ∥2
V−1

2ν(1 − λ1 − λ2)
.

Here, we used the elementary inequality ab ⩽ δa2

2 + b2

2δ , which holds for any non-
negative a, b and positive δ. Namely, we set δ = ν(1 − λ1 − λ2).

Then, from (36), we obtain the inequality

1
2

d
dt
∥v(t)∥2

V0 + ν∥v(t)∥2
V1 +

κ
2

d
dt
∥v(t)∥2

V2 +
ε

2
e−γt d

dt
∥v(t)∥2

V4

− 2
L

∑
i=1

|βi|
∫ t

0
e−αi(t−s)∥v(s)∥V1 ds∥v(t)∥V1

⩽
ν(1 − λ1 − λ2)∥v(t)∥2

V1

2
+

∥ f ∥2
V−1

2ν(1 − λ1 − λ2)
.

Multiply both sides of the last inequality by 2 and collect similar ones. We obtain

d
dt
∥v(t)∥2

V0 + ν∥v(t)∥2
V1 +κ d

dt
∥v(t)∥2

V2 + εe−γt d
dt
∥v(t)∥2

V4 + λ1ν∥v(t)∥2
V1

+ λ2ν∥v(t)∥2
V1 − 4

L

∑
i=1

|βi|
∫ t

0
e−αi(t−s)∥v(s)∥V1 ds∥v(t)∥V1 ⩽

∥ f ∥2
V−1

ν(1 − λ1 − λ2)
.

For brevity, we denote

F =
∥ f ∥2

V−1

ν(1 − λ1 − λ2)
; G(t) = λ2ν∥v(t)∥2

V1 − 4
L

∑
i=1

|βi|
∫ t

0
e−αi(t−s)∥v(s)∥V1 ds∥v(t)∥V1 .

Then,

d
dt
∥v(t)∥2

V0 + ν∥v(t)∥2
V1 +κ d

dt
∥v(t)∥2

V2 + εe−γt d
dt
∥v(t)∥2

V4 + λ1ν∥v(t)∥2
V1 + G(t) ⩽ F. (37)
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Let us introduce on V1 an auxiliary norm

∥u∥2 = ∥u∥2
V0 +κ∥u∥2

V1 . (38)

Its equivalence to the V1 norm follows from Poincaré’s inequality (20), due to which
the following inequality holds:

κ∥u∥2
V1 ⩽ ∥u∥2 ⩽ (K0 +κ)∥u∥2

V1 . (39)

Then, due to condition (19) on γ, we obtain

ν∥u∥2
V1 ⩾

ν

(K0 +κ)∥u∥2 ⩾ γ∥u∥2. (40)

From (37), using (38) and (40), we have

d
dt
∥v(t)∥2 + γ∥v(t)∥2 + εe−γt d

dt
∥v(t)∥2

V4 + λ1ν∥v(t)∥2
V1 + G(t) ⩽ F.

In the first two terms on the left-hand side, we make the change v(t) = e−γt/2v(t).

d
dt
∥e−γt/2v(t)∥2 + γ∥e−γt/2v(t)∥2 + εe−γt d

dt
∥v(t)∥2

V4 + λ1ν∥v(t)∥2
V1 + G(t) ⩽ F.

Therefore,

− γe−γt∥v(t)∥2 + e−γt d
dt
∥v(t)∥2 + γe−γt∥v(t)∥2

+ εe−γt d
dt
∥v(t)∥2

V4 + λ1ν∥v(t)∥2
V1 + G(t) ⩽ F.

Let us multiply both sides of the inequality by eγt.

d
dt
∥v(t)∥2 + ε

d
dt
∥v(t)∥2

V4 + λ1νeγt∥v(t)∥2
V1 + eγtG(t) ⩽ eγtF.

Let us integrate the last inequality over t from 0 to τ, where τ ∈ [0, T].

∥v(τ)∥2 + ε∥v(τ)∥2
V4 + λ1ν

∫ τ

0
eγt∥v(t)∥2

V1 dt +
∫ τ

0
eγtG(t)dt

⩽
∫ τ

0
eγtFdt + ∥v(0)∥2 + ε∥v(0)∥2

V4 .

We multiply both sides by e−γτ and estimate the right-hand side from above as follows:

e−γτ∥v(τ)∥2 + εe−γτ∥v(τ)∥2
V4 + λ1ν

∫ τ

0
e−γ(τ−t)∥v(t)∥2

V1 dt +
∫ τ

0
e−γ(τ−t)G(t)dt ⩽

⩽
∫ τ

0
e−γ(τ−t)Fdt + e−γτ

(
∥v(0)∥2 + ε∥v(0)∥2

V4

)
=

F
γ
(1 − e−γτ) + e−γτ

(
∥v(0)∥2 + ε∥v(0)∥2

V4

)
⩽

F
γ
+ e−γτ

(
∥v(0)∥2 + ε∥v(0)∥2

V4

)
.
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Let us make the reverse change v(t) = eγt/2v(t). Due to the definition of the auxiliary
norm, we obtain

∥v(τ)∥2
V0 +κ∥v(τ)∥2

V1 + εe−γτ∥v(τ)∥2
V4

+ λ1ν
∫ τ

0
e−γ(τ−t)∥v(t)∥2

V1 dt +
∫ τ

0
e−γ(τ−t)G(t)dt

⩽
F
γ
+ e−γτ

(
(K0 +κ)∥v(0)∥2

V1 + ε∥v(0)∥2
V4

)
. (41)

Let us now show that the last term on the left side of this inequality is non-negative.
Recalling the previously introduced notation, we have

∫ τ

0
e−γ(τ−t)G(t)dt

=
∫ τ

0
e−γ(τ−t)

(
λ2ν∥v(t)∥2

V1 − 4
L

∑
i=1

|βi|
∫ t

0
e−αi(t−s)∥v(s)∥V1 ds∥v(t)∥V1

)
dt.

Let us introduce auxiliary functions

h(t) = ∥v(t)∥V1 ; gi(t) =
∫ t

0
e−αi(t−s)∥v(s)∥V1 ds =

∫ t

0
e−αi(t−s)h(s)ds i = 1, L.

The function h is continuous on [0, T], and the functions gi, i = 1, L, are continuously
differentiable on this interval. Direct calculation gives

g′i(t) = h(t)− αi

∫ t

0
e−αi(t−s)h(s)ds = h(t)− αigi(t), i = 1, L.

Then,
g′i(t) + αigi(t) = h(t); gi(0) = 0, i = 1, L.

Therefore,

G(t) = λ2νh2(t)− 4h(t)
L

∑
i=1

|βi|gi(t)

=
L

∑
i=1

(
λ2ν

L
(g′i(t) + αigi(t))2 − 4|βi|gi(t)(g′i(t) + αigi(t))

)

=
L

∑
i=1

(
λ2ν

L
(g′i(t))

2 + 2
(

λ2ναi
L

− 2|βi|
)

g′i(t)gi(t) +

(
λ2να2

i
L

− 4|βi|αi

)
g2

i (t)

)
.

By virtue of the integration by parts formula, for any i = 1, L, we have

2
∫ τ

0
e−γ(τ−t)g′i(t)gi(t)dt = e−γτ

(
eγtg2

i (t)
)∣∣τ

0−γe−γτ
∫ τ

0
eγtg2

i (t)dt

= g2
i (τ)− γ

∫ τ

0
e−γ(τ−t)g2

i (t)dt.

Thus,

∫ τ

0
e−γ(τ−t)G(t)dt =

L

∑
i=1

(
λ2ν

L

∫ τ

0
e−γ(τ−t)(g′i(t))

2dt +
(

λ2ναi
L

− 2|βi|
)

g2
i (t)

+

(
αi

(
λ2ναi

L
− 4|βi|

)
− γ

(
λ2ναi

L
− 2|βi|

)) ∫ τ

0
e−γ(τ−t)g2

i (t)dt
)

.
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Let us show that for each i = 1, L, if the conditions in (34) are satisfied, then it is
possible to choose positive number µi such that the expression(

λ2ν

L

∫ τ

0
e−γ(τ−t)(g′i(t))

2dt +
(

λ2ναi
L

− 2|βi|
)

g2
i (t)

+

((
λ2να2

i
L

− 4|βi|αi

)
− µi

(
λ2ναi

L
− 2|βi|

)) ∫ τ

0
e−γ(τ−t)(gi(t))2dt

)
(42)

is non-negative.
Since λ2 > 0, ν > 0 and L ⩾ 1, then for each i = 1, L, we have

λ2ν

L

∫ τ

0
e−γ(τ−t)(g′i(t))

2dt ⩾ 0.

Further, due to (34), we have ναi
L > 4|βi|, i = 1, L. Therefore, we can choose λ2,

possibly close enough to 1, such that

λ2ναi
L

− 4|βi| > 0, i = 1, L. (43)

Consequently, the second term in (42) is non-negative.
Let us move on to the coefficient before the third term in (42). Due to (43), we obtain(

λ2ναi
L

− 4|βi|
)
> 0,

(
λ2ναi

L
− 2|βi|

)
> 0.

Therefore, one can always choose µi, 0 < µi ⩽ γ, such that

αi

(
λ2ναi

L
− 4|βi|

)
− µi

(
λ2ναi

L
− 2|βi|

)
> 0.

Let us put
γ = min

i=1,L
µi.

Therefore, ∫ τ

0
e−γ(τ−t)G(t)dt ⩾ 0.

Estimating the left-hand side of inequality (41) from below, we obtain the required
inequality (35).

Remark 2. Note that the conditions in (34) cannot be weakened. In fact, in the case λi = λ, i = 1, L,
αi = α, i = 1, L, βi = β, i = 1, L, we obtain

∫ τ

0
e−γ(τ−t)G(t)dt = λ2ν

∫ τ

0
e−γ(τ−t)(g′(t))2dt + (λ2να − 2L|β|)g2(t)

+ (α(λ2να − 4L|β|)− γ(λ2να − 2L|β|))
∫ τ

0
e−γ(τ−t)g2(t)dt. (44)

Here, g(t) =
∫ t

0 e−α(t−s)∥v(s)∥V1 ds.
Therefore, if the condition να > 4L|β| is not satisfied, then the coefficient before the last term

in (44) is not non-negative.
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Theorem 8. Let v be a solution to Equation (24) on [0, T], T > 0, for some ε > 0, and let the
coefficients ν, αi, βi, i = 1, L satisfy the conditions in (34). Then, for almost all t ∈ (0, T), the
following estimates hold:

εe−γt∥v′(t)∥V5 ⩽ C12 + C13e−γt
(

C6∥v(0)∥2
V1 + ε∥v(0)∥2

V4

)
; (45)

C0∥v′(t)∥V−1 ⩽ 2C12 + 2C13e−γt
(

C6∥v(0)∥2
V1 + ε∥v(0)∥2

V4

)
. (46)

And for all t ∈ [0, T], the estimate

e−γt∥v(t)∥V5 ⩽ e−γt∥v(0)∥V5 +
1

εγ

(
C12 + C13

(
C6∥v(0)∥2

V1 + ε∥v(0)∥2
V4

))
(47)

is valid.

Proof. Since v is a solution to Equation (24), then for almost all t ∈ (0, T) the following
equality of norms holds:∥∥∥(J + εe−γt A4 +κA)v′(t)

∥∥∥
V−3

= ∥−νAv(t) + B1(v)(t) +κB2(v)(t) +κB3(v)(t)− N(v)(t) + f ∥V−3 . (48)

By virtue of (28), the left-hand side of the last equality can be estimated as follows:

εe−γt∥∥v′(t)
∥∥

V5 ⩽
∥∥∥(J + εe−γt A4 +κA)v′(t)

∥∥∥
V−3

. (49)

Due to inequalities (25), (29)–(32) and the continuity of the embedding V−1 ⊂ V−3 for
the right-hand side of equality (48), we have

∥−νAv(t) + B1(v)(t) +κB2(v)(t) +κB3(v)(t)− N(v)(t) + f ∥V−3

⩽ ∥νAv(t)∥V−3 + ∥B1(v)(t)∥V−3 +κ∥B2(v)(t)∥V−3

+κ∥B3(v)(t)∥V−3 + ∥N(v)(t)∥V−3 + ∥ f ∥V−3

⩽ νC8∥v(t)∥V1 + C3∥v(t)∥2
V1 + 2κC4∥v(t)∥2

V1

+C5C8

(∫ t

0
e−γ(t−s)∥v(s)∥2

V1 ds
)1/2

+ C8∥ f ∥V−1

⩽ C9∥v(t)∥2
V1 + C10

∫ t

0
e−γ(t−s)∥v(s)∥2

V1 dt + C11.

Here, we used the elementary inequality a ⩽ 1 + a2, which holds for any a ⩾ 0.
Thus, the required inequality (45) follows from the last estimate, in addition to equality

(48), inequality (49) as well as inequality (35).
Similarly, if v is a solution to (24), then the following equality of norms holds:

∥∥(J +κA)v′(t)
∥∥

V−3 =
∥∥∥−εe−γt A4v′(t)− νAv(t) + B1(v)(t) +κB2(v)(t) +κB3(v)(t)− N(v)(t) + f

∥∥∥
V−3

. (50)

By virtue of (27), the left-hand side of the last equality from below can be estimated
as follows:

C0∥v(t)∥V−1 ⩽
∥∥(J +κA)v′(t)

∥∥
V−3 . (51)
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Similar to the previous one, the right-hand side of (50) due to inequality (26) can be
estimated as follows:∥∥∥−εe−γt A4v′(t)− νAv(t) + B1(v)(t) +κB2(v)(t) +κB3(v)(t)− N(v)(t) + f

∥∥∥
V−3

⩽
∥∥∥−εe−γt A4v′(t)

∥∥∥
V−3

+∥−νAv(t) + B1(v)(t) +κB2(v)(t) +κB3(v)(t)− N(v)(t) + f ∥V−3

⩽ εe−γt∥∥v′(t)
∥∥

V5

+∥−νAv(t) + B1(v)(t) +κB2(v)(t) +κB3(v)(t)− N(v)(t) + f ∥V−3

⩽ 2C12 + 2C13e−γt
(

C6∥v(0)∥2
V1 + ε∥v(0)∥2

V4

)
.

Thus, due to the last inequality and estimate (51), using (50), we obtain the required
inequality (46).

In order to obtain estimate (47), we note that for all t ∈ [0, T] the following equality holds:

v(t) = v(0) +
∫ t

0
v′(s)ds.

Let us multiply both sides of this equality by e−γt. We obtain

e−γtv(t) = e−γt
(

v(0) +
∫ t

0
v′(s)ds

)
.

Then, by virtue of (45), we have

∥e−γtv(t)∥V5 =

∥∥∥∥e−γt
(

v(0) +
∫ t

0
v′(s)ds

)∥∥∥∥
V5

=

∥∥∥∥e−γt
(

v(0) +
∫ t

0
e−γseγsv′(s)ds

)∥∥∥∥
V5

⩽ e−γt∥v(0)∥V5 +
∫ t

0
e−γ(t−s)e−γs∥v′(s)∥V5 ds

⩽ e−γt∥v(0)∥V5 +
1
ε

∫ t

0
e−γ(t−s)

(
C12 + C13e−γs

(
C6∥v(0)∥2

V1 + ε∥v(0)∥2
V4

))
ds

⩽ e−γt∥v(0)∥V5 +
C12

ε

∫ t

0
e−γ(t−s)ds

+
1
ε

∫ t

0
e−γ(t−s)e−γs

(
C13

(
C6∥v(0)∥2

V1 + ε∥v(0)∥2
V4

))
ds

⩽ e−γt∥v(0)∥V5 +
C12

εγ
(1 − e−γt) +

C13

εγ
(1 − e−γt)

(
C6∥v(0)∥2

V1 + ε∥v(0)∥2
V4

)
⩽ e−γt∥v(0)∥V5 +

1
εγ

(
C12 + C13

(
C6∥v(0)∥2

V1 + ε∥v(0)∥2
V4

))
.

Therefore, the required estimate (47) is proved.

Corollary 1. Let v be a solution to Equation (24) on the interval [0, T], T > 0, for some ε > 0, and
let the coefficients ν, αi, βi, i = 1, L satisfy the conditions in (34). Then, for almost all t ∈ (0, T),
the following estimates hold:

∥v(t)∥V1 + ∥v′(t)∥V−1 ⩽ C14 + C15e−γt
(

C6∥v(0)∥2
V1 + ε∥v(0)∥2

V4

)
; (52)

e−γt(∥v(t)∥V5 + ∥v′(t)∥V5) ⩽ C16. (53)

Here, the constant C16 depends on 1
ε .
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7. Existence Theorems for Solutions

The following theorem holds on the existence of solutions to the approximation
problem on the interval [0, T], T > 0.

Theorem 9. Let the coefficients ν, αi, βi, i = 1, L satisfy the conditions in (34). Then, on any
interval [0, T], T > 0, there exists a solution to Equation (24) that satisfies initial condition (22),
and this solution satisfies estimates (52) and (53).

The proof of this theorem is similar to the proof of Theorem 6 in [31], and is based on
the Leray–Schauder fixed point theorem. The presence of restrictions on the coefficients of
the approximation problem does not have any effect on the progress of the proof.

We also need the following technical lemma. We can establish convergence in spaces
with better properties. Namely, for the approximation problem, due to the obtained
estimates, it is possible to establish convergence in smoother spaces. But for our purposes,
the convergences indicated below are sufficient.

Lemma 7. Let the sequence {vm} be bounded in W1[0, T]. Then, the following hold:

(1) There is a subsequence {vmk} converging to the limit function v∗ in C([0, T]; L4(Ω)n), and
the following relations hold:

Jv′mk
⇀ Jv′∗ weakly in L2(0, T; V−1) as mk → ∞; (54)

νAvmk ⇀ νAv∗ weakly in L2(0, T; V−1) as mk → ∞; (55)

κAv′mk
⇀ κAv′∗ weakly in L2(0, T; V−3) as mk → ∞; (56)

B1(vmk ) → B1(v∗) strongly in C([0, T], V−1) as mk → ∞; (57)

κB2(vmk ) ⇀ κB2(v∗) weakly in L2(0, T; V−3) as mk → ∞; (58)

κB3(vmk ) ⇀ κB3(v∗) weakly in L2(0, T; V−3) as mk → ∞; (59)

N(vmk ) ⇀ N(v∗) weakly in L2(0, T; V−1) as mk → ∞. (60)

(2) Let {εm} be a number sequence, with εm → 0 as m → ∞, and let a sequence {εmv′m} be
bounded in L∞(0, T, V5). Then, there exists a subsequence {εmk v′mk

} such that εmk e−γt A4v′mk

⇀ 0 weakly in L2(0, T; V−3) as mk → ∞.
(3) Let a sequence {v′m} be bounded in L∞(0, T; V5). Then, there is a subsequence {v′mk

}
such that (J + εe−γt A4 +κA)v′mk

⇀ (J + εe−γt A4 +κA)v′∗ weakly in L2(0, T; V−3) as
mk → ∞.

Proof. (1) By Theorem 4, the embedding W1[0, T] ⊂ C([0, T], L4(Ω)n) is compact. Since
the sequence {vm} is bounded in W1[0, T], it is relatively compact in C([0, T], L4(Ω)n).
Therefore, there is a subsequence {vmk}, converging in C([0, T], L4(Ω)n) to some function
v∗. That is,

vmk → v∗ strongly in C([0, T], L4(Ω)n) as mk → +∞. (61)

Let us move from non-reflexive spaces L∞ to reflexive spaces Lp, in order to take
advantage of the weak compactness of bounded sets. Since the space L∞ is continuously
embedded in Lp with p ⩾ 1, then the sequences {vm} and {v′m} are bounded in L2(0, T; V1)
and L2(0, T; V−1), respectively. Therefore, without loss of generality, we obtain

vmk ⇀ v∗ weakly in L2(0, T; V1) as mk → +∞; (62)

v′mk
⇀ v′∗ weakly in L2(0, T; V−1) as mk → +∞. (63)

Convergence (63) directly implies (54). By Lemma 5, the linear operator A is continu-
ous. Therefore, convergences (55) and (56) follow from (62) and (63), respectively.
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Due to strong convergence (61) and the definition of the operator B1, we obtain the
validity of convergence (57).

Since vm converges to v∗ strongly in C([0, T], L4(Ω)n) and ∇vm converges weakly to
∇v∗ in L4(0, T; L2(Ω)n2

), then their product converges weakly to the product of limits.
Using the definitions of B2 and B3, we obtain the validity of convergences (58) and (59).

Convergence (60) is valid due to Lemma 4.
(2) Since the sequence {εmv′m} is bounded in L∞(0, T, V5), then the sequence {εme−γtv′m}

is also bounded in the same space. Therefore, there is a subsequence {εmk e−γtv′mk
}, which

weakly converges to some function w in L2(0, T; V5) as mk → ∞. But in the sense of
distributions on the interval [0, T] with values in V−7, this subsequence converges to zero.
In fact, for any χ ∈ D([0, T]), φ ∈ V7, using Green’s formula and weak convergence (62),
we obtain

lim
mk→∞

∣∣∣∣∣∣εmk

T∫
0

∫
Ω

∇
(

∆2v′mk

)
: ∇(∆φ)dxχ(t)dt

∣∣∣∣∣∣
= lim

mk→∞
εmk lim

mk→∞

∣∣∣∣∣∣
T∫

0

∫
Ω

∇vmk (t) : ∇
(

∆3 φ
)

dx
∂χ(t)

∂t
dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T∫

0

∫
Ω

∇v(t) : ∇
(

∆3 φ
)

dx
∂χ(t)

∂t
dt

∣∣∣∣∣∣ lim
mk→∞

εmk = 0.

Therefore, due to the uniqueness of the weak limit,

εmk

∫
Ω

∇
(

∆2v′mk

)
: ∇(∆φ)dx → 0 as mk → ∞.

This implies the required convergence.
(3) Due to the boundedness of {v′m}, there exists a subsequence {v′mk

} which con-
verges to v′∗ weakly in L2(0, T, V5). Therefore, the required convergence follows from the
continuity of the linear operator (J + εe−γt A4 +κA) : L2(0, T; V5) → L2(0, T; V−3).

The following theorem establishes the solvability of approximation problem (24), (22)
on the semi-axis R+.

Theorem 10. Let the coefficients ν, αi, βi, i = 1, L satisfy the conditions in (34). Then, problem
(24), (22) on R+ has a solution v ∈ Wloc

2 (R+) satisfying for almost all t ∈ R+ the following
inequalities:

∥v(t)∥V1 + ∥v′(t)∥V−1 ⩽ C18 + C19e−γt
(

C6∥v(0)∥2
V1 + ε∥v(0)∥2

V4

)
; (64)

εe−γt∥v′(t)∥V5 ⩽ C12 + C13e−γt
(

C6∥v(0)∥2
V1 + ε∥v(0)∥2

V4

)
. (65)

Proof. Let vm be a solution to problem (24), (22) on the interval [0, m] (m = 1, 2, . . .), which
exists by Theorem 9. Let us extend the functions vm onto the semi-axis R+ as follows:

v̂m(t) =

{
v(t), 0 ⩽ t ⩽ m,
v(m), t ⩾ m.

Based on the continuation on R+, the functions v̂m belong to the space Wloc
2 (R+). Let

us show that the sequence {v̂m} is relatively compact in C(R+, V1). By Lemma 1, it is
sufficient to establish that for any T > 0 the sequence {ΠT v̂m} is relatively compact in the
space C([0, T], V1).
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Let us take an arbitrary T > 0. Having possibly discarded the first few terms of the
sequence, we can assume that the functions {ΠT v̂m} are solutions to problem (24), (22) on
[0, T]. Since the functions ΠT v̂m have the same value for t = 0, then by Corollary 1 these
functions satisfy for almost all t ∈ (0, T) the estimate

e−γt(∥ΠT v̂m(t)∥V5 + ∥ΠT v̂′m(t)∥V5) ⩽ C16.

Hence,
∥ΠT v̂m(t)∥L∞(0,T;V5) + ∥ΠT v̂′m(t)∥L∞(0,T;V5) ⩽ C17. (66)

Here, C17 depends on T and 1
ε and does not depend on m.

Thus, the sequence {ΠT v̂m} is bounded in L∞(0, T; V5), and the sequence {ΠT v̂′m} is
bounded in L∞(0, T; V5). Due to the compactness of the embedding V5 ⊂ V1 by Theorem 4,
the sequence {ΠT v̂m} is relatively compact in C([0, T], V1).

Due to the arbitrariness of T, the sequence {v̂m} contains a subsequence {v̂mk} which
converges in C(R+, V1) to some function v∗. Let us show that v∗ is the solution to prob-
lem (24), (22) on R+.

Let us show that v∗ belongs to the space Wloc
2 (R+). From estimate (66), it follows

that for every T > 0 the sequences {ΠT v̂mk} and {ΠT v̂′mk
} are bounded in L∞(0, T; V5).

Consequently, without loss of generality, we can assume that these sequences converge
∗-weakly in L∞(0, T; V5), respectively, to v∗ and some function u ∈ L∞(0, T; V5). However,
in the sense of distributions on (0, T) with values in V5, the sequence {ΠT v̂′mk

} converges
to v′∗. So, u = ΠTv′∗. Therefore, ΠTv∗ ∈ L∞(0, T; V5) and ΠTv′∗ ∈ L∞(0, T; V5). Since

ΠTv∗(t) = ΠTv∗(0) +
∫ t

0
ΠTv′∗(s)ds,

then ΠTv∗ ∈ C([0, T], V5). Hence, ΠTv∗ ∈ W2[0, T]. Due to the arbitrariness of T, the
function v∗ belongs to Wloc

2 (R+).
The convergence in C([0, T], V1) implies pointwise convergence. Since all functions

{v̂mk} satisfy the same initial condition and the sequence {ΠT v̂mk} converges pointwise,
then v∗ also satisfies initial condition (22).

Let us show that the function v∗ is a solution to equation (24). We need to show that for
every T > 0 the restriction of the function v∗ to segment [0, T] is a solution to equation (24)
on [0, T].

Since the sequence {v̂mk} converges to v∗ in C(R+, V1), then for every T > 0 the
sequence of restrictions {ΠT v̂mk} converges to ΠTv∗ in C([0, T], V1) as mk → ∞. Starting
from a certain number, every function ΠT v̂mk is the solution to (24). That is, each ΠT v̂mk

satisfies the equality

(J + εe−γt A4 +κA)ΠT v̂′mk
+ νAΠT v̂mk − B1(ΠT v̂mk )

−κB2(ΠT v̂mk )−κB3(ΠT v̂mk ) + N(ΠT v̂mk ) = f . (67)

From inequality (66), it follows that the conditions of Lemma 7 (the first and third
points) are satisfied. By this lemma, passing in (67) to the weak limit in L2(0, T; V−3), we
obtain that the limit function satisfies the following relation:

(J + εe−γt A4 +κA)ΠTv′∗ + νAΠTv∗ − B1(ΠTv∗)

−κB2(ΠTv∗)−κB3(ΠTv∗) + N(ΠTv∗) = f .

Thus, the function ΠTv∗ is the solution to equation (24) on [0, T]. Due to the arbitrari-
ness of T, the function v∗ is the solution to equation (24) on R+.

Let us prove estimate (64). Due to Corollary 1, the following inequality holds:

∥vmk (t)∥V1 + ∥v′mk
(t)∥V−1 ⩽ C14 + C15e−γt

(
C6∥v(0)∥2

V1 + ε∥v(0)∥2
V4

)
. (68)
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For each mk, this inequality holds for all t ∈ R+ \ Qmk , where Qmk is some set of zero
measure. Let Q = ∪mk Qmk . Then, Q is a set of zero measure. Therefore, for all t ∈ R+ \ Q,
inequality (68) holds for each mk.

Due to the above-mentioned strong convergence vmk → v∗ in C(R+, V1), for any
t ∈ R+ \Q, it holds that vmk (t) → v∗(t) in V1. Due to inequality (68), the sequence {vmk (t)}
is bounded in V1, and the sequence {v′mk

(t)} is bounded in V−1. Therefore, without loss
of generality and, if necessary, passing to a subsequence, we obtain that vmk (t) converges
weakly to v∗(t) in V1 and v′mk

(t) converges weakly to v′∗(t) in V−1. Consequently,

∥v∗(t)∥V1 ⩽ lim
mk→∞

∥vmk (t)∥V1 ⩽ C14 + C15e−γt
(

C6∥v(0)∥2
V1 + ε∥v(0)∥2

V4

)
;

∥v′∗(t)∥V−1 ⩽ lim
mk→∞

∥v′mk
(t)∥V−1 ⩽ C14 + C15e−γt

(
C6∥v(0)∥2

V1 + ε∥v(0)∥2
V4

)
.

Thus, for almost all t ∈ R+, we have the estimates

∥v∗(t)∥V1 ⩽ C14 + C15e−γt
(

C6∥v(0)∥2
V1 + ε∥v(0)∥2

V4

)
;

∥v′∗(t)∥V−1 ⩽ C14 + C15e−γt
(

C6∥v(0)∥2
V1 + ε∥v(0)∥2

V4

)
.

Adding these estimates, we obtain the required estimate (64).
Estimate (65) is obtained in a similar way.

Theorem 11. Let the coefficients ν, αi, βi, i = 1, L satisfy the conditions in (34). Then, problem
(23), (13) has a weak solution on the semi-axis R+, satisfying for almost all t > 0 the inequality

∥v(t)∥V2 + ∥v′(t)∥V−1 ⩽ C20(1 + e−γt∥v(0)∥2
V1). (69)

Here, C20 is a constant that depends on ν,κ, f and does not depend on v and ε.

Proof. Since V5 is dense in V1, then for any a ∈ V1 there is a sequence {bm} ⊂ V5 such
that ∥bm − a∥V1 → 0 as m → ∞. Let us put εm = 1/

(
m(1 + ∥bm∥2

V4)
)

. Then, εm → 0 as
m → ∞, and

εm∥bm∥2
V4 ⩽ 1. (70)

By Theorem 10, for each bm ∈ V5, there exists a solution vm of Equation (24) on R+

with ε = εm, and vm satisfies the initial condition

vm(0) = bm.

By virtue of Theorem 10 taking into account inequality (70), the following estimates hold:

∥vm(t)∥V1 + ∥v′m(t)∥V−1 ⩽ C18 + C19e−γt
(

C6∥bm∥2
V1 + 1

)
; (71)

εme−γt∥v′m(t)∥V5 ⩽ C12 + C13e−γt
(

C6∥bm∥2
V1 + 1

)
. (72)

Similar to the proof of Theorem 10, we have that each of these inequalities for each
m holds for all t ∈ R+ \ Qm. Here, Qm is some set of zero measure. Therefore, each of
these inequalities holds for all m and for all t ∈ R+ \ Q, where Q = ∪mQm is a set of
zero measure.

Let us show that the sequence {vm} is relatively compact in C(R+, L4(Ω)n). For
any T > 0, due to estimate (71), the sequence {ΠTvm} is bounded in L∞(0, T; V1), and
the sequence {ΠTv′m} is bounded in L∞(0, T; V−1). That is, the sequence {ΠTvm} is
bounded in W1[0, T]. Analogously to Lemma 7, due to the compact embedding W1[0, T] ⊂
C([0, T], L4(Ω)n), the sequence {ΠTvm} is relatively compact in C([0, T], L4(Ω)n). Then,
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by Lemma 1 by virtue of the arbitrariness of T, the sequence {vm} is relatively compact in
C(R+, L4(Ω)n).

Since the sequence {vm} is relatively compact, it contains a subsequence {vmk} which
converges in C(R+, L4(Ω)n) to some function v∗. Let us show that v∗ is the solution of (23),
(13) on the semi-axis R+.

Let us show that v∗ ∈ Wloc
1 (R+). For arbitrary T > 0, from estimate (71), the sequences

{ΠTvmk} and {ΠTv′mk
} are bounded in L∞(0, T; V1) and L∞(0, T; V−1), respectively. There-

fore, without loss of generality, the sequence {ΠTvmk} converges ∗-weakly in L∞(0, T; V1)
to v∗. Similarly, without loss of generality, the sequence {ΠTv′mk

} converges ∗-weakly in
L∞(0, T; V−1) to some function u ∈ L∞(0, T; V−1). But in the sense of distributions on
(0, T) with values in V−1, the sequence {ΠTv′mk

} converges to v′∗. Therefore, u = ΠTv′∗.
Consequently, ΠTv∗ ∈ L∞(0, T; V1), and ΠTv′∗ ∈ L∞(0, T; V−1). That is, ΠTv∗ ∈ W1[0, T].
Due to the arbitrariness of T, the function v∗ belongs to Wloc

1 (R+).
Let us show that the function v∗ is a solution to Equation (23) on R+, that is, the re-

striction ΠTv∗ on every interval [0, T] (T > 0) is a solution to Equation (23) on [0, T].
Since the sequence {v̂mk} converges strongly to v∗ in C(R+, L4(Ω)n), then for any T >

0, the sequence of restrictions {ΠTvmk} converges strongly to ΠTv∗ in C([0, T], L4(Ω)n).
Functions ΠTvmk are solutions to Equation (24), that is,

(J + εe−γt A4 +κA)ΠTv′mk
+ νAΠTvmk − B1(ΠTvmk )

−κB2(ΠTvmk )−κB3(ΠTvmk ) + N(vmk ) = f . (73)

From inequality (71), it follows that the sequence {ΠTvmk} is bounded in L∞(0, T; V1),
and the sequence {ΠTv′mk

} is bounded in L∞(0, T; V−1). Due to (72), the sequence εmk v′mk
is

bounded in L∞(0, T; V5), and due to our choice, εmk → 0. Therefore, by Lemma 7, passing
to the limit in (73) as mk → ∞, we obtain

(J +κA)ΠTv′∗ + νAΠTv∗ − B1(ΠTv∗)−κB2(ΠTv∗)−κB3(ΠTv∗) + N(v∗) = f .

Due to the arbitrariness of T, we obtain that v∗ is a solution to problem (23), (13) on
the semi-axis R+.

Let us check that v∗ satisfies initial condition (13). The convergence in C(R+, L4(Ω)n)
implies pointwise convergence. Consequently,

bmk = vmk (0) → v∗(0) strongly in L4(Ω)n.

Due to the choice of the sequence {bm}, there is the strong convergence bmk → a in V1.
Due to the uniqueness of the limit, v∗(0) = a. Namely, v∗ satisfies initial condition (13).

Let us prove inequality (69). As already mentioned, inequality (71) holds for all mk
and for all t belonging to some subset R+ of full measure. Take some such t. From (71), it
follows that the sequences {vmk (t)} and {v′mk

(t)} are bounded in V1 and V−1, respectively.
Consequently, each of them contains subsequences vl(t) and v′l(t), which weakly converge
to v∗(t) in V1 and to v′∗(t) in V−1, respectively. Therefore,

∥v∗(t)∥V1 ⩽ lim
l→∞

∥vl(t)∥V1 ⩽ C18 + C19e−γt
(

C6∥a∥2
V1 + 1

)
;

∥v′∗(t)∥V−1 ⩽ lim
l→∞

∥v′l(t)∥V−1 ⩽ C18 + C19e−γt
(

C6∥a∥2
V1 + 1

)
.

Thus, for almost all t ∈ R+, the following estimates hold:

∥v∗(t)∥V1 ⩽ C18 + C19e−γt
(

C6∥a∥2
V1 + 1

)
;

∥v′∗(t)∥V−1 ⩽ C18 + C19e−γt
(

C6∥a∥2
V1 + 1

)
.
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Adding these estimates, we obtain estimate (69).

8. Trajectory Space and Attractors

Choose E = V1 and E0 = V−1 as the two Banach spaces needed to define the trajec-
tory space.

Let us define the trajectory space H+ for Equation (23) as follows. H+ consists of all
solutions of (23) on R+, essentially bounded as functions with values in V1 and satisfying
for almost all t > 0 the estimate

∥v(t)∥V1 + ∥v′(t)∥V−1 ⩽ C20(1 + e−γt∥v∥2
L∞(R+ ,V1)). (74)

Let us show the inclusion H+ ⊂ C(R+; V−1) ∩ L∞(R+; V1). The inclusion of H+ ⊂
L∞(R+; V1) follows directly from the definition of the trajectory space. Let v be a trajectory
from H+. Then, from inequality (74), for an arbitrary T > 0, we obtain that ΠTv′ ∈
L∞(0, T; V−1). Therefore, ΠTv belongs to the space C([0, T], V−1) as an integral with a
variable upper limit. Due to the arbitrariness of T, the function v ∈ C(R+; V−1), as it
is required.

Let us show that the space H+ is not empty. The following theorem holds.

Theorem 12. Let the coefficients ν, αi, βi, i = 1, L satisfy conditions (34). Then, for each a ∈ V1,
there exists a trajectory v ∈ H+, such that v(0) = a.

Proof. By Theorem 11, there exists a solution v ∈ W loc
1 (R+) to problem (23), (13) on R+.

Let us show that v is a trajectory. For this, let us show that v satisfies estimate (74). Since
for v inequality (69) holds, it suffices to show that

∥v(0)∥V1 ⩽ ∥v∥L∞(R+ ;V1). (75)

By estimate (69), v belongs to L∞(R+; V1), and v′ belongs to L∞(R+; V−1). Therefore,
similarly to the proof of this fact for trajectories, we obtain that v ∈ C(R+; V−1). Thus,
v ∈ C(R+; V−1) ∩ L∞(R+; V1). By Theorem 1, it holds that v ∈ Cw(R+; V1). Therefore,
for any t ∈ R+, the value v(t) ∈ V1 is well defined. From this fact and from the definition
of the norm in L∞(R+, V1), we obtain the required inequality (75).

The main result of this paper is contained in the following two theorems on the
existence of a minimal trajectory and a global attractor.

Theorem 13. Let the coefficients ν, αi, βi, i = 1, L satisfy conditions (34). Then, there exists a
minimal trajectory attractor U of the trajectory space H+.

Proof. By Theorem 2, it is sufficient to establish the existence of a trajectory semi-attractor.
Consider the set

P =
{

v ∈ C(R+; V−1) ∩ L∞(R+; V1) : v′ ∈ L∞(R+, V1),

∥v(t)∥V2 + ∥v′(t)∥V−1 ⩽ 2C20 for allmost all t ∈ R+
}

.

From the definition of P, it immediately follows that P is bounded in L∞(R+; V1).
Further, T(h)P ⊂ P, h ⩾ 0. Consequently, P is translation-invariant.

Let us show that P is relatively compact in C(R+; V−1). From the definition of P, for
any T > 0, the set ΠT P is bounded in L∞(0, T; V1), and the set {v′ : v ∈ ΠT P} is bounded
in L∞(0, T; V−1). By Theorem 4, the set ΠT P is relatively compact in C([0, T], V−1). Due to
the arbitrariness of T, by Lemma 1, the set P is relatively compact in C(R+; V−1).

Let us show that P is an absorbing set for H+. Let B be an arbitrary subset of H+

bounded in L∞(R+; V1). Namely, let there exist a constant R > 0 such that for all v ∈ B the
inequality ∥v∥L∞(R+ ;V1) ⩽ R holds.
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Let us choose h0 ⩾ 0 such that R2e−γh0 ⩽ 1. Let v be an arbitrary function from B.
Since v satisfies (74), then for h ⩾ h0 we have

∥T(h)v(t)∥V1 + ∥T(h)v′(t)∥V−1 = ∥v(t + h)∥V1 + ∥v′(t + h)∥V−1

⩽ C20(1 + e−γ(t+h)R2) ⩽ C20(1 + e−γh0 R2) ⩽ 2C20.

Thus, T(h)v ∈ P.
Since the function v is arbitrary, for all h ⩾ h0, the inclusion T(h)B ⊂ P holds.

Therefore, P is an absorbing set.
Thus, the conditions of Lemma 2 are satisfied. Therefore, P is a trajectory semi-attractor.

Then, by Theorem 2, there exists a trajectory attractor of the trajectory space H+.

Theorem 14. Let the coefficients ν, αi, βi, i = 1, L satisfy the conditions in (34). Then, there exists
a global attractor A of the trajectory space H+.

Proof. The statement follows directly from Theorems 13 and 3.
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