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Abstract: Robot workpiece machining is interesting in industry as it offers some advantages, such as
higher flexibility in comparison with the conventional approach based on CNC technology. However,
in recent years, we have been facing a strong progressive shift to custom-based manufacturing and
low-volume/high-mix production, which require a novel approach to automation via the employment
of collaborative robotics. However, collaborative robots feature only limited motion capability to
provide safety in cooperation with human workers. Thus, it is highly necessary to perform more
detailed robot task planning to ensure its feasibility and optimal performance. In this paper, we
deal with the problem of studying kinematic robot performance in the case of such manufacturing
tasks, where the robot tool is constrained to follow the machining path embedded on the workpiece
surface at a prescribed orientation. The presented approach is based on the well-known concept of
manipulability, although the latter suffers from physical inconsistency due to mixing different units
of linear and angular velocity in a general 6 DOF task case. Therefore, we introduce the workpiece
surface constraint in the robot kinematic analysis, which enables an evaluation of its available velocity
capability in a reduced dimension space. Such constrained robot kinematics transform the robot’s
task space to a two-dimensional surface tangent plane, and the manipulability analysis may be
limited to the space of linear velocity only. Thus, the problem of physical inconsistency is avoided
effectively. We show the theoretical derivation of the proposed method, which was verified by
numerical experiments.

Keywords: robotics; automation; robot machining; workpiece surface polishing; collaborative robot;
manipulability; complex surface geometry; motion planning

MSC: 70B15

1. Introduction

Nowadays, robotics is an indispensable technology in many industries, especially in
manufacturing, since it represents a major building block for fully automated production
lines, such as in the automotive industry. Typically, standard applications of industrial
robots are designed such that they perform well-defined repetitive tasks of manipulation,
assembly, palletizing, welding, painting, etc. [1]. However, on the other hand, a shift from
high-volume/low-mix to low-volume/high-mix and custom-based production impacts
manufacturing seriously. It requires robots that are easier to install, program, and operate in
order to increase robotization in small and medium-sized enterprises, where collaborative
and more flexible automation appears to be a useful option. Thus, collaborative robots
(cobots) not only provide safe physical coexistence, interaction, and cooperation in a
common workspace with human workers [2,3] but are also easier to use. They are gaining
popularity in industries with a growing demand for highly customized products since
they increase manufacturing flexibility, filling the gap between fully automated systems
and manual production [4,5]. However, in order to guarantee safe physical human–robot
interaction, collaborative robots are designed with substantially reduced capabilities of
speed and force/torque in comparison with standard industrial robot arms [6].
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In addition to the above-mentioned industrial robot applications, there are also others,
such as more complex robot machining [7] or milling [8], deburring [9], surface finish-
ing [10], grinding [11], polishing [12,13], hammer-peening [14,15], etc. An excellent review
of the state-of-the-art and the perspectives on the use of industrial robots in mechanical
machining processes is presented in [16]. In some processes, the subtracting manufacturing
technology requires a significant machining force in the tool feed direction for material
removal, and in some, the machining force is required in the direction only toward the
workpiece surface. The technological process of metal surface treatment with hammer-
peening, which is applied in the tool- or mold- or die-making industry, is such a cold
forging process, in which a ball made of a carbide solid is struck with a high frequency on
the metal surface of the workpiece by a micro-forging hammer tool [17]. Hammer-peening
improves the smoothness of the surface, hardens it, and eliminates internal stresses. In this
manufacturing process, the machine hammer-peening tool (MHP tool) moves freely along
the surface of the workpiece (that may have a complex geometry) following the machining
path, which connects all surface points of the patch area to be forged. The working angle of
the MHP tool to the workpiece is usually determined as perpendicular to its surface along
the direction of travel of the tool. However, such a surface finishing process is complex and
thus a very wasteful process, which has a large impact on the cost of the overall processing
in the tool-making industry. It demands combining both a collaborative, intelligence-based,
cooperative human–robot-based technological approach, as in the robotic polishing appli-
cation [18]. Thus, it may involve not only robotized solutions, e.g., such as [19,20], but also
collaborative automation with a proper flexibility due to the customized high mix/low
volume nature of the production type in the tooling industry. Therefore, cobots can be
considered as a justified replacement for traditional industrial robots in such applications.

However, due to low-power built-in cobot actuators (in comparison with standard
industrial robot arms), their introduction in a machining process requires more careful
trajectory planning in order to ensure the feasibility of the robot task, especially in the
case of manufacturing processes with complex continuous paths where the complexity
of robot path planning increases significantly [21]. Optimal relative workpiece/robot
placement and robot path/trajectory planning considering this issue thus become even
more important in order to provide a rapid setup of a robotic system in flexible high
mix/low volume applications. Such planning problems have been interesting research
topics for many years, and their application in practice still attracts attention in the research
community. In general, path/trajectory planning is important for industrial robot appli-
cations since there is a strong interest in reducing the time interval of production cycles
to provide optimal robot energy performance and task feasibility under the robot’s joint
physical limits [16,22]. The researchers optimized the location of the robot to generate
maximum task-space velocity with minimum joint velocities [23]. For robot-to-workpiece
placement for large-scale welding systems [24], the authors generated a kinematic per-
formance map based on a kinetostatic condition index that was used to optimize robot
configurations in a polishing application [25], introduced a custom index for robot-based
placement optimization demonstrated in a trim application in shoe manufacturing [26],
and optimized a workpiece placement for the robotic operation in challenging manufacturing
tasks [27,28] and surface finishing [21,29]. An interesting new optimization approach was also
introduced to maximize the available velocities of the end-effector during a task execution of
path following in robot machining called the decomposed twist feasibility method [30].

If we consider the machining of workpieces with a complex surface, the difficulties in
path and trajectory planning significantly increase. The machining efficiency and quality in
the processing of so-called free-form surfaces significantly depend on tool paths in Cartesian
space and the corresponding trajectory in joint space as well. An excellent review of the
most interesting state-of-the-art solutions in this area has been given in [31]. Although path
and feed-rate planning and trajectory planning are closely related and all coupled together,
the complexity of the overall planning problem is such that most researchers approach
them rather separately. It is also desired to keep the tool velocity as close to the maximum
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machining velocity as possible and simultaneously satisfy the robot’s motion limits, which
are, in the case of cobots, significantly lower in comparison with standard industrial robots.
Additional consideration is related to independent control of the robot end-effector position
and orientation. In free-form machining applications, the tool orientation is usually defined
using the surface normal vector while following the position of the machining path. In order
to provide optimal robot machining of curved free-form surfaces, it is thus necessary to
consider workpiece surface geometry. The authors in [32] involve differential surface curve
analysis for tool path and Cartesian trajectory planning. Surface curvature characteristics
may also be considered for tool path generation [33,34] and region partitioning [35,36] of
complex surfaces.

There have been several attempts at trajectory optimization for an industrial robot with
different objectives. However, the main well-known basic concept that enables analysis
of robot motion capability is called manipulability [37]. It is the most important and com-
monly used concept not only for robot mechanism design [38,39] but also for robot task-,
path- and trajectory-planning in various robotics applications [40–49] since it can provide
information about the distance to a singular robot configuration, motion capability of the
robot, and optimal motion direction in a robot’s operational task space. The pioneering
work was presented by Yoshikawa in 1985 [50], who introduced a qualitative method for
the assessment of robot motion capabilities based on the so-called manipulability ellipsoid,
which was derived from a robot velocity kinematics description by the application of the
singular value decomposition of the associated Jacobian matrix and Euclidean norm met-
rics. The introduced manipulability index was proportional to the ellipsoid volume, and it
should measure how easy or difficult it is for a robot to move in its Cartesian operational
workspace. It may also represent a distance to the singular configuration of the robotic arm.
In addition to the volume of the ellipsoid, other indices also derived from the ellipsoid
appeared later, such as minimal singular value and condition number [51]. However, the
operational space twist vector involves different units of linear and angular velocity; in
addition, robot joints can also be of different types. These complicate the manipulability
analysis from the point of view of physical consistency [52,53]. Thus, in order to avoid
the problem of dimensional dependence when both the position and orientation of the
robot end-effector are included in kinematic equations, new manipulability indices were
introduced. They were based on the introduction of auxiliary points on the end-effector
that provided additional linear velocity information and a redundant formulation of the
velocity equations instead of the combination of linear and angular velocities [54]. This
approach is interesting since the resulting Jacobian is dimensionally homogeneous, and the
point velocities can have some meaning to the designer [55]. However, in this point-based
approach, the determination of the auxiliary points is arbitrary, and the measure of the
obtained dimensionally homogeneous Jacobian matrix is not invariant with respect to
changes in the auxiliary points used to express the end-effector velocity. Alternatively,
some researchers proposed to normalize the Jacobian matrix in different fashions, such as
pre-multiplication or post-multiplication with diagonal matrices that contain the desired
maximum values for the end-effector twist components and the maximum available ac-
tuator speeds, respectively, or by using the so-called “natural length” or “characteristic
length” of a robotic manipulator, which lack a sound physical interpretation [55]. A gen-
eral approach to the problem of dimensional non-homogeneous matrices in the velocity
kinematics description presents the introduction of weighted norms [56]. However, the
selection of the corresponding weighting matrices to set translational components of the
Jacobian matrix in relation to the rotational components [43] is again arbitrary, e.g., manual
selection of the weights in a task-dependent measure [57], or their selection can be based
on the computation of the minimal principal angle between the translational and rotational
subspace in a task-oriented approach [58]. Nevertheless, it has been shown that all such
manipulability indices suffer from the nonexistence of “natural” metrics and, therefore,
from non-invariance in the sense of the choice of the selected artificial metric functions,
which is arbitrarily employed in their definition [59,60]. Although the translational and
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rotational operational velocities can be separated by exploiting and extending the concept
of manipulability in both weak and strong senses [61], the problem remains. Another
possibility to overcome the problem of a non-homogeneous Jacobian matrix is based on
the apparent power concept of the robot mechanism, which results in a homogeneous
formulation of the problem, regardless of having mixed units in the velocity kinematics
description [62]. However, the relation of the proposed measure to the relevant robot
operational quantity, such as velocity, is unclear. An alternative to manipulability ellipsoids
is presented by manipulability polytopes [30,63–68], which can provide more accurate
information about the operational space motion capability since they consider infinity
norm metrics instead of Euclidean norm metrics. However, the problem of a dimensional
non-homogeneous Jacobian matrix due to the unit inconsistency in robotics still presents
a challenge since most approaches demonstrated limitations in terms of their physical
interpretations, though task-oriented homogeneous Jacobians and associated performance
indices showed some promising results and potential for further development [30,69].

The main motivation for the research presented in this paper lies in the fact that the
involvement of cobots in robot machining applications raises several issues, among them is
also robot task feasibility concerning low cobot motion capability. For example, execution
of the machining path can result in a trajectory with excessive joint speed, which is beyond
the actuator speed limit. What is the optimal machining path and maximum machining
speed? This challenge is especially emphasized in the case of freeform surface machin-
ing. Thus, the optimal machining task design, including path and trajectory planning,
which will provide task feasibility, should be performed prior to robot task execution. In
the previous paragraph, we discussed the manipulability concept that can be used for
path/trajectory planning. However, all the manipulability-related performance indices
above, and many others not mentioned, are based on the Jacobian matrix of the velocity
kinematics description. In this paper, we focus on the problem of path following velocity
performance in robot machining of a workpiece with complex geometry, similar to our
previous work [30], where we considered a workpiece with a predefined path. Now, we
propose a task-oriented robot kinematics description, which considers motion constraints
imposed by the workpiece surface geometry explicitly; thus, a priori knowledge about
the machining path is not required to evaluate the available velocity performance. The
theoretical development results in the novel task-specific augmented inverse Jacobian
matrix with incorporated motion constraints derived from the differential surface geometry
of a workpiece. It represents the main contribution since the associated Jacobian matrix is
homogeneous in units, and the task space is virtually reduced to the translational subspace.
Furthermore, in comparison with [32–36], where workpiece surface geometry is involved
in the path/trajectory planning in Cartesian space, we extend its consideration to the robot
joint space via the manipulability concept to directly address the joints’ velocity limits.
We also show that the associated manipulability ellipsoid is reduced in dimension, such
that we can perform velocity planning solely within the translational operational space
projected on the two-dimensional surface tangent plane. Thus, the problem of the non-
homogeneous twist space due to the mixed units is effectively avoided in a non-arbitrary
way. The proposed task-oriented kinematics description can provide a basis not only for
workpiece/robot placement optimization but also for optimal path/trajectory planning
based on kinematic manipulability. We demonstrate the viability of the proposed approach
by numerical experiments using two different workpiece examples.

The rest of the paper is organized as follows: in Section 2, we provide the necessary
background information from the surface differential geometry; in Section 3, we theoreti-
cally develop the proposed approach; in Section 4, we show the numerical experiments;
Section 5 presents a short discussion, and Section 6 concludes the paper.

Table 1 provides the standard nomenclature, which introduces the various symbols
that appear in the equations presented in this paper.
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2. Background

In this section, we provide some basic information about the differential geometry of
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in a three-dimensional Euclidean space that is parametrized
by the position vector r

r = [x(u, v), y(u, v), z(u, v)], (1)

as a function in the parametric form

r = r(u, v), (2)
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where u and v are independent parameters in a closed rectangle [70,71]. In this paper, we
consider an explicit surface such that the z-coordinate can be expressed as a function of
both the x- and y-coordinates:

z = f (x, y), (3)

where f is at least twice the differentiable real-valued function, and the parametric form
is derived by setting x = u and y = v, with [x, y] ∈
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Mathematics 2024, 12, 257 6 of 27 
 

 

SVD Singular value decomposition 
MHP Machine hammer peening 

2. Background 
In this section, we provide some basic information about the differential geometry of 

surfaces and curves on surfaces that are relevant to this paper. 
Let us consider surface S   in a three-dimensional Euclidean space that is 

parametrized by the position vector r   

=   ( , ), ( , ), ( , )r x u v y u v z u v , (1) 

as a function in the parametric form 

= ( , )r r u v , (2) 

where u  and v  are independent parameters in a closed rectangle [70,71]. In this paper, 
we consider an explicit surface such that the z-coordinate can be expressed as a function 
of both the x- and y-coordinates: 

= ( , )z f x y , (3) 

where f  is at least twice the differentiable real-valued function, and the parametric form 
is derived by setting =x u   and y v=  , with   ∈ ,x y D  , where D   is a bounded 
connected domain in the real xy-plane. The surface is then given by 

=   , , ( , )r x y f x y . (4) 

A curve on the surface is given by the parametrization = ( )x x t  , = ( )y y t  , and 
= ( ( ), ( ))z f x t y t , where ∈   0,t T , and with ,x y  ∈  D . Then = ( )r r t  is a curve lying on 

and embedded in the surface (4). The tangent vector to the curve on the surface is 
evaluated by differentiating ( )r t  with respect to the parameter t  using the chain rule 
and is given by: 

= +  ( ) x yr t r x r y , (5) 

where the subscripts x and y denote partial differentiation with respect to x and y such 
that = ∂ ∂xr r x   and = ∂ ∂yr r y  , respectively, and the dot denotes differentiation with 

respect to the parameter t  , such that =x dx dt   and =y dy dt  . Note that (5) can be 
written in a form independent of the choice of parameter:  

= +x ydr r dx r dy , (6) 

where (.)d  denotes a differential. The differential arc length of the curve ds  is given as: 

= = =  drds dt r dt r rdt
dt

, (7) 

where  stands for the vector dot product operator. 
Let = ( , )P P x y   be a point on the regular surface S  . Then, xr   and yr   are two 

independent surface tangent vectors at point P , which span a tangent plane. The tangent 
plane at point P   on surface S   can be considered as a union of all tangent vectors, 
which can be formed as a linear combination of xr  and yr . The unit normal vector n̂  
on the surface at point P  can be defined as 

. Then r = r(t) is a curve lying on
and embedded in the surface (4). The tangent vector to the curve on the surface is evaluated
by differentiating r(t) with respect to the parameter t using the chain rule and is given by:
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r(t) = rx

.
x + ry

.
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where the subscripts x and y denote partial differentiation with respect to x and y such that
rx = ∂r/∂x and ry = ∂r/∂y, respectively, and the dot denotes differentiation with respect
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.
x = dx/dt and
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dr = rxdx + rydy, (6)

where d(.) denotes a differential. The differential arc length of the curve ds is given as:
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∣∣∣∣dr

dt

∣∣∣∣dt =
∣∣ .
r
∣∣dt =

√ .
r ◦ .

rdt, (7)

where ◦ stands for the vector dot product operator.
Let P = P(x, y) be a point on the regular surface

Mathematics 2024, 12, 257 5 of 27 
 

 

The rest of the paper is organized as follows: in Section 2, we provide the necessary 
background information from the surface differential geometry; in Section 3, we 
theoretically develop the proposed approach; in Section 4, we show the numerical 
experiments; Section 5 presents a short discussion, and Section 6 concludes the paper. 

Table 1 provides the standard nomenclature, which introduces the various symbols 
that appear in the equations presented in this paper. 

Table 1. Standard nomenclature and abbreviations. 

Notation Meaning 
S  Surface in a three-dimensional Euclidean space 3  
,u v  Independent surface parameters 

, ,x y z  Cartesian position coordinates 
P  Point on the surface 
r  Position vector of a point on the surface 
t  Independent time parameter 

, ,x y z    Cartesian velocity coordinates 
r  Velocity vector of a curve on the surface 

(.) ,(.)x y  Partial derivatives of a vector w.r.t. x, y  
s  Arc length of the curve 
ds  Differential arc length of the curve 
n̂  Unit normal vector 
I  First fundamental form matrix 

, ,E F G  Coefficients of the first fundamental form 
II  Second fundamental form matrix 
Π  Permuted second fundamental form matrix 

, ,L M N  Coefficients of the second fundamental form 
W  Weingarten map matrix 
,K H  Surface Gauss curvature, surface mean curvature  
θ  Robot joint positions 

θ  Robot joint velocities 

Cθ  Robot joint velocities for constrained surface motion 
J  Robot Jacobian matrix 

TJ  Robot translational Jacobian matrix 

RJ  Robot rotational Jacobian matrix 

TJ  Strong robot translational Jacobian matrix 

RJ  Strong robot rotational Jacobian matrix 
n
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#
CJ  Augmented inverse robot Jacobian matrix with surface constraints 
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Σ  Matrix of singular values (SVD result) 

. Then, rx and ry are two indepen-
dent surface tangent vectors at point P, which span a tangent plane. The tangent plane
at point P on surface
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can be considered as a union of all tangent vectors, which can be
formed as a linear combination of rx and ry. The unit normal vector n̂ on the surface at
point P can be defined as

n̂ = n̂(x, y) =
rx × ry∥∥rx × ry

∥∥ . (8)

The unit normal vector is mapped from the tangent vectors rx, ry. It is perpendicular
to the tangent plane, and, obviously, it is also orthogonal to both rx and ry. Thus, at any
point on the surface we have a triple of vectors rx, ry, and n̂, which are linearly independent
on the regular surface
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. Note that the differential change in the unit normal vector can be
written as:

dn̂ = n̂xdx + n̂ydy, (9)

where n̂x = ∂n̂/∂x and n̂y = ∂n̂/∂y denote partial differentials of the unit normal vector
with respect to x and y, respectively. The illustration of the tangent plane at a point on a
curved surface along with the normal vector n̂ and the other vectors rx, ry, nx, ny and

.
r in

the tangent plane are depicted by Figure 1.
The first fundamental form describes the method of measuring the distances on a surface,

i.e., a surface metric. It determines the arc length of a curve on the surface and is defined
as [71]:

I : ds2 = dr ◦ dr. (10)

If we consider (6), then it can be derived as follows

I(dx, dy) : ds2 = Edx2 + 2Fdxdy + Gdy2, (11)
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where the coefficients E = rx ◦ rx, F = rx ◦ ry, and G = ry ◦ ry are called the coefficients of
the first fundamental form. Due to its quadratic-bilinear form of the coordinates’ differen-
tials on the surface, it is often presented by the symmetric matrix:

I =
[

E F
F G

]
, (12)

which is a positive definite, i.e., EG − F2 > 0 at regular points on the surface.

Figure 1. The illustration of the tangent plane at a point on a curved surface along with the normal
vector and the other vectors in the tangent plane.

The second fundamental form characterizes the local structure of the surface shape in a
neighborhood of a point. It describes how the surface deviates from the tangent plane. It
can be defined as [71]

II : (−dr ◦ dn̂), (13)

It can be derived as

II(dx, dy) : Ldx2 + 2Mdxdy + Ndy2, (14)

where the coefficients L = −rx ◦ n̂x = rxx ◦ n̂, M = −rx ◦ n̂y = −ry ◦ n̂x = rxy ◦ n̂ = ryx ◦ n̂,
and N = −ry ◦ n̂y = ryy ◦ n̂ are called the coefficients of the second fundamental form. The
matrix of the second fundamental form can be read as:

II =
[

L M
M N

]
. (15)

The differential dn̂ is called a Weingarten map, which describes the change in the normal
direction as we move from one point to another. It can be expressed in terms of the first
derivatives of the position vector, and the partial derivatives of the unit normal vector can
then be expressed in terms of the basis

{
rx, ry

}
[71,72]:[

n̂x n̂y
]
= −

[
rx ry

]
W, (16)

where W is the matrix, which can be calculated by (12) and (15) as:

W = I−1 · II =
1

EG − F2

[
GL − FM GM − FN
EM − FL EN − FM

]
, (17)

where the operator · stands for matrix multiplication. The result is known as Weingarten
equations:

n̂x =
FM − GL
EG − F2 rx +

FL − EM
EG − F2 ry, (18)

n̂y =
FN − GM
EG − F2 rx +

FM − EN
EG − F2 ry. (19)
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which map from the tangent plane to the tangent plane, i.e., the vectors n̂x and n̂y are
expressed as a linear combination of the tangent vectors rx, ry, respectively. Thus, they lie
in the tangent plane and are orthogonal to the unit normal vector n̂.

An important surface characteristic is also its curvature, which shows us how much
the surface bends or deviates from a flat surface. The curvature measure should involve the
rate at which surface
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at point P. A crucial tool to measure
the curvature on a surface is the Weingarten map, which contains complete information
about a surface’s curvature. It can be used to derive scalar measures to show how ‘curved’
the surface is at some point. There are several measures for the curvature of a surface in R3.
Gauss curvature K and mean curvature H on surface
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(20) and (21), respectively.

K = det(W) =
LN − M2

EG − F2 (20)

H =
1
2

trace(W) =
EN + GL − 2FM

2(EG − F2)
(21)

Other measures, such as normal curvature and principal curvatures, are also possible [72].

3. Methodology
3.1. Problem Formulation

The serial robot arm manipulator can be described as an open chain mechanism
connecting links and joints having n-degrees-of-freedom (DOF). The base link is normally
considered fixed to the ground, and the final link, with a mounted end-effector, may operate
freely in the robot task space. To provide all possible positions and orientations within its
3D workspace, the manipulator must have proper mechanism geometry with at least six
DOFs. The velocity mapping from the joint space to the operational space can be described
as the forward velocity kinematics model [37]:

ν = J(θ)
.
θ, (22)

where J ∈ R6xn is the geometric Jacobian matrix in the robot’s base frame, θ ∈ Rn and
.
θ ∈ Rn are the vectors of joint positions, which define the current mechanism configuration
and their velocities, respectively. Furthermore, we denote the so-called twist vector with
ν ∈ R6

ν =

[
v
ω

]
, (23)

which represents the combination of two physically different components: v ∈ R3 is the
vector of the end-effector linear velocity, and ω ∈ R3 is the vector of the end-effector
angular velocity. The inverse velocity kinematics problem can be defined as finding a
proper solution of the joint velocity

.
θ for the given twist ν. Note that the twist vector is not

homogeneous in physical units.
In the following, we consider a nonredundant manipulator with n = 6 in a non-

singular configuration. Although in general the joints can be of different types, we assume
rotational joints without a significant loss of generality since most modern robot manipula-
tors use only rotary joints with one DOF.

The most widely used kinematic measure that refers to manipulator manipulability
and indicates how dexterous a robot is at a given configuration θ is derived from the
condition [50]:

.
θ

T .
θ ≤ 1, (24)

which maps the unit sphere in the joint velocity space to the velocity manipulability
ellipsoid in the operational task space:

νT(J JT)
−1

ν ≤ 1. (25)
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Here, we consider that the solution to the inverse velocity kinematics can be expressed
by the full rank Jacobian as:

.
θ = J−1ν. (26)

We can factorize the Jacobian matrix by singular value decomposition (SVD) into

J = UΣVT , (27)

where Σ is a diagonal matrix with positive singular values σ1 ≥ σ2 ≥ . . . ≥ σ6 > 0 on
the diagonal, and U and V are unitary matrices representing the orthonormal base of the
Jacobian column space Col(J) and the orthonormal base of the Jacobian row space Row(J),
respectively [73,74]. If we insert (27) into (25), it yields:

(UTν)
T

Σ−2(UTν) ≤ 1, (28)

where Σ−2 is a diagonal matrix with σ−2
1 , σ−2

2 , . . . , σ−2
6 on the diagonal. One can introduce

a new variable w = UTν, w = [w1, w2, . . . , w6]
T ; then, (28) can be rewritten as:

wTΣ−2w =
6

∑
i=1

(
wi
σi
)

2
≤ 1, (29)

which describes an ellipsoid geometrically with the axes’ directions defined by the columns
of the unitary matrix U, whereas the singular values σi determine the axes’ lengths. The ma-
nipulability ellipsoid shows how far away the manipulator is from a singular configuration
in a certain direction in the task space: if the manipulator is near the singular configuration,
then the dexterity is low, and contrarily, if the manipulator is far from the singular configu-
ration, then the dexterity is better. Using the manipulability ellipsoid, one can quantify how
close a given robot posture is to a singularity. Note that the ellipsoid is described in the
six-dimensional Euclidian space, which is not suitable for visual geometrical representation
and is not intuitive.

Although the manipulability ellipsoid is quite popular among the research community
since it enables the derivation of numerous manipulability indices [75], it suffers from
serious limitations that arise due to the physical non-homogeneity of the twist vector and
physical inconsistency of the Jacobian matrix [52,61].

3.2. The End-Effector Motion Constraints

During the workpiece machining, the tool tip must follow a certain path embedded in
the workpiece surface. The tool path is constrained by position and orientation. In our case,
we assumed that the tool must maintain orthogonal orientation to the curved workpiece
surface, i.e., the tool orientation must be adjusted continuously while traveling along the
path. In this section, we derive velocity synchronization, which arises due to the constraints
described above.

The tool tip must follow the position of the path embedded on the workpiece surface.
Let a particle refer to the tool tip. If a particle is moving in time along the path constrained
on the workpiece surface, then the particle velocity can be expressed as:

v =
.
r, (30)

If we consider (5), then the tool tip velocity can be derived as

v =
[
rx ry

][ .
x
.
y

]
. (31)

Note that the tool linear velocity vector v is a linear combination of the tangent vectors
rx and ry. Thus, it lies in a tangent plane of the workpiece surface. On the other side, (31) it
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can be read in a way that v is to be synchronized with the velocity vector in the xy-plane[ .
x

.
y
]T by the matrix Sv:

Sv =
[
rx ry

]
, (32)

such that we can express:

v = Sv

[ .
x
.
y

]
, (33)

where Sv ∈ R3×2 is with full rank, i.e., rank(Sv) = 2.
The tool orientation must be aligned by the normal vector perpendicular to the curved

workpiece surface. Let a particle refer to the tool tip. If a particle is traveling along the
path constrained on the workpiece surface, then, in each point of the path, the normal
vector associated to the particle position can have a different orientation. In this case, the
particle is not only translating but the associated surface normal vector can also rotate
synchronously. We can observe the velocity of the unit normal vector n̂ = n̂(t), which can
be described as: .

n̂ = ω × n̂, (34)

where × refers to the vector cross product operator. If we assume reasonably that the
normal vector rotation about itself is zero, then the rotation axis is orthogonal to the unit
normal vector, and it lies in the surface tangent plane of the observed point on the path.
Then, the angular velocity of the unit normal vector can be derived as:

ω = n̂ ×
.
n̂. (35)

Since the surface normal vector dependence can be expressed as n̂ = n̂(x, y), and by
the application of the chain rule, we can derive:

.
n̂ = n̂x

.
x + n̂y

.
y, (36)

and furthermore

ω =
[
n̂ × n̂x n̂ × n̂y

][ .
x
.
y

]
, (37)

where
.
x and

.
y are linear velocities in the x- and y-Cartesian coordinates, respectively. Now

we can recall the Weingarten Equations (16)–(19) and after some manipulation one can
derive:

ω =

[
rx ry

]
√

EG − F2

[
M N
−L −M

][ .
x
.
y

]
=

[
rx ry

]
√

EG − F2
(A · II)

[ .
x
.
y

]
, (38)

where II is the second fundamental form matrix (15), and A is defined as:

A =

[
0 1
−1 0

]
. (39)

The angular velocity vector ω is expressed by (38) as a linear combination of the
tangent vectors rx and ry. Therefore, it belongs to the tangent plane of the workpiece
surface, and it will not produce tool rotation about itself. Furthermore, the tool angular
velocity vector ω will be synchronized with the linear velocity in the xy-plane

[ .
x

.
y
]T by

the matrix Sω:

Sω =

[
rx ry

]
√

EG − F2
Π =

SvΠ√
EG − F2

, (40)

where we denote Π = A · II. Thus, we can express:

ω = Sω

[ .
x
.
y

]
, (41)
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where Sω ∈ R3×2, and its rank is rank(Sω) ≤ 2.
In the following, we rewrite the velocity constraints described by Equations (33) and (41)

such that they read as:

vC = Sv

[ .
x
.
y

]
, (42)

and

ωC = Sω

[ .
x
.
y

]
, (43)

where vC and ωC represent linear velocity and angular velocity constrained to the surface,
respectively. Note that vC (ωC) belongs to the range-space of matrix Sv (Sω). Furthermore,
from (42), we can express [ .

xC.
yC

]
= S†

vvC, (44)

where we consider vC =
[ .
xC,

.
yC,

.
zC

]T , and the operator (.)† stands for the Moore–Penrose

pseudoinverse of a matrix, such that S†
v = (ST

v Sv)
−1ST

v is the left pseudo-inverse of Sv. If
we insert the last result into (43), it yields:

ωC = SωS†
vvC = SCvC. (45)

Here, SC represents the so-called surface velocity constrained matrix, which can be
expressed as:

SC = SωS†
v =

SvΠS†
v√

EG − F2
. (46)

Note that SC ∈ R3×3, and its rank is rank(SC) ≤ 2. It maps the linear velocity vector
from the surface tangent plane to the angular velocity vector on the surface tangent plane.

3.3. The Constrained Robot Kinematics Model

The velocity kinematics play a central role in robot manipulability analysis. In this
section, we formulate the problem as seeking the inverse velocity kinematics solution of
(22) and (23) considering the velocity constraints given by synchronization expressions for
linear and angular velocity (42)–(46), which constrain the motion of the end-effector on
the path embedded on the workpiece surface, such that the end-effector maintains normal
orientation. If, furthermore, we consider the joint velocity limitation given by (24), then
it will yield the constrained manipulability ellipsoid of a reduced dimension, as we will
show later.

Similarly, as in [30], the Jacobian matrix is partitioned into two submatrices, i.e., the
translational submatrix JT ∈ R3×n and the rotational submatrix JR ∈ R3×n:

J =
[

JT
JR

]
, (47)

such that JT
.
θ = v and JR

.
θ = ω, where v and ω are the linear velocity vector and the

angular velocity vector in the robot operational space, respectively. In the following, we
derive a solution of the velocity inverse kinematics considering the partitioned matrix
(47). Baksalaray [76,77] discussed the problem of the Moore–Penrose inverse of a par-
titioned matrix. The application of such a solution formula in the case of the Jacobian
(47) can be written by the augmented Jacobian submatrices that incorporate additional
restrictions [30,61,78]:

J̃T = JT Pn
R. (48)

J̃R = JRPn
T . (49)
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where Pn
T =

(
I − J†

T JT
)

and Pn
R =

(
I − J†

R JR
)

are orthogonal projection matrices into the
translational and rotational null space, respectively. Here, I is the identity matrix of a
proper dimension. Note that the definition of J̃T ( J̃R) imposes such a constraint that the
angular (linear) velocity is additionally zero, and thus, it can be called a strong translational
(rotational) Jacobian matrix [61]. The inverse of the partitioned squared Jacobian (n = 6,
J ∈ R6×6) can now be expressed as the block matrix:

J−1 =

[
JT
JR

]−1

=
[

J̃†
T J̃†

R
]
, (50)

where J̃†
T ∈ Rn×3 and J̃†

R ∈ Rn×3. We can apply the inverse Jacobian in the block form (50)
in the computation of the inverse velocity kinematics solution as

.
θ = J−1

[
v
ω

]
=

[
J̃†
T J̃†

R
][ v

ω

]
= J̃†

Tv + J̃†
Rω. (51)

The solution consists of two joint velocity components: the first component J̃†
Tv is

responsible for the end-effector translational motion without affecting its rotation since it
belongs to the null-space of JR, whereas the second component J̃†

Rv is responsible solely for
the end-effector rotational motion with zero contribution to its translation since it belongs to
the null-space of JT . Indeed, if we apply the solution (51) in the forward velocity kinematics
mapping (22), it yields the desired result:

J
.
θ =

[
JT
JR

]
( J̃†

Tv + J̃†
Rω) =

[
JT((JT Pn

R)
†v + (JRPn

T)
†ω)

JR((JT Pn
R)

†v + (JRPn
T)

†ω)

]
=

[
JT(Pn

R(JT Pn
R)

†v + PT(JRPn
T)

†ω)

JR(Pn
R(JT Pn

R)
†v + PT(JRPn

T)
†ω)

]
=

=

[
JT Pn

R(JT Pn
R)

†v + JT Pn
T(JRPn

T)
†ω

JRPn
R(JT Pn

R)
†v + JRPn

T(JRPn
T)

†ω

]
=

[
Iv + 0ω
0v + Iω

]
=

[
v
ω

] . (52)

Here, we exploit the well-known property of the Moore–Penrose pseudo inverse
with the orthogonal projector, i.e., (JT/RPn

R/T)
† = Pn

R/T(JT/RPn
R/T)

† [74,79]; consequently,
JT/R J̃†

T/R = I and JT/R J̃†
R/T = 0.

In the following, we replace v and ω in (51) with vC and ωC, respectively, and consider
the expressions (42) and (43). It yields:

.
θ = J̃†

TvC + J̃†
RωC = ( J̃†

TSv + J̃†
RSω)

[ .
x
.
y

]
. (53)

Furthermore, we consider (44), and then (53) it can be rewritten as:

.
θC = ( J̃†

TSvS†
v + J̃†

RSωS†
v)vC = J#

CvC, (54)

where
.
θC stands for such joint velocities, which provide robot tool motion constrained

on the workpiece surface, and J#
C ∈ Rn×3 (with n = 6) denotes the so-called augmented

inverse Jacobian matrix of the constrained kinematics,

J#
C = J̃†

TSvS†
v + J̃†

RSωS†
v, (55)

which is homogeneous in units, i.e., all the elements of J#
C are given in units of (1/m), since

J̃†
T is given in units of (1/m), and Sv is a dimensionless matrix in the sense of units, whereas

J̃†
R is a dimensionless matrix in the sense of units and Sω is given in units of (1/m). Note

also that SvS†
v represents the orthogonal projector of the range space of matrix Sv (with

the following properties (SvS†
v)

2
= (SvS†

v)
T
= SvS†

v), such that vC = SvS†
vv, and from (45),

it follows directly that SωS†
v maps any vC to the range space of matrix Sω. Furthermore,
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if we consider the orthogonal decomposition of the operational space velocity vector v,
such that:

v = vC + v⊥C , (56)

where v⊥C = (I − SvS†
v)v is orthogonal to vC, i.e., v⊥C ⊥vC, then it is easy to show that (54)

can also be written as: .
θC = ( J̃†

TSvS†
v + J̃†

RSωS†
v)v = J#

Cv (57)

since matrix J#
C maps the velocity component vector v⊥C to zero:

J#
Cv⊥C = ( J̃†

TSvS†
v + J̃†

RSωS†
v)(I − SvS†

v)v = ( J̃†
TSvS†

v(I − SvS†
v) + J̃†

RSωS†
v(I − SvS†

v))v =

( J̃†
T(SvS†

v − (SvS†
v)

2
) + J̃†

RSω(S†
v − S†

vSvS†
v))v = ( J̃†

T(SvS†
v − SvS†

v) + J̃†
RSω(S†

v − S†
v))v = 0

. (58)

Finally, we show that the derived solution above provides such velocities in the
operational robot space, which are constrained to the workpiece tangent plane. It is
rather straightforward to derive that the forward velocity kinematics mapping (22) on

.
θC

results as

J
.
θC = J(J#

CvC) =

[
JT
JR

]
( J̃†

TSvS†
v + J̃†

RSωS†
v)vC =

[
JT J̃†

TSvS†
v + JT J̃†

RSωS†
v

JR J̃†
TSvS†

v + JR J̃†
RSωS†

v

]
vC =

[
SvS†

v
SωS†

v

]
vC =

[
vC
ωC

]
(59)

which confirms the solution described by (54), (55), and (57) provides the desired con-
strained motion (42) and (43) in the robot operational space. Furthermore, if we consider
that the augmented inverse Jacobian of the constrained kinematics can also be represented
as J#

C = (J−1S)S†
v, where ST =

[
ST

v ST
ω

]
, it can also be shown easily that its rank equals

rank(J#
C) = 2; on the basis of the Sylvester rank inequality formula [80], it is possible to

derive rank(J−1S) = 2 and in the following also rank((J−1S)S†
v) = 2, since the matrix S†

v is
of full rank, i.e., rank(S†

v) = 2.

3.4. The Manipulability Ellipsoid of the Constrained Motion

Now, we can construct the manipulability ellipsoid of the constrained motion follow-
ing a procedure that is similar to the steps determined by (24)–(29). Firstly, we consider the
constraint in the joint space given by the condition (24), which is derived as:

.
θ

T .
θ = vT(J#

C
T J#

C)v ≤ 1, (60)

where J#
C is defined by (55). In the next step, we can factorize matrix J#

C by SVD into

J#
C = UΣVT . (61)

However, due to the fact that the matrix is tall and its rank is deficient r = rank(J#
C) = 2,

the factorized matrices U, Σ, and V have the following structure:

U =
[
U1 U2

]
, Σ =

[
Σ1 0
0 0

]
, and V =

[
V1 V2

]
(62)

respectively. Here, the columns of U1 represent an orthonormal base of the column space
Col(J#

C), whereas the columns of U2 represent an orthonormal base of the left null space
Null(J#

C
T). Furthermore, the columns of V1 represent an orthonormal base of the row

space Row(J#
C), whereas the columns of V2 represent an orthonormal base of the null space

Null(J#
C). The (sub)matrices’ dimensions are dim(U1) = n × r, dim(U2) = n × (n − r),

dim(V1) = 3 × r, dim(V2) = 3 × (3 − r) and dim(Σ1) = r × r, respectively. Note that U
and V are unitary matrices with orthonormal columns, and Σ1 is a diagonal square matrix
with the positive singular values σ1 ≥ . . . ≥ σr > 0 on the diagonal. We can derive:

J#
C =

[
U1 U2

]
Σ =

[
Σ1 0
0 0

][
VT

1
VT

2

]
= U1Σ1VT

1 , (63)
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and further

J#
C

T J#
C = (U1Σ1VT

1 )
T
(U1Σ1VT

1 ) = (V1Σ1UT
1 )(U1Σ1VT

1 ) = V1Σ1UT
1 U1Σ1VT

1 = V1Σ2
1VT

1 . (64)

Thus, (60) can be rewritten as

vTV1Σ2
1VT

1 v ≤ 1. (65)

If we introduce a new variable of reduced order w = VT
1 v, then it yields the ellipsoid,

wTΣ2
1w ≤ 1 (66)

which can be rewritten as
w2

1

σ−2
1

+
w2

2

σ−2
2

≤ 1, (67)

since r = 2, and thus wT =
[
w1 w2

]
, diag(Σ1) =

[
σ1 σ2

]
. Obviously, the constrained

manipulability ellipsoid is reduced to an ellipse in the tangent plane of the workpiece
surface.

4. Numerical Experiments

In this section, we show the results of some numerical experiments that we performed
in order to verify the proposed approach of the robot manipulability evaluation in the case
of the robot tool motion constrained by the workpiece surface. In the numerical experiments,
we applied a collaborative robot arm and two workpiece models with different surface
geometry. In the following, we firstly introduce the experimental setup. Then, we show
the ellipsoids related to the velocity synchronization on the workpiece surface, which can
be derived from (45)–(46). Next, we present the manipulability ellipsoids of the robot
motion with the tool constrained to the surface geometry derived from (54)–(55), and it is
described further in Section 3.4. Finally, we verify the drawn manipulability ellipsoids by
the calculation of the robot tool velocity in selected directions. The numerical experiments
were performed in the MATLAB computing environment [81].

The computation procedure applied in the numerical experiments can be summed up
in the following main steps, which are divided into two phases:

• Phase A—workpiece surface analysis:

1. Step: load the workpiece surface model with position data.
2. Step: compute the surface partial derivatives of first order rx, ry.
3. Step: compute the surface partial derivatives of second order rxx, rxy = ryx, ryy.
4. Step: compute the surface normals by (8).
5. Step: compute the coefficients of the first fundamental form E, F, G (see (11)).
6. Step: compute the coefficients of the second fundamental form L, M, N (see (14)).
7. Step (optionally): compute the surface curvatures by (20) and (21).
8. Step: compute matrix Sv by (32) and then compute its pseudo inverse S†

v.
9. Step: compute matrix Sω by (40).
10. Step: compute surface velocity constraint matrix SC by (46).

• Phase B—task-oriented constrained robot kinematics analysis:

11. Step: set up the robot and the workpiece position.
12. Step: compute the robot inverse kinematics solutions for the given workpiece

surface points and the associated normal vectors.
13. Step: compute the robot Jacobians for selected joint position solutions.
14. Step: compute the inverse of the robot Jacobian matrices and determine com-

ponents J̃†
T and J̃†

R from the inverse matrices (see (50)).
15. Step: compute the augmented inverse Jacobians by (55).
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16. Step: compute the SVD of the augmented inverse Jacobians and generate
ellipses (see Section 3.4).

4.1. Experimental Setup

The robotic setup is shown in Figure 2. We applied a collaborative robot arm UR5
since it is a widely adopted cobot in a low volume/high mix industry. It has a reach radius
of 850 (mm); the kinematic parameters of the robot arm are available in reference [82]. The
reference robot frame is shown by the red-green-blue axes located at the robot base. The
MHP tool length was modeled as 284.5 (mm). The workpiece size was 250 × 250 × 75 (mm)
and was placed with its center of the bottom face at the point [0, −525, −97] (mm) of the
reference robot frame. In our numerical experiments, we applied two workpiece surface
models, i.e., workpiece surface model No. 1 (WP1) and workpiece surface model No. 2
(WP2), which are shown in Figures 3 and 4, respectively. WP1 had a relatively monotone
curvature, while WP2 had a more vivid curvature. The colormap shown on the workpiece
surface is coded by its height.

Figure 2. The flexible workstation for machine hammer peening with the collaborative robot UR5.

Figure 3. Workpiece surface model No. 1: (a) perspective view; (b) top view. The surface colormap is
coded by surface point height value (red color means high value, blue color means low value).
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Figure 4. Workpiece surface model No. 2: (a) perspective view; (b) top view. The surface colormap is
coded by surface point height value (red color means high value, blue color means low value).

4.2. Surface Velocity Ellipsoids

The ellipsoids related to the velocity synchronization on the workpiece surface are
presented in Figures 5–7. They are developed at the selected points on the workpiece’s
surface and represent the omnidirectional angular velocity (ωC) performance of a particle
moving along the path constrained on the workpiece surface under the condition ∥vC∥ ≤ 1.
The surface velocity synchronization ellipsoids, which can be derived from (45)–(46), are
shown firstly in Figure 5 for WP1 and Figure 6 for WP2. The ellipsoids are clearly of
reduced dimension, such that they convert to ellipses and appear in the tangent planes
attached to the selected points on the surface. The shown ellipses were all scaled by the
factor of 0.00075. The angular velocity ellipses were of different sizes and eccentricity. Thus,
the angular velocity performance depended both on the selected direction of the linear
movement and on the geometry of the close neighborhood of the selected point on the
workpiece surface. If a big ellipse similar to a circle was drawn, then a relatively high
angular velocity would occur in all directions of the linear movement. In the case of an
eccentric ellipse, the highest angular velocity would occur in the direction of the major
ellipse axis and the lowest in the direction of the minor ellipse axis. The angular velocity
performance depends highly on the surface slope (the surface gradient of the first order),
its gradient (the surface gradient of the second order), and, thus, on the surface curvature.

Figure 5. The surface velocity ellipses on WP1: (a) perspective view; (b) top view. The surface colormap
is coded by surface point height value (red color means high value, blue color means low value).
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Figure 6. The surface velocity ellipses on WP2: (a) perspective view; (b) top view. The surface
colormap is coded by surface point height value (red color means high value, blue color means
low value).

Figure 7. The surface velocity ellipses with mean surface curvature colormap code: (a) WP1; (b) WP2.
The surface colormap is coded by surface mean curvature value (red color means high value, blue
color means low value).

The same angular velocity ellipses are again shown in Figure 7. However, in this case,
the surface colormap is coded by its mean curvature measure. A red/blue color means
a high/low curvature measure value. It can be observed clearly that the drawn ellipses’
characteristics correspond highly to the surface curvature measure at the selected points
on both WP1 and WP2: at the surface points with a low value of the curvature measure,
we can notice small ellipses, whereas at the surface points with a high value of the surface
curvature measure, we can see big ellipses; in the case of the medium value curvature
points, we can observe medium size ellipses, or ellipses with a longer major axis (and a
medium average axis length), which again, match with the average curvature at the surface
point. We can conclude that the angular velocity ellipses shown obviously correlate with
the surface curvature characteristics.
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4.3. Robot Manipulability Ellipsoids of the Constrained Kinematics

The ellipsoids related to the robot’s translational velocity along the path constrained
on the workpiece with a curved surface and with the robot tool’s orientation normal to the
surface are presented in Figures 8–11. They express the robot’s linear velocity performance
at the positions in the robot’s operational space determined by the selected points on the
workpiece surface under the condition of unity Euclidian norm of the robot joint velocities∥∥ .

q
∥∥ ≤ 1. The constrained manipulability ellipsoids, which can be derived from (54) and

(55), are shown firstly in Figure 8 for WP1 and Figure 9 for WP2. The ellipsoids are again
clearly of reduced dimensions, such that they convert to ellipses and appear in the tangent
planes attached to the selected points on the surface. The shown ellipses were all scaled by
a factor of 0.05.

Figure 8. The velocity manipulability ellipses with robot kinematic constraints on WP1: (a) perspec-
tive view; (b) top view. The surface colormap is coded by surface point height value (red color means
high value, blue color means low value).

Figure 9. The velocity manipulability ellipses with robot kinematic constraints on WP2: (a) perspec-
tive view; (b) top view. The surface colormap is coded by surface point height value (red color means
high value, blue color means low value).
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Figure 10. The velocity manipulability ellipses with mean velocity colormap code: (a) WP1; (b) WP2.
The surface colormap is coded by mean (average) ellipse axes length value (red color means high
value, blue color means low value).

Figure 11. Verification of the manipulability velocity ellipses with robot kinematic constraints:
(a) workpiece surface No. 1 (top view); (b) workpiece surface No. 2 (top view). The surface colormap
is coded by surface point height value (red color means high value, blue color means low value).

At the bottom of WP1, all around Figure 8b, we can see ellipses with different sizes
and orientations. Most of them are of medium size; some ellipses at the bottom side of the
picture are longer and thinner, which determines a larger linear velocity performance in the
direction of the ellipses’ major axes and poorer in the direction of the minor axes; however,
on the upper side of the picture, the ellipses are of small size, which is connected to poor
linear velocity performance in all directions. Along the slope of WP1, we can see many
rather long ellipses, with a major axis directed towards the top of the workpiece; it means
that a straightway motion from the bottom to the top of the surface would be allowed at
a relatively high speed. Finally, on the top of the workpiece, we can observe very small
velocity ellipses since the surface in this area changed rapidly.
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The velocity manipulability ellipsoids on WP2, with a more vivid curvature surface in
Figure 9, are of different sizes, orientations, and widths. Their shape depends on the surface
geometry at the specific point and the specific robot configuration required to provide
the robot tool position and orientation that comply with the imposed surface constraints.
Some big/medium size and only slightly eccentric ellipses, which can be observed mostly
in the bottom half of the surface presented in Figure 9b, allow for high/medium linear
omnidirectional velocity performance along the tangent planes attached to certain surface
points. Thin ellipses on highs on the right side and on lows on the left side provide better
velocity performance in certain directions determined by the ellipses’ major axis. Many
small size ellipses at different points all around the workpiece surface show only poor
linear velocity performance.

A more detailed insight into the linear velocity performance is presented in Figure 10,
where the surface colormap is coded by the mean (average) value of the ellipses’ minor
and major axes’ lengths at all surface definition points. The red/blue color means roughly
good/bad velocity manipulability. Figure 10a,b show the surface-constrained robot velocity
manipulability for WP1/WP2. These characteristics can be used as a robot tool velocity
regulation map on the surface at a certain workpiece location since they incorporate not
only robot kinematics performance but also the workpiece surface curvature feature.

Finally, we verified the presented velocity ellipses for both WP1 and WP2. In the
verification procedure, we simply calculated the robot tool linear velocity of maximal
possible speed that can be achieved under condition

∥∥ .
q
∥∥ ≤ 1 during the motion along

the path from the selected point to a certain neighboring point. In every ellipse, we
selected eight neighboring points around the ellipse center point. In order to determine the
maximum linear speed, we applied the following formula:

Vmax =
1∥∥∥ J̃†

TuT + h−1 J̃†
RuR

∥∥∥
2

, (68)

where uT and uR are linear and angular directions along the path, whereas the param-
eter h is related to the surface shape/curvature in our case and can be calculated as
h = s/φ, where s and φ stand for linear path length and rotational path length (angle),
respectively. The formula above is similar to the DTF method formula [30]; however,
please note that the DTF method employs the infinity norm in the denominator, whereas
we used the Euclidean L2 norm. The verification results for WP1/WP2 are shown in
Figure 11a,b. Here, the surface colormap is coded by the surface height. Again, we can see
the before-mentioned manipulability ellipses, as in Figures 8 and 9. In addition, there are
the verification linear velocity vectors drawn in the bright pale pink color. They were all
scaled by the factor of 0.05, which is of the same value as the manipulability ellipses’ scaling
factor. We can observe that the vector lines drawn from the ellipses’ center point end at the
ellipses’ edge. Thus, they correspond to the velocities, which could be determined from the
manipulability ellipses in the verification directions and, therefore, confirm the correctness
of the presented manipulability ellipses of the robot kinematics imposed by the workpiece
surface constraints.

5. Discussion

The main results obtained can be summed up as follows. The proposed method
effectively avoids the problems related to the inhomogeneous Jacobian in the manipulability
concept in a non-arbitrary way. The derived augmented inverse Jacobian matrix with
incorporated workpiece surface differential constraints virtually reduces the task space
to the translational subspace. Furthermore, robot motion planning can be performed in
the two-dimensional surface tangent planes of a workpiece. To show the viability of the
proposed augmented inverse Jacobian, we utilize well-known manipulability ellipsoids.
However, in our case, the ellipsoids were reduced to two-dimensional ellipses, each lying
in its own surface tangent plane. The resulting ellipses were clearly verified. They enable



Mathematics 2024, 12, 257 21 of 24

obtaining optimal linear velocity in terms of magnitude and direction for machining paths
embedded on the workpiece surface under the assumption that the robot tool orientation is
kept normal to the workpiece surface.

However, to obtain the augmented inverse Jacobian matrix, we need extensive mathe-
matical computation/processing of a workpiece surface to provide the required differential
geometry characteristics. It is necessary to compute the first-order and the second-order
partial derivatives of the workpiece surface. Thus, the accurate workpiece definition must
be available for this purpose. In this paper, we provided grid-based surface models and
standard mathematical processing approaches to compute the required surface derivatives.
Note that the processing methodology may be properly adapted for use with practical
CAD formats of a workpiece. Nevertheless, the differential geometry characteristics of
a workpiece should be computed as accurately as possible since they significantly affect
the precision of the proposed augmented inverse Jacobian matrix and, consequently, the
related manipulability analysis as well.

6. Conclusions

In this paper, we discussed the robot kinematics’ capability and velocity performance
in the case of workpiece machining, where the robot tool must follow a path embedded on
the surface at the normal orientation. In the presented study, we considered a workpiece
with complex surface geometry to derive the robot’s constrained kinematics description.
The derived augmented Jacobian kinematics matrix with incorporated workpiece surface
constraints was, in the following, used for the ellipsoid-based manipulability analysis. We
have shown that, in this case, the general non-homogeneous six-dimensional manipulability
ellipsoids, which mix different units of linear velocity and angular velocity, can be reduced
to the two-dimensional ellipses in the homogeneous translational subspace. Thus, the prob-
lem related to the inhomogeneous Jacobian was effectively avoided in a non-arbitrary way.
The results from the theoretical development have been proven by numerical experiments.
In the future, the presented approach of the surface-based constrained manipulability can
be employed in the kinematic optimization of the robot-workpiece position and planning
of the optimal robot machining path with the objective of achieving maximum Cartesian
speed concerning robot joints’ limits. Furthermore, future experimental validation may
include real-world manufacturing examples in a real robotic cell with a collaborative robot.
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