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Abstract: In recent years, models such as the transformer have demonstrated impressive capabilities
in the realm of natural language processing. However, these models are known for their complexity
and the substantial training they require. Furthermore, the self-attention mechanism within the
transformer, designed to capture semantic relationships among words in sequences, faces challenges
when dealing with short sequences. This limitation hinders its effectiveness in five-polarity Arabic
sentiment analysis (SA) tasks. The switch-transformer model has surfaced as a potential substitute.
Nevertheless, when employing one-task learning for their training, these models frequently face
challenges in presenting exceptional performances and encounter issues when producing resilient
latent feature representations, particularly in the context of small-size datasets. This challenge is
particularly prominent in the case of the Arabic dialect, which is recognized as a low-resource
language. In response to these constraints, this research introduces a novel method for the sentiment
analysis of Arabic text. This approach leverages multi-task learning (MTL) in combination with the
switch-transformer shared encoder to enhance model adaptability and refine sentence representations.
By integrating a mixture of experts (MoE) technique that breaks down the problem into smaller, more
manageable sub-problems, the model becomes skilled in managing extended sequences and intricate
input–output relationships, thereby benefiting both five-point and three-polarity Arabic sentiment
analysis tasks. The proposed model effectively identifies sentiment in Arabic dialect sentences.
The empirical results underscore its exceptional performance, with accuracy rates reaching 84.02% for
the HARD dataset, 67.89% for the BRAD dataset, and 83.91% for the LABR dataset, as demonstrated
by the evaluations conducted on these datasets.

Keywords: switch transformer; mixture of experts (MoE) mechanism; sentiment analysis (SA); Arabic
dialects; five-polarity; MTL

MSC: 68T07

1. Introduction

Sentiment analysis includes the computational process of discerning and understand-
ing the emotional undertones or sentiments conveyed within a text, whether they be in the
form of sentences, documents, or social media posts. This procedure aids businesses in
acquiring insights into how their brands, products, and services are perceived, achieved
through the evaluation of feedback from online interactions with customers. Platforms,
such as Twitter, experience a significant daily influx of user-generated content in Arabic
and Arabic dialects, and this trend is anticipated to endure as user-generated content
continues its upward trajectory in the years to come. Opinions articulated in the Arabic
language are estimated to account for approximately five percent of the linguistic landscape
on the Internet. Additionally, Arabic has become one of the most influential languages
online in recent times. It serves as a global language spoken by over five-hundreds million
individuals worldwide and is categorized within the semantic language group. The official
language across more than 21 countries ranges from the Arabian Gulf to the Atlantic Ocean,
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and it is Arabic. Linguistically, Arabic stands out for its intricate complexity, setting it
apart from English, largely due to its diverse range of dialects. The notable differences
between Modern Standard Arabic (MSA) and Arabic dialects (ADs) add an extra layer
of complexity. Furthermore, in the realm of Arabic language usage, the phenomenon of
diglossia is widespread. This means that in in informal settings, individuals use local
Arabic vernaculars, while in formal or professional settings, Modern Standard Arabic
(MSA) is employed. For instance, depending on the circumstances, individuals in Libya
may switch between MSA and their native Libyan dialects. The Libyan dialect encapsulates
the nation’s historical narrative, cultural identity, heritage, and shared life experiences.
Diverse regional expressions in Arabic exhibit noticeable disparities in their geographical
distribution, including Levantine (encompassing Palestine, Jordan, Syria, and Lebanon),
Maghrebi (covering Morocco, Algeria, Libya, and Tunisia), Iraqi, Nile Basin variants (found
in Egypt and Sudan), and Arabian Gulf versions (extending across the UAE, Saudi Arabia,
Qatar, Kuwait, Yemen, Bahrain, and Oman). Discerning emotionally charged terms amidst
this wide array of Arabic linguistic diversity presents a considerable obstacle due to the
language’s intricate structural attributes, orthography, and overall intricacy. Each nation
where Arabic is spoken showcases its own unique colloquial language, further augmenting
the intricateness of the linguistic landscape. To illustrate, Arabic content disseminated on
social media platforms frequently merges Modern Standard Arabic (MSA) with regional
dialectal Arabic, resulting in distinct interpretations of the same word.

Moreover, an additional syntactic challenge in Arabic dialects (ADs) pertains to word
arrangement. In order to analyze this issue, it is crucial to understand the arrangement
of the verb, subject, and object in an AD sentence. As highlighted in the literature review,
languages can be categorized into different groups, such as subject–object–verb as seen
in Korean, subject–verb–object as seen in English, and verb–object–subject as is the case
with Arabic [1]. Additionally, there are languages that allow for a flexible word order
such as ADs [2]. Within AD expressions, this flexibility imparts advanced insights into
the subject, object, and various other forms of information. Hence, the utilization of a
single-task learning methodology and depending exclusively on manually created features
are insufficient for carrying out sentiment analyses on Arabic dialects. Furthermore, these
divergences within Arabic dialects (ADs) present a significant challenge for standard deep
learning algorithms. This is due to the fact that longer phrases in ADs introduce a wealth
of complex and confusing contextual information related to the object, verb, and subject.
An issue with traditional deep learning methods is the depletion of input sequence data,
resulting in the reduced effectiveness of the sentiment analysis (SA) model as the length of
the input sequence increases. Also, the configuration of Arabic words’ roots and characters
can vary significantly depending on the context, as exemplified by ( Ketab H. A

�
J», Ketabat

�
HAK. A

�
J», Yaktob I.

�
JºK
). Moreover, the absence of standardized orthographic conventions

stands out as a primary challenge in ADs. This encompasses morphological distinctions
across dialects, evident in the utilization of prefixes and suffixes absent from Modern
Standard Arabic (MSA). Additionally, it is important to highlight that many Arabic words
can express various meanings, depending on the use of diacritics within the same syntactical
structure. Additionally, the development of deep learning-powered sentiment analysis (SA)
models necessitates a substantial corpus of training data, a resource that proves challenging
to amass for Arabic dialects (ADs). These dialects are recognized as unstructured and
resource-scarce languages, rendering the retrieval of information a formidable endeavor [3].
As the quantity of training data decreases for Arabic dialects (ADs), the effectiveness of
classification also diminishes. Furthermore, most tools designed for Modern Standard
Arabic (MSA) fail to consider the unique characteristics of Arabic dialects [4]. It is also
important to note that relying solely on lexical resources, like lexicons, may not be the most
effective approach for Arabic SA due to the vast array of words stemming from diverse
dialects, making it improbable for any lexicon to encompass them all [5]. Furthermore, the
creation of tools and resources tailored to Arabic dialects is a laborious and time-intensive
undertaking [6].
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Lately, there has been a heightened emphasis on exploring sentiment analysis in the
Arabic language. The research primarily centers on classifying opinions and tweets to
detect both binary and ternary emotional tones. Most of these approaches [7–12] depend
on lexicons and attributes specific to tweets, which function as inputs for machine learn-
ing (ML) algorithms. In contrast, alternative methods embrace a rule-based approach,
such as employing principles of lexicalization. This involves establishing and prioritizing
a set of heuristic rules to effectively categorize tweets into negative or positive senti-
ments [13]. Shifting focus, the Arabic sentiment ontology introduces sentiments with
diverse levels of intensity to distinguish user attitudes and streamline the classification
of tweets. Deep learning approaches for sentiment analysis, encompassing RNNs [14],
CNNs [15–18], and recursive auto-encoders, have attracted substantial interest because
of their impressive flexibility and robustness achieved via automated feature extraction.
Notably, the recently developed switch-transformer model [19] outperforms conventional
transformer models [20], recurrent neural network (RNN)-based models in various natural
language processing (NLP) tasks, thereby capturing the interest of researchers in the field
of deep learning.

This research paper proposes a switch-transformer sentiment analysis (ST-SA) model,
that utilize an MoE mechanism that breaks down the problem into smaller, more manage-
able sub-problems. In every expert layer, the router decides which expert will receive the
token. This choice is made from among the available experts, depending on the character-
istics of the token’s representation. The router selects the most suitable expert based on
the current representation of the incoming token. However, it lacks counterfactual data
regarding the potential effectiveness of choosing a different expert. The proposed model
becomes adept at handling lengthy sequences and intricate input–output relationships,
benefiting both five-point and three-polarity Arabic sentiment analysis tasks. Despite
previous efforts to address the challenges of AD SAs, the approach of MTL has emerged as
a promising solution.

Multi-Task Learning

Multi-task learning (MTL) in deep learning models is a powerful approach that aims
to improve learning efficiency and prediction accuracy by simultaneously training a single
model on multiple related tasks. This technique leverages the commonalities and differ-
ences across tasks to enable a model to generalize better for each task. In MTL, tasks
share representations, allowing the model to exploit the useful information presented in
related tasks, thereby reducing the risk of overfitting on any single task. This is particularly
beneficial when the data for some tasks are scarce. MTL models often use shared layers
for learning common features while employing task-specific layers to capture the unique
aspects of each task. This shared learning leads to more robust models that are capable
of handling a variety of challenges. As a result, multi-task learning has found applica-
tions in numerous fields, such as natural language processing, where a single model can
simultaneously learn tasks, like sentiment analysis, language translation, and named entity
recognition, leveraging the synergies between these tasks to enhance the performance.
MTL enriches comprehension capabilities, elevates the encoder quality, and augments the
significance of sentiment classification compared to a conventional single-task classifier.
This is accomplished by simultaneously handling interconnected tasks and utilizing a
common representation of text sequences [21]. An essential benefit of multi-task learning
(MTL) lies in its capability to efficiently utilize diverse resources for similar tasks. However,
it is noteworthy that most existing approaches for SAs of ADs predominantly focus on
binary and ternary classifications. In this study, we redirect our attention to the five-polarity
AD SAs problem, an area that, to our knowledge, has received limited attention. Notably,
the utilization of a switch-transformer architecture in conjunction with MTL for AD SA
classifications has not been explored in prior studies. Previous methodologies addressing
this classification primarily relied on a conventional transformer and Bi-LSTM techniques.
We can summarize our contributions as follows:
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• This research article introduces a pioneering switch-transformer model that uses
MTL for SAs of ADs. The proposed ST-SA model founded on the MoE mechanism
is developed to break down the problem into smaller, more straightforward sub-
problems, enabling the model to effectively handle extended sequences and intricate
input–output connections.

• Furthermore, a multi-head attention (MHA) mechanism is devised to capitalize on the
correlation between three and five polarities through the utilization of a shared switch-
transformer encoder layer. We clarify the method of sequentially and collaboratively
mastering two tasks (ternary and five classifications) within the multi-task learning
(MTL) framework. This strategy is designed to enhance the representation of Arabic
dialect (AD) texts for each task and broaden the range of captured features.

• This research paper studies the effect of training the proposed switch-transformer
model with varying embedding dimensions for each token, diverse token values,
different attention head numbers, varying filter sizes, a diverse number of experts,
a range of batch sizes, and multiple dropout values.

• The proposed SA-ST model employs an MHA mechanism to evaluate the correlation
strength between two words within a sentence. This notably bolsters the relevance
and importance of various natural language processing tasks.

The following sections of this paper are organized in the following manner: Section 2
offers a literature overview, Section 3 provides a comprehensive explanation of the proposed
model, Section 4 presents the experimental results, and, finally, Section 5 summarizes the
conclusions derived from this study.

2. Literature Review

The research focusing on five levels of polarity classification tasks in Arabic sentiment
analyses has received relatively less attention compared to binary or ternary tasks. Ad-
ditionally, the majority of approaches addressing this particular task rely on traditional
machine learning algorithms. For example, methods utilizing corpora and lexicons were
examined by incorporating bag of words (BoW) features along with various machine
learning algorithms, such as passive aggressive algorithm (PA), support vector machine
(SVM), logistic regression (LR), naive Bayes (NB), perceptron, and stochastic gradient
descent (SGD) for analyses regarding Arabic book reviews [22]. Similarly, [23] explored the
impact of stemming and the balancing of BoW features using multiple machine learning
algorithms on the same dataset. They found that applying stemming resulted in a decline
in performance. In [24], a divide-and-conquer approach was proposed to handle tasks
related to the ordinal-scale classification. Their model adopted a hierarchical classifier (HC)
structure, breaking down the five labels into smaller sub-problems. It was noted that the
HC model surpassed a single classifier. Expanding on this foundation, various architectures
for hierarchical classifiers were introduced [25]. These structures were compared against
machine learning classifiers, such as SVM, KNN, NB, and DT. The experimental results
indicate an improvement in performance with the hierarchical classifier. Nevertheless, it is
important to mention that many of these structures exhibited a reduction in performance.

In a different study [26], an examination focused on diverse machine learning classi-
fiers, including LR, SVM, and PA, utilizing n-gram attributes within the context of book
reviews in the Arabic dataset (BRAD). The results showed that SVM and LR presented the
most commendable performances. Similarly, [27] conducted an assessment on multiple
sentiment classifiers, encompassing AdaBoost, SVM, PA, random forest, and LR, using
the hotel Arabic reviews dataset (HARD). Their observations revealed that SVM and LR
exhibited superior performances, particularly when incorporating n-gram features. These
mentioned approaches underscore a significant lack of deep learning strategies for the
classification of five polarities in Arabic sentiment analysis (SA). Additionally, a majority of
the methods dealing with these five polarity tasks are rooted in traditional ML algorithms,
relying on the feature engineering process, known for its time-consuming and challenging
nature. Furthermore, these approaches are built upon single-task learning (STL) and lack
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the capability to discern the interrelationship among different tasks (cross-task transfer)
and model various polarities concurrently, including both five and three polarities.

Other investigations have turned to MTL to tackle the challenge of five-point SA
classification tasks. For instance, [28] introduced a multi-task learning framework utilizing
a recurrent neural network (RNN) to concurrently address both five-point and ternary clas-
sification tasks. Their model incorporated bidirectional long short-term memory (Bi-LSTM)
and multilayer perceptron (MLP) layers. Additionally, they enriched features with tweet-
specific elements, like punctuation counts, elongated words, emoticons, and sentiment
lexicons. Their findings indicate that jointly training SA classification tasks significantly
boosts the efficacy of the five-polarity task. Similarly, in [29], the synergy between five-
polarity and binary sentiment classification tasks was harnessed through concurrent train-
ing. The proposed model incorporated an encoder (LSTM) and a decoder (variational
auto-encoder) as shared components for both tasks. The empirical results highlight that
the multi-task learning (MTL) model improved the performance for the five-polarity task.
The concept of adversarial multi-task learning (AMTL) was first introduced in [21]. This
model integrates two LSTM layers as task-specific components and one shared LSTM
layer across tasks. Additionally, a convolutional neural network (CNN) was fused with
the LSTM, and the outputs from both networks were concatenated with the shared-layer
output, forming the final latent sentence representation. The authors observed that the
proposed multi-task learning (MTL) model enhanced the performance of five-polarity
classification tasks and enhanced the quality of the encoder. While the multi-task learning
(MTL) approaches detailed above have found application in English, there is a noticeable
lack of multi-task learning and deep learning techniques applied to five-polarity Arabic
sentiment analysis (SA). Existing studies concentrating on this task predominantly rely on
single-task learning with traditional machine learning algorithms. Consequently, there is
ample room to enhance the effectiveness of current Arabic SA methods in addressing the
five polarities, as it remains at a relatively modest level.

Subsequent inquiries have utilized advanced deep learning methodologies for the anal-
ysis of sentiments (SAs) in various fields, including finance [30,31], movie critiques [32–34],
weather-related tweets [35], reviews on travel platforms [36], and cloud service recom-
mendation systems [37]. Numerous studies have harnessed polarity-based sentiment
deep learning techniques for analyzing tweets [38,39]. A multitude of techniques have
been proposed for emotion recognition [40,41]. In the realm of dialogue emotion recogni-
tion, Wang [42] introduced the hierarchically stacked graph convolution framework. This
framework aims to improve the extraction of discriminative information from the emo-
tional graph it constructs. To achieve this, it incorporates the potent transformer operation
along with a residual connection. The efficacy of this method was substantiated through
comparative experiments conducted on the IEMOCAP dataset.

Wang [43] developed “NUAN”, a non-uniform attention network, to integrate multi-
modal features effectively. NUAN utilizes an attention mechanism that focuses differently
on three types of data: text, which is treated as a fixed representation, and acoustic and
visual data, which are used to enrich the text-based information in a structure called the
tripartite interaction representation. This network incorporates a unique non-uniform
attention module within the LSTM (long short-term memory) framework, allowing it to
process data over successive time steps. The LSTM and the non-uniform attention module’s
(NUAM’s) outputs are merged into a single vector and fed through a linear embedding
layer to perform the final sentiment analysis. The method’s effectiveness is validated
through tests on two different databases. Baniata et al. [44] introduced a novel approach
utilizing a multi-task learning multi-head attention model for the five-point classification of
ADs. This innovative architecture incorporates a self-attention technique and a multi-task
learning (MTL) framework to bolster the overall representation of text sequences. Moreover,
the self-attention method enables the selection of the most pertinent terms and phrases
from these sequences. By training for sentiment analysis (SA) tasks, encompassing ternary
and five-polarity tasks specific to ADs, the system’s efficacy was significantly elevated.
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Leveraging the advantages of self-attention and MTL amplified the proficiency of the pro-
posed SA system. The outcomes of this study underscore the pivotal attributes of the MTL
self-attention SA system, which leverages the self-attention method and increases the accu-
racy of the results for both five-point and three-point classification tasks. The incorporation
of the MTL framework and word units as input features for the self-attention sub-layer
indicates their critical role in low-resource language SA tasks, such as those involving
Ads. Additionally, refining the model through diverse configurations, including employ-
ing multiple heads in the self-attention sub-layer and training with multiple encoders,
notably enhanced the classification performance of the suggested system. Furthermore,
Alali et al. [45] introduced a multi-tasking methodology termed the multi-task learning
hierarchical attention network (MTLHAN). This approach aims to augment the representa-
tion of sentences and enhance the overall adaptability. The MTLHAN framework employs
a shared word encoder and attention network for both tasks, utilizing two different training
strategies to scrutinize three-polarity and five-polarity Arabic sentiments. The outcomes of
the experiments emphasize the outstanding performance of this suggested model.

Singh et al. [46] set out to compare unsupervised lexicon-based models (Text Blob,
AFINN, and Vader Sentiment) with supervised machine learning models (KNN, SVM,
random forest, and naive Bayes) in their research paper focused on sentiment analysis.
Notably, this study marks the first investigation concentrating on cyber public opinion
related to the abrogation of Article 370. The researchers amassed Twitter data, comprising
over 200,000 tweets, from which 29,732 tweets underwent selection for analysis post-data
cleaning. The findings reveal that, among the supervised learning models, random forest
exhibits the most exceptional performance. Conversely, within the unsupervised learning
models, Text Blob attained the highest accuracy, registering 99% and 88% accuracy values,
respectively. It is noteworthy that the performance metrics of the proposed supervised
machine learning models surpass the outcomes of a recent sentiment analysis study con-
ducted in 2023. Table 1 presents an overview of the sentiment analysis methods employed
for Arabic dialects.

Table 1. Sentiment analysis methods employed for Arabic dialects.

Technique Model Dataset (5 Polarity) Ref.

Corpora and Lexicons SVM, LR, NB, PA LABR [22]
BoW SVM, LR, NB, KNN, J48, C4.5, DT LABR [23]

Divide and Conquer Hierarchical Classifier (HC) LABR [24]
N-gram LR, SVM, PA BRAD [26]
N-gram AdaBoost, SVM, PA, RF, LR HARD [27]

Multi-Task Learning Transformer HARD, BRAD, LABR [44]
Multi-Task Learning Hierarchical Attention over Bi-LSTM HARD, BRAD, LABR [45]

3. The Proposed Switch-Transformer Sentiment Analysis Model That Utilizes the
MoE Mechanism

Transformer-based models have exhibited remarkable efficacy across a spectrum
of NLP tasks, encompassing the categorization of text. The conventional transformer
architecture [20], featuring multi-head attention, is a prevalent blueprint for this endeavor.
As illustrated in Figure 1, its composition includes an encoder composed of multiple layers
of multi-head attention (MHA) and feedforward neural (FFN) networks. This multi-head
attention (MHA) method grants the model the capacity to assess the significance of various
terms in a sequence grounded on their semantic associations, while the FFNs convert
the output of the MHA layer into a more advantageous representation. The crux of the
transformer is the MHA method founded on mathematical expressions [47]. Presented with
a succession of input embedding values, x1, . . . , xn, the MHA method derives a collection
of contextually attuned embeddings, h1, . . . , hn, through the ensuing procedure:

hi = Attention
(

QWQ
i , KWk

i , VWV
i

)
(1)
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where attention is the scaled dot-product attention function:

Attention (Q, K, V) = So f tmax
(

QKT
√

dk

)
V (2)

Subsequently, the multi-head attention (MHA) consists of the concatenation of all its
heads, hi, as follows:

Multihead (Q, K, V) = concat(h1, . . . . . . , hn) Wo (3)

Moreover, the position-wise feedforward networks (FFNs) refer to multi-layer per-
ceptron that operate individually on each position within the sequence. These FFNs
deliver a non-linear transformation of the attention outputs, and their calculation follows
this pattern:

FFN(x) = ReLU(xW1 + b1) W2 + b2 (4)

In every layer, a layer normalization is applied to normalize the inputs within a neural
network, enhancing the speed and stability of the training.

LayerNorm (x) = γ
x − µ√
σ2+ ∈

+ β (5)

In this context, Q, K, and V represent the query, key, and value matrices, respectively,
while WQ

i , Wk
i , and Wv

i signify the weight matrices that have been acquired through
learning for the specific head denoted as i within the multi-head attention mechanism.
W1 and W2 are the weight matrices pertaining to the position-wise feedforward networks
(FFNs), and γ and β denote the acquired scaling and shifting parameters used for the layer
normalization. Additionally, µ and σ refer to the mean and standard deviation, respectively,
of the feature activations in the input. The operational process within the transformer
structure can be succinctly summarized through the ensuing steps:

• Linear transformation: the sequence of the input undergoes a transformation, resulting
in the creation of three vectors: query Q, key K, and value V. This is achieved through
the application of a linear transformation to the embedded input.

• Segmentation: the vectors Q, K, and V are subsequently divided into multiple heads
denoted as hi. This enables the model to concurrently attend on distinct facets of the
input sequence, as described in Equation (1).

• Scaled dot-product attention: for every hi, the model determines the attention weights
between the Q and K vectors by proportionally adjusting their dot products using the
square root of the vector dimension. This process evaluates the significance of each K
vector in relation to its corresponding Q vector.

• SoftMax: the resultant attention weights undergo normalization through the applica-
tion of a SoftMax function, guaranteeing that their collective sum amounts to 1.

• The attention weights are subsequently employed to balance the V vectors, generating
an attention output for each component, hi, as indicated in Equation (2).

• The combined attention outputs from each head are merged and then re-mapped to
the initial vector dimension via an additional linear transformation, as outlined in
Equation (3).

• Feedforward network: the resulting outcome undergoes a transmission through a
forward-propagating network, introducing nonlinearity and enabling the model
to identify more intricate connections between the input and output, as stated in
Equation (4).
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By applying these procedures to every layer within both the encoder, the MHA mech-
anism empowers the transformer framework to identify intricate semantic connections
among words in a sequence, proving highly efficient across various natural language
processing tasks. Nevertheless, the conventional transformer design encounters specific
limitations. A primary concern revolves around the MHA mechanism’s quadratic com-
putational demand concerning the input sequence length, hindering the scalability for
exceptionally long sequences [48] and decreasing the adaptability for shorter sequences.
Furthermore, the MHA treats all positions in the input sequence uniformly, which might
not be optimal for specific input types where certain positions hold greater significance than
others. While the transformer system demonstrates an outstanding performance for nu-
merous NLP tasks, it may still struggle with capturing intricate input–output associations
that necessitate the use of more specialized models.

Figure 1. Architecture of the conventional transformer model.

To surmount these obstacles, our research paper introduced a novel switch-transformer
sentiment analysis (ST-SA) model, employing multi-task learning (MTL) for the classifi-
cation of Arabic dialect (AD) sentiments. The objective behind adopting multi-task learn-
ing (MTL) was to augment the performance of the five-point Arabic sentiment analysis
quandary, capitalizing on the interconnection between the AD SA classification tasks, en-
compassing both five and ternary polarities. The proposed ST-SA model for ADs was based
on the transformer model recently elucidated by Vaswani et al. [20]. MTL exhibits greater
efficacy compared to singular-task learning. It harnesses the communal representation
of diverse loss functions, concurrently handling SA tasks with three and five polarities,
thereby refining the representation of both the semantic and syntactic facets of AD texts.
The insights garnered from each task can fortify the learning process of other tasks, en-
hancing their efficacy. Furthermore, a pivotal facet of MTL lies in its a superior approach
to accessing resources devised for akin tasks, ultimately amplifying the learning profi-
ciency of the current task and enriching the reservoir of exploitable knowledge. By means
of comprehension, the layers involved in task sharing can amplify the model’s capacity
for generalization, accelerate the pace of learning, and enhance its overall intelligibility.
Similarly, leveraging the domain expertise embedded in the training cues of interconnected
tasks as an inductive bias, the multi-task learning approach facilitates swift transfers that



Mathematics 2024, 12, 242 9 of 25

bolster generalization. This inductive transfer can be deployed to refine the precision
of generalization, expedite the learning process, and heighten the transparency of the
acquired models. A learner engaged in the simultaneous acquisition of numerous interre-
lated tasks can employ these tasks as an inductive bias for one another, thereby gaining
a more profound understanding of the domain’s regularities. This can result in a more
practical acquisition of sentiment analysis (SA) tasks for Arabic dialects (ADs) even with a
limited amount of training data. Similarly, multi-task learning collaboratively discerns the
meaningful interrelation among the acquired tasks. As depicted in Figure 2, the proposed
ST-SA sentiment analysis system boasts a distinctive architecture relying on multi-head
attention (MHA), MTL, a shared vocabulary, and specialized mechanisms referred to as a
mixture of experts (MoE) inside the switching FNN layer. The presented ST-SA model, em-
ploying MTL, fine-tunes mixed classification tasks (ternary and five-polarity classification
tasks) and comprehends them collectively. The integration of a shared switch-transformer
block (encoding layer) streamlines the transfer of knowledge from the ternary task to the
five-point task during the learning process, leading to an enhancement in the current task’s
(five-point task) learning capabilities.

Figure 2. The Architecture of the proposed switch-transformer model for Arabic dialects that utilizes
the MoE mechanism.

Switch transformers (STs) [19] endeavor to address the limitations found in traditional
transformer architectures by integrating a specialized system known as the mixture of
experts (MoE). This tactic decomposes complex problems into smaller, more digestible
components, thus enhancing the model’s capability to manage longer sequences and
complex relationships between inputs and outputs. Notably, the multi-head self-attention
mechanism in standard transformers, while adept at identifying semantic relationships in
sequences, falters with shorter lengths. The MoE framework allows the model to divide
sequences into smaller, more tractable portions, assigning specific expert networks to
each, subsequently improving the efficiency and accuracy for tasks with shorter sequences,
as evidenced by its superior performance in several benchmark tests [49–51]. A critical
innovation in switch transformers compared to the original model is the replacement of
the conventional feed-forward network (FFN) with the MoE mechanism, as depicted in
Figure 3. Traditional transformers utilize an FFN consisting of two linear layers and a
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ReLU activation function. However, the MoE approach utilizes a suite of expert networks
that each analyze different aspects of the input data, integrating their results through a
gating network. This allows the model to dynamically adapt and select from a variety of
parameter sets or expert modules tailored to the specific input, a marked departure from
the fixed parameter approach of the traditional transformer, as described in Equation (4).
In a formal manner, the MoE mechanism within the switch transformer can be denoted by
the subsequent equation:

zt = ∑j gj(xt) ∗ ej(xt) (6)

The function gj(xt) serves as a gate, influencing the significance of expert module
j with respect to input xt. Meanwhile, ej(xt) represents the result produced by expert
module j for input xt. The switch mechanism operates by training the gating functions’
parameters, which enable the dynamic selection of expert modules. This adaptive capability
equips the model to accommodate diverse input patterns and excel across a range of tasks.
The main function of MoE mechanism within the switch transformer can be summarized
in several steps. First, the input undergoes partitioning into various subspaces, with each
subspace undergoing individual processing by a distinct expert. Each of these experts
constitutes an independent neural network that is trained to excel in a particular subset
of the input domain. Each expert generates an output vector that presents its forecast for
the specific input subspace provided. A gating process is employed to identify the expert
most pertinent to a given input. This gating process takes the input and generates a series
of weights that ascertain the significance of each expert’s prediction. The final output is a
weighted combination of the experts’ forecasts, and the weighting for this amalgamation is
dictated by the gating mechanism, and the ST-SA model training cycle is summarized in
Algorithm 1. MTL can be implemented by sequentially engaging the loss and optimizer
for each task. This entails running the training for a predetermined number of cycles on
the ternary classification task, then shifting focus to the five-polarity classification tasks.
The objective of training both tasks is to minimize cross-entropy. Consequently, we achieve:

ŷ(ternary) = softmax
(

W(ternary)s
s
it(ternary) + b(ternary)

)
, (7)

ŷ( f ive) = softmax
(

W( f ive)s
s
it( f ive) + b( f ive)

)
, (8)

where ŷi
j and yj

i are the anticipated likelihoods and ground-truth labels, respectively. N1

and N2 are the numbers of training samples in five-point and ternary classification tasks,
respectively. In order to implement the joint training of five-point and ternary classifications
to train the ST-SA system, we received the following global loss function:

Total Loss(L) = λ1Lternary(ŷ, y) + λ2L f ive(ŷ, y), (9)

where λ1 and λ2 are the weighs for the five-point and ternary classification tasks, respec-
tively. Parameters λ1 and λ2 are utilized to balance both losses using the equal-weighting
strategy (λ = 1). In general, the MoE empowers the switch transformer to master intricate
patterns within the input domain by capitalizing on the specialized expertise of numerous
experts. This framework enables the model to glean insights from multiple experts, each
adept in distinct facets of the data, and fuse their results to enhance the overall performance.
This can result in superior proficiency in tasks demanding a thorough comprehension of
inputs, presenting a hopeful remedy for the constraints of limited datasets in AD text classi-
fications. Consequently, the study leverages this capacity to discern intricate relationships
among words and phrases within AD texts.
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Algorithm 1: Switch Transformer-Sentiment Analysis Model for Arabic Dialects that Utilizes the
MoE Mechanism

Require: training dataset X
(

X(ternary), Y(ternary), X( f ive) , Y( f ive)

)
learning rate l;

Ensure: model Ω:
{

W(ternary), W( f ive), b
}

;

1: Initialize model Ω:
{

W(ternary), W( f ive), b
}

;

2: Iterate
3: Pick a ternary task
4: From Task K: Pick mini-batch samples
5: Ternary classification: X(ternary)

5.1: Self-attention sub-layer (α(ternary))

5.2: Switching FFN sub-layer
6: Five-polarity classification: X( f ive)

6.1: Self-attention sub-layer (α( f ive))

6.2: Switching FFN sub-layer
7: SoftMax_layer (ternary)
8: SoftMax_layer (Five)
9: If the training = jointly, then
10: Compute loss: J(Ω) using Equation (9)
11: else
12: if the training = alternately and task = ternary
13: Compute loss for every task: J(Ω) using Equation (7)
14: else
15: Compute loss for every task: J(Ω) using Equation (8)
16: Compute gradient: ∇(Ω).
17: Update the model: Ω = Ω − l∇(Ω)
18: Till reaching the max number of epochs

Figure 3. Detailed architecture of the encoder and switching FNN layer in the proposed ST-SA model.

4. Experiments

A series of practical tests were conducted to evaluate the effectiveness of the ST-SA
model for Arabic dialect vernaculars. The performance of the proposed ST-SA model for
classifying Arabic dialects (ADs) was thoroughly examined.
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4.1. Data

The proposed model underwent training using three reference datasets. The initial
dataset utilized was HARD [27], where reviews were gathered from multiple booking
platforms and organized into five unique categories. The second dataset, BRAD [26],
and the third dataset, LABR [22], were subsequently employed for training purposes.
The research project utilized review-level datasets, including BRAD, HARD, and LABR.
BRAD’s reviews were collected from the Goodreads website and categorized into five
scales. The distribution of classes for HARD, BRAD, and LABR is detailed in Tables 2–4
respectively. It is important to note that the datasets employed in this study were left in their
unprocessed state, potentially affecting the reliability of the proposed model. Additionally,
all sentences were processed through preprocessing steps, including the application of
sentence segmentation tools to divide the reviews into individual sentences. This process
also involved the complete removal of Latin alphabets, non-Arabic symbols, diacritical
marks, hashtags, punctuation, and URLs from the AD texts. The texts in the Arabic dialects
were subject to orthographic standardization to ensure uniformity [2]. Emoticons were
translated into their text descriptions and modifications were made to elongated words.
To avoid model overfitting, an early stopping strategy was employed with the patience pa-
rameter set for three epochs. In evaluating the performance of the developed ST-SA model,
which employed MTL for the sentiment analysis of Arabic dialects, a model checkpoint
system was used to store the most favorable weights of the model. The data were split,
allocating 80% for training and 20% for testing, and a K-fold cross-validation was applied
with k = 2 to create a training/testing split for evaluating the model [52]. The analyses of
the HARD, BRAD, and LABR datasets provided insights into the distribution of sentiments
across samples. The HARD dataset consisted of 409,562 entries divided into 5 categories
of sentiments. By dedicating 80% of the data (327,649 samples) for training and the re-
maining 20% (81,912 samples) for testing, the model provided a thorough understanding
of the range of sentiments. Similarly, the BRAD dataset, with 510,598 entries, followed
the same distribution: 80% (408,478 samples) for training and 20% (101,019 samples) for
testing. The LABR dataset, smaller, with 63,257 entries, also adhered to this 80–20 split
for training (50,606 samples) and testing (12,651 samples). Such divisions ensured that
the five sentiment categories were adequately represented in both the training and testing
phases, enabling the models to learn the nuances of sentiment differences and effectively
generalize this knowledge to new, unseen data. Prejudices can wield significant sway over
the effectiveness of sentiment analysis models. If biases are present in the training data,
they can skew the outcomes. To address this concern and determine the appropriate data
selection for the presented ST-SA sentiment analysis model for Arabic vernaculars, we
performed five distinct steps:

• Guaranteed that the training dataset comprised a multitude of origins and encom-
passed a broad spectrum of demographic profiles, geographic locales, and societal
contexts. This approach served the purpose of mitigating biases, resulting in a dataset
that was not only more exhaustive, but also more equitable in its composition.

• Confirmed that the sentiment labels in the training dataset were evenly distributed
among all demographic segments and viewpoints.

• Set forth precise labeling directives that explicitly guided human annotators to remain
impartial and refrain from introducing their personal biases into the sentiment labels.
This approach aided in upholding uniformity and reducing the potential for biases.

• Conducted an exhaustive examination of the training data to pinpoint potential bi-
ases was imperative. This entailed scrutinizing factors, like demographic dispari-
ties, serotype reinforcement, and any groups that could be inadequately represented.
Upon identification, we implemented appropriate measures to rectify these biases.
This involved employing techniques, such as data augmentation, oversampling of
underrepresented groups, and applying preprocessing methods.



Mathematics 2024, 12, 242 13 of 25

Table 2. Statistics for HARD dataset.

Task Type Highly Positive Positive Neutral Negative Highly Negative Total

3 Polarity - 132,208 80,326 38,467 - 251,001
5 Polarity 144,179 132,208 80,326 38,467 14,382 409,562

Table 3. Statistics for BRAD dataset.

Task Type Highly Positive Positive Neutral Negative Highly Negative Total

3 Polarity - 158,461 106,785 47,133 - 251,001
5 Polarity 16,972 158,461 106,785 47,133 31,247 510,598

Table 4. Statistics for LABR imbalanced dataset.

Task Type Highly Positive Positive Neutral Negative Highly Negative Total

3 Polarity - 15,216 9841 4197 - 29,254
5 Polarity 19,015 15,216 9814 4197 2337 50,606

4.2. The Setup of the Proposed Model

The introduced sentiment analysis model, known as the switch transformer that
utilized multi-task learning (ST-SA), was created by harnessing the capabilities of Tensor-
Flow [53], Keras [54], and scikit-learn [55] frameworks. To explore its effectiveness, a series
of experiments were carried out for all ADs classification tasks, encompassing both three
and five polarities. These experiments involved a diverse array of parameter configurations,
specifically considering 6 different values for the word-embedding dimension of each token:
50, 32, 40, and 35. Additionally, the attention heads were assessed with 6 distinct values: 4,
2, and 3. The position-wise FNN incorporated filters of varying dimensions, including 40,
30, 35, 32, and 50.

4.3. The Training Mechanisim of the Proposed ST-SA Model for Arabic Dialects

Joint training and alternative training are two key approaches in the realm of multi-task
learning models. Joint training involves training a model on multiple tasks simultaneously,
sharing information and learning representations that are beneficial for all tasks. This ap-
proach leverages the interdependencies between tasks to improve the overall performance.
In contrast, alternative training focuses on training the model on tasks individually, cycling
through them iteratively. The suggested model is thus enabled to concentrate its attention
on each task individually, which can result in an enhanced performance for separate tasks.
Each methodology comes with its own set of benefits and disadvantages. Joint training
can foster improved generalizations over multiple tasks, whereas alternating training can
be more beneficial for tasks that greatly differ in their data distribution or complexity.
The decision on which strategy to employ depends largely on the unique attributes of
the tasks involved and the preferred balance between performance efficiency. In the end,
choosing the right training approach is pivotal for determining the success and flexibility
of multi-task learning models.

The designed system efficiently managed both ternary and five-level sentiment classi-
fication tasks. For example, when training with the HARD dataset, ST-SA toggled between
teaching the model to understand both the five-level and ternary classification tasks. We
explored two training methodologies: an alternating [2, 1] method and a simultaneous joint
learning approach. In our approach to multi-task learning, we sequentially applied the loss
function and optimizer to each task. This approach involved beginning the training with
the ternary classification task for a set number of epochs and then shifting the focus to the
five-polarity task, with an overarching goal to reduce categorical cross-entropy across both
tasks. The ST-SA model was trained over 20 epochs, integrating an early stopping feature
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set to trigger after two epochs of no improvement, and the batch size was set to 90. We
adhered to the established guidelines for the BRAD, HARD, and LABR datasets, dividing
them into 80% for training and 20% for evaluation. The Adam optimizer was selected for
guiding each task within the ST-SA framework. Sentence segmentation was employed to
divide reviews into individual sentences, adhering to maximum sentence-length standards
specific to each dataset: 80 for BRAD, 50 for HARD, and 80 for LABR. We did not apply
class weights to our model [56]. To ensure robust learning, the training data were shuffled
before each epoch. Further specifics regarding the hyper-parameters and their settings are
detailed in Section 4.5.

4.4. Sate-of-the-Art Approaches

Employing the five-point datasets, BRAD, HARD, and LABR, for analyzing ADs, the
ST-SA model designed for this purpose was assessed against the latest standard meth-
ods. Originally, the use of logistic regression (LR) with unigrams, bi-grams, and TF-IDF
was suggested in [26] and subsequently applied to the BRAD dataset. Likewise, the LR
technique was recommended in [27] using similar features and was later implemented
in the HARD dataset. Our ST-SA model also underwent a comparative evaluation using
the LABR datasets. This evaluation included reference methods, such as SVM, which
utilized a support vector machine classifier with n-gram features as indicated in [23], MNB
that applied a multinomial naive Bayes technique with bag-of-words features as per [22],
and HC, a hierarchical classifiers model based on the divide-and-conquer method men-
tioned in [24]. Additionally, HC(KNN) represents a refined version of the hierarchical
classifiers, maintaining its foundation in the divide-and-conquer approach, as described
in [25]. Recently, significant advancements in natural language processing (NLP) have
been made possible through the bidirectional encoder representations from transformers,
or BERT [57]. Specifically, AraBERT [58], a BERT model pre-trained in Arabic, was trained
on three diverse corpora, OSIAN [59], Arabic Wikipedia, and the MSA corpus, collectively
amounting to approximately 1.5 billion words. We performed a comparative study between
the proposed ST-SA architecture for Arabic dialects and other models, like AraBERT [58]
and T-TC-INT [44], examining their effectiveness and utility in various contexts.

4.5. Results

Numerous empirical experiments were conducted employing the proposed ST-SA
system for Arabic dialects. The suggested ST-SA system underwent training with vary-
ing configurations of attention heads (AHs) in the MHA sub-layer and diverse encoder
quantities to ascertain the most efficient structure. Additionally, the system was trained
with varying dimensions of word embeddings for each token. This research assessed the
influence of training the proposed system using two multi-tasking methodologies, namely,
in tandem and alternatively, for the performance assessment. The efficacy of the suggested
system’s sentiment analysis was assessed using an automated accuracy metric. This section
details the evaluation of the proposed ST-SA system across five-polarity classification tasks
for ADs. The results of the practical experiments on HARD, BRAD, and LABR are delin-
eated in Tables 5–7 respectively. As elucidated in Figure 4, Tables 5 and 8, the proposed
ST-SA system achieves an accuracy of 84.02%, F-score value of 83.50%, and precision value
of 83.97% on the HARD imbalanced dataset, where the number of AH is 2, number of
tokens is 90, number of experts is 10, batch size is 60, filter size is 32, dropout value is
0.25, and the embedding dimension for each token is 23. This commendable accuracy was
achieved due to the favorable impact of employing the MTL framework, MoE mechanism,
and MHA approach, particularly in right-to-left texts, like ADs. MoE employs a collection
of expert networks to grasp distinct facets of the input data, subsequently amalgamating
their outputs via a gating network. This enables the model to dynamically select from
various parameter sets (i.e., expert modules) based on the input so that the proposed
model can detect the sentiments accurately. When compared to the performance of the
leading system on the HARD dataset, the results achieved by the ST-SA model exceeded
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those attained by LR [60] by a margin of 7.92% in terms of the accuracy. Additionally,
the proposed model outperformed AraBERT [58] with an accuracy difference of 3.17%
and surpassed the T-TC-INT model [45] by 2.19% in terms of the accuracy. As a result,
the concurrent execution of learning-related tasks expanded the available data pool and
reduced the risk of overfitting [61]. The presented system exhibited proficiency in capturing
both syntactic and semantic attributes, allowing it to accurately identify the sentiments
conveyed in AD sentences.

Table 5. Results for the proposed ST-SA model on the HARD dataset for the five-polarity classification
task, where E-D-T is the embedding dimension for each token, NT is the number of tokens, AH is
the number of attention heads, FS is the filter size, NE is the number of experts, BS is the batch size,
and DO is the dropout value.

E-D-T NT AH FS NE BS DO Accuracy (5-Polarity) F-Score Precision

50 50 4 50 10 50 0.30 81.39% 80.79% 80.98%
32 100 2 32 10 50 0.25 83.81% 82.47% 83.08%
23 90 2 32 10 60 0.25 84.02% 83.50% 83.97%
30 150 4 30 5 50 0.25 82.89% 81.67% 82.18%
30 25 4 30 5 50 0.30 82.72% 80.16% 81.56%

Table 6. Results for the ST-SA model on the BRAD dataset for the five-polarity classification task.

E-D-T NT AH FS NE BS DO Accuracy (5-Polarity) F-Score Precision

30 20 2 30 6 40 0.22 66.72% 65.53% 65.69%
40 15 3 30 10 55 0.25 67.37% 66.27% 66.48%
35 17 3 35 13 52 0.30 64.95% 63.76% 63.37%
50 24 3 30 15 53 0.24 68.81% 67.89% 68.13%
55 30 3 40 18 56 0.26 67.15% 66.80% 66.91%

Table 7. Results for the ST-SA model on the LABR dataset for the five-polarity classification task.

E-D-T NT AH FS NE BS DO Accuracy (5-Polarity) F-Score Precision

40 20 3 35 10 50 0.30 80.09% 79.25% 79.87%
60 100 3 35 12 70 0.27 83.91% 82.71% 83.03%
35 40 2 40 10 60 0.20 81.74% 80.00% 80.24%
20 40 4 39 15 40 0.30 82.65% 80.17% 81.77%
30 40 4 40 12 50 0.30 81.49% 80.44% 80.82%

Table 8. The performance of the proposed ST-SA model compared with benchmark approaches on
the HARD imbalanced dataset.

Model Polarity Accuracy F-Score

LR [60] 5 76.1% 75.90%
AraBERT [58] 5 80.85% 77.88%
T-TC-INT [44] 5 81.83% 80.91%

Proposed ST-SA Model 5 84.02% 83.50%
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Figure 4. Evaluation accuracy of the proposed ST-SA model in comparison with state-of-the-art
approaches on the HARD test dataset.

Furthermore, the recommended ST-SA system showcased a superior performance
on the imbalanced BRAD dataset. As illustrated in Table 6, the proposed model achieves
an accuracy rate of 68.81%, an F-score of 67.89%, and a precision score of 68.13%. These
results were obtained when the number of AH was 3, the number of tokens was 24,
the number of experts was 15, the batch size was 53, the filter size was 30, the dropout
value was 0.24, and the embedding dimension for each token was 50. As detailed in
Table 9 and Figure 5, the suggested ST-SA system outperforms the logistic regression (LR)
approach advocated by [26] by a substantial margin, exhibiting an accuracy difference of
21.71%. Additionally, it surpasses the AraBERT model [58] by a margin of 7.96% and the
T-TC-INT [44] system by 7.08%. In addition, the incorporation of the switch-transformer-
based shared encoder, with one for each classification task, enabled the suggested model
to capture a comprehensive representation that encompassed the preceding, subsequent,
and localized contexts of any position within a sentence.

Table 9. The performance of the proposed ST-SA model compared with benchmark approaches on
the BRAD imbalanced dataset.

Model Polarity Accuracy F-Score

LR [26] 5 47.7% 48.90%
AraBERT [58] 5 60.85% 58.79%
T-TC-INT [44] 5 61.73% 61.40%

Proposed ST-SA Model 5 68.81% 67.89%
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Figure 5. Evaluation accuracy of the proposed ST-SA model in comparison with state-of-the-art
approaches on the BRAD test dataset.

Furthermore, the recommended switch-transformer sentiment analysis model with
multi-task learning (ST-SA), as detailed in Table 7, demonstrated an outstanding perfor-
mance on the challenging and imbalanced LABR dataset. In this study, this innovative
model achieved a remarkable accuracy of 83.91%, an F-score of 82.71%, and a precision score
of 83.03%, surpassing alternative approaches. It is worth noting that, with specific settings,
including three attention heads (AHs), a filter size of 35, 100 tokens, 12 experts, a batch
size of 70, a dropout value of 0.27, and an embedding dimension of 60 for each token,
the suggested system truly showcases its effectiveness. This achievement highlights the ro-
bustness of the ST-SA model for addressing the challenges of sentiment analyses within the
context of an imbalanced dataset. As demonstrated in Table 10 and Figure 6, the proposed
switch-transformer sentiment analysis model with multi-task learning (ST-SA) exhibits
superiority over various alternative methods. Notably, the ST-SA model outperformed
multiple models by substantial margins. For example, it achieved a significant accuracy
difference of 33.61% compared to the SVM [23] model, an impressive 38.91% accuracy dif-
ference surpassing the MNP [22] model, a substantial 26.11% accuracy difference over the
HC(KNN) [24] model, as well as a noteworthy 24.95% accuracy difference when compared
to AraBERT [58]. The proposed model even surpassed HC(KNN) [25] by an accuracy differ-
ence of 11.27%. Additionally, the proposed model outperformed the T-TC-INT model [44]
with an accuracy difference of 5.78%.

Table 10. The performance of the proposed ST-SA model compared with benchmark approaches on
the LABR imbalanced dataset.

Model Polarity Accuracy F-Score

SVM [23] 5 50.3% 49.1%
MNP [22] 5 45.0% 42.8%

HC(KNN) [24] 5 57.8% 63.0%
AraBERT [58] 5 58.96% 55.88%
HC(KNN) [25] 5 72.64% 74.82%
T-TC-INT [44] 5 78.13% 77.80%

Proposed ST-SA Model 5 83.91% 82.71%
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Figure 6. Evaluation accuracy of the proposed ST-SA model in comparison with state-of-the-art
approaches on the LABR test dataset.

In the context of deep learning, joint training refers to simultaneously training a
single neural network on multiple related tasks. Instead of creating separate models for
each task, this method allows the model to learn and leverage common features across
all tasks, improving its adaptability and efficiency. Often, this approach results in better
performances for each task as the model can benefit from the interconnectedness of the
tasks. Imbalanced data, on the other hand, refer to a dataset where the distribution of
classes (or categories) is not uniform. Frequently, this means that one or several classes
have significantly fewer instances than others, which can pose challenges in model training
and performance evaluation.

This situation can present difficulties for deep learning models as they can exhibit
a bias towards the majority class, resulting in subpar performances on minority classes.
The evaluation results suggest that the presented ST-SA system, when subjected to both
joint and alternate learning, exhibits exceptional efficiency. Alternate training demonstrated
superior results compared to joint learning, achieving accuracies of 84.02% and 76.62% on
the imbalanced HARD dataset, and 67.37% and 64.23% on BRAD, as detailed in Table 11.
In comparison to the standard methods, alternate training in a five-point classification
system appears to capture more nuanced feature representations in text sequences than
singular task learning. These findings indicate that alternate learning is more effective for
complex sentiment analysis (SA) tasks, capable of developing complex and more detailed,
latent representations for Arabic dialect sentiment analysis (AD SA) tasks. The notable
difference in performance between the two approaches is attributed to how alternate
training benefits from the varying data volumes present in each task’s dataset.

Table 11. Performance of joint and alternate training techniques for five-polarity classification.

ST-SA Training Method HARD (Imbalance) Accuracy BRAD (Imbalance) Accuracy

Alternately 84.02% 67.37%
Jointly 76.62% 64.23%

Shared layers tend to hold more information when a task involves a larger dataset.
In contrast, joint learning can lean towards bias if one of the tasks is associated with a
significantly larger dataset than the other. Consequently, alternative training methods
are deemed more suitable for tasks related to the sentiment analysis of Arabic dialects.
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This is particularly evident in cases involving two distinct datasets for separate tasks,
such as machine translation tasks transitioning from Arabic dialects (ADs) to Modern
Standard Arabic (MSA) and subsequently to English [2]. The performance of each task can
be optimized by constructing the network in an alternating manner, thus eliminating the
need for more training data [1]. Furthermore, leveraging synergies between related tasks
can enhance the capabilities of five-point classification systems. The notable improvements
in our model’s performance can be attributed to various factors. Achieving superior
results compared to established models, like AraBERT, known for its proficiency in Arabic
language tasks, is an achievement in itself. By surpassing AraBERT on identical datasets,
our model proves its superior accuracy in processing Arabic dialects. Even marginal
increases in accuracy are significant as they contribute to the overall enhancement of
models designed for Arabic dialect processing. These improvements can lead to practical
benefits in several areas, including more precise sentiment analysis, improved information
retrieval, and other natural language processing applications tailored to Arabic dialects.

Significantly, the ST-SA system did not demonstrate marked enhancements on the
BRAD dataset relative to the current models. This could be due to the unique aspects,
expressions, and linguistic nuances of the BRAD Arabic dataset, which the ST-SA sentiment
analysis model might not fully comprehend. Without a proper domain adaptation, there is
a potential mismatch between the model’s acquired features and the specific traits of the
BRAD dataset, leading to a less than optimal performance. Improving a model’s perfor-
mance on the BRAD sentiment analysis dataset using advanced deep learning approaches
through domain adaptation involves several key techniques. For example, transformers,
particularly BERT (bidirectional encoder representations from transformers), have revo-
lutionized NLP by effectively capturing context in text. Fine-tuning a pre-trained BERT
model on the BRAD dataset can significantly enhance the sentiment analysis performance.

For the feasibility assessment, pre-trained models are readily available, but fine-tuning
requires substantial computational resources and expertise in NLP. It is feasible if these
resources are accessible. Another key technique is adversarial training, which involves
training the model to be robust against adversarial examples designed to deceive it. In the
sentiment analysis of five-polarity ADs, this can make the model more resilient to nuances
and variations in sentiment expressions. Implementing adversarial training can be complex
and computationally intensive but is feasible with adequate resources and expertise in
deep learning. Domain-adaptive fine-tuning is one the approaches and techniques that
can present an outstanding performance regarding sentiment analyses for the BRAD
dataset. This technique involves gradually fine-tuning a pre-trained model on a mix of
source and target domain data, increasingly focusing on the target domain. This helps
the model adapt to the specific language and sentiment expressions of the BRAD dataset.
In addition, domain-adaptive fine-tuning is practical if there is enough data from both the
source and target domains. It is less resource-intensive compared to training a model from
scratch. Furthermore, meta-learning trains a model for a variety of tasks to learn how to
adapt quickly to new tasks or domains. This approach is useful in five-polarity sentiment
analyses for ADs for handling diverse expressions and contexts. Also, meta-learning
requires diverse training datasets and significant computational power. It is feasible in
well-resourced environments. If the BRAD dataset includes multilingual data, cross-lingual
models, like multilingual BERT, can be effective. These models are trained in multiple
languages and can handle sentiment analyses across different linguistic contexts. Similar to
BERT, these models are available pre-trained. Fine-tuning on the specific languages of the
BRAD dataset is necessary and feasible with appropriate computational resources.

4.6. Impact of Number of Experts (NE)

As demonstrated in Tables 5–7, the effectiveness of the recommended ST-SA frame-
work across diverse input representations derived from the self-attention layer underscores
the significance of the proposed model for the classification task encompassing five distinct
polarities. Here, “NE” denotes the number of experts in the encoding layer within the
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suggested switch-transformer SA model, employing the MoE mechanism. The devised
system underwent training utilizing varying expert numbers: 5, 6, 10, 12, 13, 15, and 18.
As evident in Tables 5–7, a discernible shift in the accuracy scores is observed for the HARD,
BRAD, and LABR categories.

4.7. Impact of Length of Input Sentence

Acquiring extended syntactic dependencies and contextual comprehension across ele-
ments in input expressions enhances the efficacy of classifying lengthy sentences. Sentences
of equivalent lengths (in terms of source tokens) were clustered together as demonstrated
in the work of Luong et al. [62]. Due to the substantial scale of the HARD corpus, a task
involving a five-fold classification of polarities on the HARD dataset was selected to assess
the performance of the self-attention (SA) mechanism for long sentences. The assessment
in this section was predicated on the subsequent ranges: <10, 10–20, 20–30, 30–40, 40–50,
and >50. An automated accuracy measure was computed for the output generated by the
switch-transformer sentiment analysis system. As depicted in Table 12, the effectiveness
of the recommended switch-transformer sentiment analysis (ST-SA) model increased as
the length of the input sentences extended. This improvement was especially noticeable
when dealing with sentences consisting of 40- to 50-word tokens and those exceeding
50-word tokens, resulting in accuracy scores of 81.32% and 84.02%, respectively. Through
the employment of multi-task learning, a multi-headed attention mechanism, mixture of
experts (MoE) mechanism, and the incorporation of word units as an input characteristic
for the MHA sub-layer, the proposed system attained contextually pertinent knowledge
and dependencies of the tokens, regardless of their position in the AD input phrases. Fur-
thermore, the utilization of MoE in the switch transformer enabled it to excel at discerning
complex patterns within the input domain, leveraging the specialized knowledge of a
multitude of experts. However, the efficiency of the suggested model was notably lower
for shorter sentences, specifically those comprising 10- to 20-word tokens, 30- to 40-word
tokens, and 20- to 30-word tokens. Furthermore, the system’s effectiveness notably de-
clined for sentences with fewer than 10-word tokens, yielding a meager accuracy of 77.25%.
The impressive performance of the recommended ST-SA system across various sentence
lengths underscores the efficacy of leveraging the MHA methodology and MTL framework,
along with employing mixture of experts (MoE) mechanism, in enhancing the encoder’s
MHA sublayer proficiency in discerning word relationships within the AD input sentences.

Table 12. Accuracy score on HARD dataset with different sentence lengths.

Sentence Length Accuracy

<10 77.25%
(10–20) 77.35%
(20–30) 77.95%
(30–40) 78.63%
(40–50) 81.32%

>50 84.02%

4.8. Motivation and Novelty

In the context of sentiment analyses for Arabic Dialects (ADs), our research introduced
an innovative switch-transformer sentiment analysis (ST-SA) model tailored to the five-
point categorization of ADs. The motivation behind this work stemmed from the need
for effective sentiment analyses in a domain characterized by linguistic intricacies and
limited training data. The novel aspects and motivations of this study can be summarized
as follows:

1. Enhancing representation with multi-task learning (MTL): our approach incorporated
a multi-task learning (MTL) framework, coupled with the self-attention mechanism,
to enrich the representation of textual sequences. This novel combination aimed to
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improve the system’s ability to capture both global and local semantic knowledge
within the context.

2. Effective handling of imbalanced data: we addressed the challenge of imbalanced
data in sentiment analyses, particularly in the context of ADs. This was crucial for
performing accurate sentiment classifications in a domain where certain sentiments
could be less frequent.

3. Multi-head attention (MHA) strategy: the utilization of the multi-head attention
(MHA) strategy within our model allowed for the identification of key terms and
words within text sequences. This strategy significantly contributed to the model’s
proficiency in understanding the nuances of ADs.

4. Fine-grained sentiment analysis: we explored a fine-grained approach, including
ternary classifications within the MTL framework, to further refine sentiment dis-
crimination. This approach enhanced the differentiation between high-negative and
negative categories within the five-point classification schema.

5. Superior performance: the empirical results demonstrate the superiority of our ST-SA
model over existing state-of-the-art methodologies across multiple datasets, including
HARD, BRAD, and LABR. This highlights the practical effectiveness of our approach
in real-world applications.

6. Addressing syntactic complexities: our model not only handled limited training
data effectively, but also adeptly addressed the syntactic complexities inherent in the
free-format nature of AD phrases. This unique capability sets our ST-SA system apart.

7. Incorporating advanced techniques: the ST-SA system incorporated cutting-edge
techniques, including the multi-head attention (MHA) strategy, mixture of experts
(MoE) mechanism, and word units as input features. These innovations collectively
resulted in a highly proficient sentence classification system tailored specifically
for ADs.

4.9. Principal Findings

• The study proposed an innovative approach, the switch-transformer multi-task learn-
ing (ST-MTL) model, for classifying Arabic dialects (ADs) into five distinct cate-
gories. This method combined multi-task learning (MTL) with a cutting-edge switch-
transformer model.

• The incorporation of a switch transformer and particularly the mixture of experts (MoE)
mechanism served to augment the portrayal of the comprehensive text sequence on a
global scale.

• The model’s ability to harness insights from multiple experts, each specializing in
distinct facets of the data, enabled it to amalgamate their discoveries, resulting in an
enhancement of the overall performance.

• The proposed model offered a promising solution to address the constraints imposed
by limited datasets in the context of text classification for advertisements (ADs).

• Elevating quality through MTL and switch transformer: combining the multi-task
learning (MTL) framework with the inclusion of word units as input features for the
MHA sub-layer in the switch-transformer encoder offered significant benefits.

• Superior performance of alternate learning over joint learning: the results indicate that
opting for alternate learning, rather than joint learning, leads to enhanced effectiveness.

• Impact of input sentence length: the effectiveness of the recommended ST-SA model
increased as the length of the input sentences extended, especially for sentences
containing 40- to 50-word tokens achieving an accuracy score of 81.32%.

• The model excelled with sentences exceeding 50-word tokens, achieving a remarkable
accuracy score of 84.02%.

• Cutting-edge advancement: the empirical findings from the practical experimentation
of the suggested model clearly demonstrate its supremacy over current methodologies.

• The findings are supported by outstanding total accuracy rates: 84.02% for the HARD
dataset, 68.81% for the BRAD dataset, and 83.91% for the LABR dataset.



Mathematics 2024, 12, 242 22 of 25

• Notably, these results signify a substantial improvement when compared to well-
known models, like T-TC-INT, AraBERT, and LR.

5. Conclusions

We introduced an ST-SA model designed for the five-point categorization of Arabic
dialects (ADs). The proposed framework utilized the self-attention approach and incorpo-
rated a multi-task learning (MTL) framework to enhance the overall representation of the
text sequence. Moreover, the MHA methodology was adept at singling out the most perti-
nent terms and words within the text sequences. Through training on sentiment analysis
(SA) tasks encompassing ternary and five-polarity assignments for ADs, the system’s effec-
tiveness was notably enhanced. The utilization of MHA in conjunction with MTL markedly
elevated the quality of the proposed SA system. The outcomes of this study underscore
the pivotal attributes of the ST-SA system, which employs the MoE mechanism and MHA
approach to augment the accuracies of both five-point and three-point classification tasks.
The integration of the MTL framework, MoE mechanism, and word units as input character-
istics in the MHA sub-layer underscores the critical role of these strategies in low-resource
language SA tasks, such as ADs. Similarly, experimenting with various configurations,
including the deployment of multiple heads in the MHA sub-layer and training with
multiple numbers of experts empowers the proposed ST-SA to master intricate patterns
within the input domain by capitalizing on the specialized expertise of numerous experts.
Also, it led to a notable boost in the classification performance of the proposed system.
Conducting a series of experiments on two datasets for five-point Arabic SAs, our findings
reveal that alternate learning paradigms demonstrate superior efficiency compared to joint
learning, with the dataset size of each task exerting an influence. The outcomes clearly
reveal that the suggested system surpasses other advanced methods when tested on the
HARD, BRAD, and LABR datasets. Additionally, it was observed that employing alternate
training for tasks within the model based on the multi-task learning (MTL) framework
could considerably improve the performance of the five-point classification. Specifically,
adopting a detailed ternary classification strategy, especially in identifying text as negative,
aided in more accurately differentiating between the high-negative and negative categories
within the five-point classification structure.

Practical experiments on five-point and three-point categorization tasks demonstrated
that the recommended system significantly improved the accuracy compared to other
sentiment analysis systems for Arabic dialects. The proposed switch-transformer sentiment
analysis (ST-SA) system that utilized MTL generated a resilient latent feature represen-
tation for textual sequences in Arabic dialects. With overall accuracy rates of 84.02%,
68.81%, and 83.91% for the HARD, BRAD, and LABR datasets, correspondingly, the em-
pirical findings underscore the superior performance of the ST-SA model over existing
state-of-the-art methodologies. Examples include Ar-aBERT [58], support vector machine
(SVM) [23], multi-neural perceptron (MNP) [22], hierarchical clustering with k-nearest
neighbor (HC(KNN)) [24], and logistic regression (LR) [26], and T-TC-INT [44]. Further
analyses of the experiments and outcomes unveiled that the system’s efficacy was contin-
gent on the utilization of the multi-head attention (MHA) strategy and the dimensionality
of word embeddings for each token. The practical investigation elucidated the advantages
of employing the MHA technique, as it enabled the extraction of both global and local
semantic knowledge within the contextual framework through the MHA sub-layer in each
encoding layer.

In addition, the proposed ST-SA (sentiment analysis for ADs) system not only ad-
dressed the challenge of limited training data, but also adeptly tackled the syntactic com-
plexities inherent in the free-format nature of AD (advertisement) phrases. This unique
approach sets the ST-SA system apart as it incorporates cutting-edge techniques, including
the multi-head attention (MHA) strategy, mixture of experts (MoE) mechanism, and word
units used as input features for the MHA sub-layer. These innovations collectively result
in a highly proficient sentence classification system tailored specifically for ADs, allow-
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ing for an accurate sentiment analysis in this domain. Looking ahead, our future plans
include further enhancing the ST-SA system’s capabilities. We are actively working on
the development of a multi-task learning sentiment analysis architecture that leverages
sub-word units as input features for the MHA sub-layer, as recommended by the recent
research [52]. Furthermore, we are exploring the adoption of a novel reverse positional
encoding mechanism [63] to effectively address the syntactic and semantic intricacies
frequently encountered in right-to-left textual content, such as ADs, and perform inter-
pretability analysis, such as attention visualization. These advancements aim to reinforce
the system’s ability to handle diverse linguistic nuances and improve the accuracy of
sentiment analysis, making it a valuable tool for analyzing sentiment in ADs across various
contexts and languages.
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