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Abstract: The horizontal fractures in the strata will close in the compaction effect of overlying strata,
while the vertical cracks are widely developed, which can be equivalent to HTI (transverse isotropy
with a horizontal axis of symmetry) medium. When an S-wave propagates into HTI media, the shear
wave will divide into two types of waves: a fast S-wave and slow S-wave. When the strata of HTI
are thin and overlapping, called the thin interbeds model, the wave field exhibits complex primary
reflections, converted waves, and multiples. We introduce a new second-order approximation of the
total reflection coefficient, with the incidence angle lower than the critical angle in thin-interbed HTI
media using a recursive algorithm. We verify the effectiveness of the second-order approximation
by analyzing the energy of multiples. Comparing the second-order approximate solution that
degenerates the HTI medium into isotropic and Kennett’s exact solution, we find that our solution
has an accuracy of over 99.9% in any azimuth, with the incidence angle lower than the critical angle
under P-wave incidence. However, our solution of the SP wave field is suitable for incidence azimuth
angles between 0–75◦ and 120–180◦, with the lowest accuracy occurring at an incidence angle of 25◦

and a relative error of 6.4%. The approximate solution in the SS wave field has the same applicable
range as the SP wave, with the maximum error of 6.3% occurring at the incident angle of 1◦. This
new second-order approximate formula for the total reflection coefficient of thin interbeds composed
of HTI helps us to understand the reflection characteristics of complex thin interbeds. It also lays a
theoretical foundation for the development of AVO (Amplitude Versus Offset) analysis and inversion
techniques for lithological and stratigraphic oil and gas reservoirs.

Keywords: thin interbeds; thin layer; reflection coefficient; HTI medium; shear wave splitting;
second-order approximation

MSC: 86A15; 86A20

1. Introduction

In recent years, with the advancement of lithological stratigraphic oil and gas reservoir
development, some terrestrial oil-bearing basins composed of thin layers of sandy mud-
stone in China have formed thin carbonate interbeds with high-angle fractures. Xie, through
the derivation of reflection coefficients for monoclinic media, demonstrated that media with
high-angle fractures exhibit complex fast and slow shear-wave wavefields [1]. For the reser-
voirs with vertical fractures mentioned above, we can simulate them using thin interbeds
composed of HTI media. The fractures in the HTI medium are perpendicular to the bedding
of the interbeds, which makes the shear wave separate into two waves with perpendicular
polarization directions [2–4]. The splitting shear waves lead to a more complex wavefield
in the thin interbeds, including reflected waves, transmitted waves, interbed multiples, and
converted waves, compared to isotropic thin interbeds. This complexity poses challenges
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in effectively separating interference wavefields in thin layers. Utilizing the traditional
Zoeppritz equations to calculate seismic wave reflection coefficients for a single interface
may cause a loss of some information regarding internal reflection and transmitted waves
within thin layers [5–7]. Therefore, reflection coefficients in anisotropic thin interbeds are
of great significance for the exploration of lithologic stratigraphic oil–gas reservoirs.

Postma demonstrated that periodic thin interbeds can be equivalent to horizontally
isotropic media [8]. Geophysicists generally define thin layers with a thickness of less than
one-quarter of a wavelength. The thin interbeds are formed by the overlaying of these
single thin layers [9]. By 1962, Backus proposed that the combination of thin interbeds
could induce anisotropy based on the foundation of a PTL (Periodic Thin Layer), enriching
the theoretical framework provided by Postma [10]. Zhang and He equated the N-thin
layer medium to a single-layer anisotropic medium and derived its macroscopic elastic
parameters [11]. They analyzed the characteristics of wave velocity changing with the
propagation direction in the equivalent anisotropic medium. Carcione provided conditions
for periodic thin interbeds that can be equivalent to a horizontally isotropic model with uni-
form variations. He also explored the dispersion and scattering patterns of the equivalent
model [12]. Wang considered the thin interbeds as a VTI (Vertical Transversely Isotropic)
layer sandwiched with the target single layer under the assumption of a single layer to
be extremely thin. However, the accuracy of this approximation is highly dependent on
frequency in the inversion [13,14]. The internal structure of VTI media is shown in Figure 1.
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surface of VTI is parallel to the horizontal fracture surface).

All the above theories consider the entire set of thin interbeds as equivalent to a
VTI medium and study the propagation characteristics of wavefields. They do not take
into account the transmission losses, multiples, and converted waves within and between
thin layers. Simmons and Backus, respectively studied the converted waves inside thin
layers and analyzed the role of converted waves in the seismic response of thin layers. It
was confirmed that converted waves and multiples contribute to seismic response [15].
Kennett’s recursive algorithm considers the wave field of each layer in a layered isotropic
medium when calculating the reflection coefficient [16–20]. Yang and Lu made second-
order approximations based on this algorithm, which have the advantages of high accuracy
and low computational complexity in isotropic conditions [21]. Zhang derived the reflection
coefficients for P-wave incidence in orthorhombic anisotropic media, which is similar to the
reflection coefficients for thin interbeds containing vertical fractures [22]. However, it lacks
the contribution of interbed multiples to the reflection coefficients. Huang employed the
Kennett recursive method to construct thin interbeds composed of VTI (Vertical Transverse
Isotropic) media, demonstrating that thin interbeds with VTI media exhibit differences in
wavefield responses compared to isotropic thin interbeds [23]. However, this formula is
not suitable for the anisotropic thin interbedded reservoirs with closed horizontal fractures
and widely developed vertical fractures. We extended the second-order approximate
equation of the isotropic single thin-layer reflection coefficients proposed by Yang and
Lu to an HTI single thin layer in this paper. Then, we obtained the approximate total
reflection coefficient of the HTI thin interbeds using a recursive algorithm. Subsequently,
we analyzed the relative error between the HTI thin-layer approximation formula and the
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exact formula and determined the application range of incident angles and azimuth angles
in the approximation results.

Reflection seismic amplitude interpretation techniques (such as AVO techniques) are
crucial methods for reservoir seismic prediction. The core of these techniques involves
studying the variation in the reflection coefficients of seismic waves at reservoir interfaces
with changes in the incident angle [24]. In contemporary oil and gas seismic exploration,
the precise description of reservoirs and the prediction of reservoirs with thin interbeds
containing fractures pose challenging problems. Reservoirs are typical fractured media, and
conducting reservoir seismic prediction research based on the model of wave propagation
in fractured thin interbeds media is more in line with the actual morphology of the medium.
Approximate reflection coefficients can be used for AVO inversion and forward modeling.
AVO inversion is a more rational approach to extracting rock parameters hidden in seismic
information. Many seismologists have delved into AVO inversion, typically using approxi-
mate expressions for reflection coefficients and estimating rock seismic parameters based
on the relationship between amplitude and incident angle in actual seismic traces [25]. For
instance, parameters such as density, P-wave velocity, S-wave velocity, or Poisson’s ratio
are estimated for lithology analysis or the direct detection of hydrocarbons. The reflection
coefficients changing with incident angle can be synthesized into seismic records for AVO
forward modeling. By simulating AVO phenomena through model forward modeling,
combined with the characteristics of the reservoir in the study area, different AVO features
for oil, gas, water, and special lithologies are analyzed. This establishes corresponding AVO
detection markers, allowing for the direct identification of lithology and hydrocarbons in
actual seismic records. Therefore, forward modeling methods can be used for qualitative
reservoir characterization [26]. In summary, the approximate reflection coefficients for
thin interbeds are highly meaningful for studying the AVO (Amplitude-Versus-Offset)
characteristics of thin interbeds.

2. Methodology and Theory
2.1. Second-Order Approximate Reflection Coefficient of the Isotropic Single Thin Layer

When solving the reflection coefficient of thin interbeds with widely developed vertical
fractures, the single thin layer of interbeds cannot be considered an isotropic medium. We
replace the single layer with an HTI medium, shown in Figure 2. HTI media can be
separated into two symmetry planes based on their relative relationship with the fracture
surface. One is perpendicular to the fracture surface, and the other is parallel to the fracture
surface [27]. When a shear wave propagates in this anisotropy medium, it will split into
two types: the fast shear-wave S1 with the polarization parallel to the fracture surface and
the slow shear-wave S2 with the polarization perpendicular to the fracture surface, shown
in Figure 2.
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Kennett proposed the reflection coefficient of isotropic layered media [17,18], where
the reflection coefficient on the top of any layer n in the interbeds medium is

R(n)
Down = r(n)Down + t(n)Up

~
R
(n+1)

Down [I − r(n)Up

~
R
(n+1)

Down ]
−1

t(n)Down. (1)

Yang and Lu proposed a method for calculating the reflection coefficient of layered
media based on Kennett [21]. Under the assumption of small incidence angles and moderate
impedance contrasts (Figure 3), they introduced the reflection coefficient for an isotropic
single thin layer in the slowness–frequency domain:

R(n)
Down = r(n)Down + t(n)Up

~
R
(n+1)

Down [I + r(n)Up

~
R
(n+1)

Down + (r(n)Up

~
R
(n+1)

Down)
2

]t(n)Down, (2)

where I is the unit diagonal matrix of elements, and r(n)Down and t(n)Down represent a single
interface reflection and transmission coefficient matrices on interface n for the downward
waves, respectively. They can be represented as

I =
[

1 0
0 1

]
, r(n)Down =

[
rpp rps
rsp rss

](n)
Down

, t(n)Down =

[
tpp tps
tsp tss

](n)
Down

, (3)
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interbeds.

r(n)Up and t(n)Up represent the single interface reflection and transmission coefficient matri-
ces on interface n for the upward wave waves, respectively. They can be represented as

r(n)Up =

[
rpp rps
rsp rss

](n)
Up

, t(n)Up =

[
tpp tps
tsp tss

](n)
Up

. (4)

R(n+1)
D is total reflection coefficient matrix on interface n + 1:

~
R
(n+1)

D = E(n)R(n+1)
D E(n), (5)

E(n) is a phase-shift factor of layer n. It can be represented as

E(n) =

[
e(iωq(n)P h(n))

e(iωq(n)S h(n))

]
, (6)

As shown in Figure 4,
~
R
(n+1)

D is obtained by phase-shifting the total reflection coefficient
matrix R(n+1)

D from interface n + 1 to the bottom of interface n.
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The symbol ω represents the angular frequency in Formula (6), and h(n) represents
the thickness of layer n. The vertical slowness of the P-wave and S-wave for layer n can be
represented as q(n)P and q(n)S .

2.2. Reflection Coefficients of a Single Interface for HTI Media

According to Formulas (1)–(4) in the preceding section, it is obvious that if we want to
obtain the total reflection coefficient of any single thin layer n, it is necessary to calculate
the single interface reflection and transmission coefficients of the thin layer. We then
replace the isotropic term in the isotropic approximate reflection coefficient formula with
the anisotropic term in Formulas (1) and (2), transforming the isotropic single interface
reflection coefficient in Formulas (1) or (2) into the reflection coefficient of HTI medium.

Rokhlin first proposed a precise reflection coefficient and transmission coefficient of
the TI medium for P-waves incident from above the interface [28,29]. The incident wave
function is

UP
Down = PP

Down · exp[ik
(
(n1x1 + n2x2 + n3x3)− VP

Downt
)
]. (7)

where the symbol PP
Down represents the polarization vector of the incident P-wave, k is

the wave number, n1, n2, and n3 are the three components of the normal vector of the
wavefront, n = (sin θ cos φ, sin θ sin φ, cos θ)T, and x1, x2, x3, are the three components of
the position vector. VP

Down represents the phase velocity of the P-wave incident.
Based on the boundary conditions of stress and displacement continuity on both sides

of the interface, we can conclude

P0l +
6
∑

α=1
RαPαl = 0

3
∑

k=1

3
∑

l=1
cI

13klm0kP0l +
3
∑

α=1
Rα

(
3
∑

k=1

3
∑

l=1
cI

13klmαkPαl

)
+

6
∑

α=4
Rα

(
3
∑

k=1

3
∑

l=1
cII

13klmαkPαl

)
= 0

3
∑

k=1

3
∑

l=1
cI

23klm0kP0l +
3
∑

α=1
Rα

(
3
∑

k=1

3
∑

l=1
cI

23klmαkPαl

)
+

6
∑

α=4
Rα

(
3
∑

k=1

3
∑

l=1
cII

23klmαkPαl

)
= 0

3
∑

k=1

3
∑

l=1
cI

33klm0kP0l +
3
∑

α=1
Rα

(
3
∑

k=1

3
∑

l=1
cI

33klmαkPαl

)
+

6
∑

α=4
Rα

(
3
∑

k=1

3
∑

l=1
cII

33klmαkPαl

)
= 0

. (8)

When the subscript α = 0, it represents the elastic properties of the incident wave. For α = 1,
2, 3, they, respectively, represent the elastic properties of the reflected P-wave, S1-wave, and
S2-wave. Similarly, α = 4, 5, 6 represent the elastic properties of reflected P-wave, S1-wave,
and S2-wave, respectively. The superscripts I and II represent the overlying medium and
underlying medium at the interface, respectively. The subscript k = 1, 2, 3 represents the
components of the slowness vector along the X1, X2, and X3 directions, and m stands for
slowness. R represents interface reflection coefficient, and c represent the elements of the
HTI elastic stiffness matrix.
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We then converted Equation (8) into a matrix form:

P11 P21 P31 −P41 −P51 −P61
P12 P22 P32 −P42 −P52 −P62
P13 P23 P33 −P43 −P53 −P63
I41 I42 I43 I44 I45 I46
I51 I52 I53 I54 I55 I56
I61 I62 I63 I64 I65 I66





R1
R2
R3
R4
R5
R6

 =



−P01
−P02
−P03
−I40
−I50
−I60

,

Iia =
3
∑

k=1

3
∑

l=1
cI
(i−3)3klmαkPαl (i = 4, 5, 6; α = 0, 1, 2, 3; )

Iia = −
3
∑

k=1

3
∑

l=1
cII
(i−3)3klmαkPαl (i = 4, 5, 6; α = 4, 5, 6; )

.

(9)

When the wave function Equation (7) incident is downwards from the interface, it can
be solved as

RP−
Down =

[
R1 R2 R3 R4 R5 R6

]T
Down

=
[

rPP
Down rPS1

Down rPS2
Down tPP

Down tPS1
Down tPS2

Down
]T

Down
. (10)

However, according to Equations (3) and (4), only the interface reflection coefficient
for P-wave downward incidence is not enough. We also need to solve the single-interface
reflection coefficient for P-wave upward incidence and S-wave incidence.

From Equations (3) and (4), it can be seen that we not only needed the reflection
coefficient of the downward incident P-wave but also the reflection coefficient of the
upward incident P-wave and the upward and downward incident S-wave. Therefore, we
modified the polarization and phase velocity of the incident wave function (7) to simulate
different types of wave incidence. Therefore, based on the calculation approach of Rokhlin
P-wave incidence, we extended it to the calculation of the reflection coefficients of various
waveforms in HTI media, including upward and downward waves.

When incident P-waves propagate upwards from the bottom of the interface, the
incident wave function is

UP
Up = PP

Up · exp[ik
(
(n1x1 + n2x2 − n3x3)− VP

Upt
)
]. (11)

Due to the upward incidence of P-waves, the components n1 and n2 of the wavefront
propagation direction remain unchanged. Adding a negative sign before n3 represents
the upward incidence from below the interface. The polarization vector PP

Up and phase
velocity vector VP

Up change in the same way as n, so we just added a negative sign before
the component on the X3 axis. The detailed information for calculating the polarization
vector and phase velocity of P-wave, S1-wave, and S2 wave in the HTI medium is shown
in Appendix A.

The interface reflection and transmission coefficient matrix of the single interface can
be written as

RP−
Up =

[
R1 R2 R3 R4 R5 R6

]T
Up

=
[

rPP
Up rPS1

Up rPS2
Up tPP

Up tPS1
Up tPS2

Up

]T
Up

. (12)

The wave functions for the upward and downward waves of S1 and S2 wave sources
are described as follows:

US1
Down = PS1

Down
· exp[ik

(
(n1x1 + n2x2 + n3x3)− VS1

Down
t
)
]. (13)

US1
Up = PS1

Up · exp[ik
(
(n1x1 + n2x2 − n3x3)− VS1

Upt
)
]. (14)

US2
Down = PS2

Down
· exp[ik

(
(n1x1 + n2x2 + n3x3)− VS2

Down
t
)
]. (15)
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US2
Up = PS2

Up
· exp[ik

(
(n1x1 + n2x2 − n3x3)− VS2

Up
t
)
]. (16)

when the waves are incident on the interface, the reflection and transmission coefficients
can be obtained through Equation (9):

RS1−
Down =

[
R1 R2 R3 R4 R5 R6

]T
Down

=
[

rS1P
Down rS1S1

Down rS1S2
Down tS1P

Down tS1S1
Down tS1S2

Down
]T

Down
. (17)

RS1−
Up =

[
R1 R2 R3 R4 R5 R6

]T
Up

=
[

rS1P
Up rS1S1

Up rS1S2
Up tS1P

Up tS1S1
Up tS1S2

Up

]T
Up

. (18)

RS2−
Down =

[
R1 R2 R3 R4 R5 R6

]T
Down

=
[

rS2P
Down rS2S1

Down rS2S2
Down tS2P

Down tS2S1
Down tS2S2

Down
]T

Down
. (19)

RS2−
Up =

[
R1 R2 R3 R4 R5 R6

]T
Up

=
[

rS2P
Up rS2S1

Up rS2S2
Up tS2P

Up tS2S1
Up tS2S2

Up

]T
Up

. (20)

The interface reflection and transmission coefficient matrices (3) and (4) can be rewrit-
ten as follows:

r(n)Down =

rPP
Down rPS1

Down rPS2
Down

rS1P
Down rS1S1

Down rS1S2
Down

rS2P
Down rS2S1

Down rS2S2
Down

(n)
Down

, r(n)Up =

rPP
Up rPS1

Up rPS2
Up

rS1P
Up rS1S1

Up rS1S2
Up

rS2P
Up rS2S1

Up rS2S2
Up


(n)

Up

,

t(n)Down =

tPP
Down tPS1

Down tPS2
Down

tS1P
Down tS1S1

Down tS1S2
Down

tS2P
Down tS2S1

Down tS2S2
Down

(n)
Down

, t(n)Up =

 tPP
Up tPS1

Up tPS2
Up

tS1P
Up tS1S1

Up tS1S2
Up

tS2P
Up tS2S1

Up tS2S2
Up


(n)

Up

.

(21)

We modified the single-layer phase shift factor in Formula (6). The detailed informa-
tion for calculating the phase shift factor of the P-wave, S1-wave, and S2 wave in the HTI
medium is shown in Appendix B. The phase shift factor in the thin interbed of HTI medium
should consider the influence of shear wave splitting, such as

E(n) =

eiωq(n)p (θ)h(n)

eiωq(n)S1 (θ)h(n)

eiωq(n)S2 (θ)h(n)

. (22)

where ω represents the angular frequency, h(n) represents the thickness of layer n,
and q(n)P (θP), q(n)S1 (θS1), q(n)S2 (θS2) represent the vertical slowness of Layer n’s P-wave, S1
wave, and S2 wave, respectively. We derived the analytical expression for the vertical
slowness of HTI media by solving the Christoffel equation [30]:

q(n)P (θP) =


1

2ρ (c33 + c66)·(cos2 θP + sin2 θP sin2 φ) + (c11 + c66)·(sin θP· cos φ)2

+

(
[(c33 − c66)·(cos2 θP + sin2 θP· sin2 φ)− (c11 − c66)·(sin θP· cos φ)2]

2

+4(c13 + c66)
2·(sin θP· cos φ)2·(cos2 θP + sin2 θP sin2 φ)

1/2

)
−1/2

· cos(θP). (23)

q(n)S1 (θS1) =


1

2ρ (c33 + c66)·(cos2 θS1 + sin2 θS1 sin2 φ) + (c11 + c66)·(sin θS1· cos φ)2

−
(

[(c33 − c66)·(cos2 θS1 + sin2 θS1· sin2 φ)− (c11 − c66)·(sin θS1· cos φ)2]
2

+4(c13 + c66)
2·(sin θS1· cos φ)2·(cos2 θS1 + sin2 θS1 sin2 φ)

)1/2


−1/2

· cos(θS1). (24)
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q(n)S2 (θS2) =


1

2ρ (c33 + c66)·(cos2 θS2 + sin2 θS2 sin2 φ) + (c11 + c66)·(sin θS2· cos φ)2

−
(

[(c33 − c66)·(cos2 θS2 + sin2 θS2· sin2 φ)− (c11 − c66)·(sin θS2· cos φ)2]
2

+4(c13 + c66)
2·(sin θS2· cos φ)2·(cos2 θS2 + sin2 θS2 sin2 φ)

)1/2


−1/2

· cos(θS2). (25)

θP = arcsin


√√√√−4c33c66 sin2 φ − A1 cos2 φ − A2 +

√(
4c33c66 sin2 φ + A1 cos2 φ + A2

)2 − 16Ac33c66

2A

. (26)

θS1 = arcsin


√√√√−4c33c66 sin2 φ − A1 cos2 φ − A2 −

√(
4c33c66 sin2 φ + A1 cos2 φ + A2

)2 − 16Ac33c66

2A

. (27)

θS2 = arcsin

(√
−P2c44

(P2c44 sin2 φ + P2c66 cos2 φ − P2c44 − ρ)

)
. (28)

A = 4c33c66 sin4 φ + A1 sin2 φ cos2 φ + A2 sin2 φ + 4c11c66 cos4 φ + A3 cos2 φ + A4

A1 = −4(c13)
2 − 8c66c13 + 4c11c33,

A2 = −8c33c66 − 4ρ(c33 + c66)/ρ2,
A3 = 8c13c66 − 4c11c33 + 4(c13)

2 − 4ρ(c11 + c66)/ρ2,
A4 = 4(c13P2 + ρ)(c66P2)/P4.

where ρ represents the thin layer’s density; c11, c33, c55, and c13 are independent stiffness
coefficients, which can be determined through VTI parameters [31–33]. VP0 and VS0
represent the P- and S-wave velocities of isotropic surfaces, respectively, s ε(v), δ(v), and γ(v)

Represent the Thomsen anisotropic parameter.

c11 = ρ(1 + 2ε(v))V2
P0, c33 = ρV2

P0, c44 = c55 = ρV2
S0, c66 = ρ(1 + 2γ(v))V2

S0,
c12 = ρV2

P0[1 + 2ε(v) − 2
(

c55
c33

)
](1 + 2γ(v))],

c13 = c23 = ρV2
P0

√
1 − c55

c33
·
(

1 − c55
c33

+ 2δ(v)
)
− ρV2

S0.

(29)

2.3. Second-Order Approximate Total Reflection Coefficient of Thin Interbeds with Vertical
Fractures

The total reflection coefficient on the top of any nth thin layer within the thin in-
terbeds can be obtained from Equations (21) and (22). We represent Equation (1) with
Formulas (21) and (22) as

R(n)
Down =


rPP
Down rPS1

Down rPS2
Down

rS1P
Down rS1S1

Down rS1S2
Down

rS2P
Down rS2S1

Down rS2S2
Down

+


tPP
Up tPS1

Up tPS2
Up

tS1P
Up tS1S1

Up tS1S2
Up

tS2P
Up tS2S1

Up tS2S2
Up



·


e
iωq(n)p (θ)h(n)

e
iωq(n)S1 (θ)h(n)

e
iωq(n)S2 (θ)h(n)

·R
(n+1)
Down ·


e
iωq(n)p (θ)h(n)

e
iωq(n)S1 (θ)h(n)

e
iωq(n)S2 (θ)h(n)



·



 1 0 0
0 1 0
0 0 1

−


rPP
Up rPS1

Up rPS2
Up

rS1P
Up rS1S1

Up rS1S2
Up

rS2P
Up rS2S1

Up rS2S2
Up

·


e
iωq(n)p (θ)h(n)

e
iωq(n)S1 (θ)h(n)

e
iωq(n)S2 (θ)h(n)



·R(n+1)
Down ·


e
iωq(n)p (θ)h(n)

e
iωq(n)S1 (θ)h(n)

e
iωq(n)S2 (θ)h(n)





−1

·


tPP
Down tPS1

Down tPS2
Down

tS1P
Down tS1S1

Down tS1S2
Down

tS2P
Down tS2S1

Down tS2S2
Down



. (30)
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In order to explain the physical meaning of each part in the above formula, we first
expanded the Taylor series in Formula (1):

R(n)
Down = r(n)Down + t(n)Up

~
R
(n+1)

Down [I +
∞

∑
n=1

(r(n)Up

~
R
(n+1)

Down)
m

]t(n)Down. (31)

The convergence region of the Taylor expansion is −I < r(n)Up

~
R
(n+1)

Down < I. Based
on the provided elastic parameters such as layer medium wave velocity, density, and
anisotropic parameters, we can observe that the absolute values of each element in ma-

trices r(n)Up and
~
R
(n+1)

Down are all below 1. The determinant of matrix r(n)Up

~
R
(n+1)

Down is consistently

less than 1. Therefore, replacing
(

I − r(n)Up

~
R
(n+1)

Down

)−1

with its mth-order Taylor expan-

sion I +
∞
∑

n=1
(r(n)Up

~
R
(n+1)

Down)
m

is reasonable under condition −I < r(n)Up

~
R
(n+1)

Down < I.

Equation (31) is the m-order approximation formula; m can take any positive integer.
We consider m as 3 to expand the above equation:

R(n)
Down = r(n)Down + t(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down

+t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down

. (32)

Each term of the third-order approximation formula has a clear physical meaning in
Equation (32). Each term in the reflection coefficient represents a different propagation path
of seismic waves. The first term r(n)Down is the reflection coefficient matrix of a reflected wave
on the interface n, shown in Figure 5.
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Figure 5. The reflected wave path represented by r(n)Down on interface n.

In Figure 6, t(n)Up

~
R
(n+1)

Downt(n)Down illustrates the reflection coefficient matrix for the incident
wave that passes through interface n, and reflect on interface n + 1, and then transmits back
through interface n. The above-mentioned waves are called primary waves.
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As shown in Figure 7, after completing primary-wave reflection in the thin layer n, the
seismic wave does not directly transmit through the interface n. Instead, it continues to
reflect within layer n, the reflections of which are called multiples.
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Third-order multiples: t(n)Up

~
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~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down.

Combining the coefficient expressions for seismic wave propagation on interface n
described in Figure 7, we can obtain all wave fields:

r(n)Down + t(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down

+t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down

. (33)

Formula (33) is the sum of the reflection coefficients of various wave fields under third-
order multiples. This equation is completely consistent with Formula (32). This indicates
that the order of Taylor expansion is consistent with the order of multiples. We can control
the order of multiples by changing m.

Taking the reflection coefficient of a single thin layer that retains third-order and fewer
multiples as an example, as shown in Figure 8, we used Kennett’s reflection coefficient
recursion method to iterate layer by layer from the reflection coefficient at the bottom of the
thin interbed, and calculated the total reflection coefficient at the top of the thin interbed.
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Since our model is based on the homogenous half-space assumption, there was no
upward reflection transmission in the bottom half space. Therefore, the total reflection
coefficient of the bottom single layer was equal to the single-interface reflection coefficient
of the bottom interface:

R(n+1)
Down = r(n+1)

Down =

 rPP rPS1 rPS2

rS1P rS1S1 rS1S2

rS2P rS2S1 rS2S2

(n+1)

Down

. (34)

E(n) =

eiωq(n)p (θ)h(n)

eiωq(n)S1 (θ)h(n)

eiωq(n)S2 (θ)h(n)

. (35)

where R(n+1)
Down is the contribution term of the reflection coefficient of the n + 1 interface to

the top interface of the n layer; it can be calculated by

~
R
(n+1)

Down = E(n)R(n+1)
DownE(n). (36)

Given
~
R
(n+1)

Down , the total reflection coefficient on the top of the adjacent layer n can be
obtained as follows:

R(n)
Down = r(n)Down + t(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down

+t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down

. (37)

Similarly, at this point, the contribution term of R(n)
Down to the reflection coefficient of

the top interface of the n − 1 layer can be determined as
~
R
(n)

Down. At this time, it can be
inferred that the total reflection coefficient of the n − 1 layer and its underlying strata is

R(n−1)
Down = r(n−1)

Down + t(n−1)
Up

~
R
(n)

Downt(n−1)
Down + t(n−1)

Up

~
R
(n)

Downr(n−1)
Up

~
R
(n)

Downt(n−1)
Down + t(n−1)

Up

~
R
(n)

Downr(n−1)
Up

~
R
(n)

Downr(n−1)
Up

~
R
(n)

Downt(n−1)
Down

+t(n−1)
Up

~
R
(n)

Downr(n−1)
Up

~
R
(n)

Downr(n−1)
Up

~
R
(n)

Downr(n−1)
Up

~
R
(n)

Downt(n−1)
Down

.

(38)
Using the above method to recursively push each thin layer to the top of the thin

interbeds, the third-order approximate total reflection coefficient of the thin interbeds
can be

R(1)
Down = r(1)Down + t(1)Up

~
R
(2)

Downt(1)Down + t(1)Up

~
R
(2)

Downr(1)Up

~
R
(2)

Downt(1)Down + t(1)Up

~
R
(2)

Downr(1)Up

~
R
(2)

Downr(1)Up

~
R
(2)

Downt(1)Down

+t(1)Up

~
R
(2)

Downr(1)Up

~
R
(2)

Downr(1)Up

~
R
(2)

Downr(1)Up

~
R
(2)

Downt(1)Down

. (39)

In order to analyze the energy proportion relationship between multiples of different
orders, we chose the recursive method as an example to obtain the total reflection coefficient
formula of thin interbeds with vertical fractures. In the reflection coefficient calculation
formula, we retained first-order, second-order, and third-order multiples, while ignoring
high-order multiples:

R(n)
Down = r(n)Down + t(n)Up

~
R
(n+1)

Downt(n)Down. (40)

R(n)
Down = r(n)Down + t(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down. (41)



Mathematics 2024, 12, 232 12 of 22

R(n)
Down = r(n)Down + t(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down. (42)

R(n)
Down = r(n)Down + t(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down

+t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down

. (43)

The validation model was composed of four layers of 10 m thick HTI medium thin
layers. The bottom of the model was an isotropic half-infinite space. The maximum incident
angle was the critical angle, while the step size of the incident angle was taken as 0.1◦. The
azimuth angle of the crack was set to 45◦. The density, velocity, and anisotropy parameter
information of the thin layer are shown in Table 1.

Table 1. Parameters of thin interbed model with vertical fractures.

VP0 (km/s) VS0 (km/s) ρ (g/cm3) ε(V) δ(V) γ(V) φ (◦)

First layer 2.361 1.381 2.36 0.01 0.018 0.023 45
Second layer 2.375 1.408 2.394 0.02 0.021 0.031 45
Third layer 2.404 1.428 3.061 0.03 0.032 0.034 45

Fourth layer 2.431 1.462 3.099 0.04 0.039 0.037 45
Bottom half space 2.473 1.478 3.2 0 0 0 45

As shown in Figures 9–11, it is evident that the relative error for the primary reflection
coefficients of PP, PS1, PS2, S1P, S1S1, S1S2, S2P, S2S1, and S2S2 waves, in comparison to
the reflection coefficients retaining first-, second-, and third-order multiples, was consis-
tently below 0.1%. There is almost no difference between the four approximate reflection
coefficients regarding retaining different order multiples.
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The above indicates that under the model in Table 1, retaining multiples of different
orders has little effect on the total reflection coefficient of thin interbeds with fractures.
In order to verify the energy proportion relationship between different-order multiples
in other models, we used the reflection coefficient on a single interface as a variable to
simulate the energy relationship between different-order multiples in different thin-layer
models.

Since the energy of a wave is proportional to the square of its amplitude, we analyzed
its energy by studying the amplitudes between different-order multiples.

Based on the physical description of the multiples’ expression in a thin layer, we
assumed that the amplitude of the incident wave was Ainc, and the reflection coefficient of
the primary wave in the thin layer was RPrim, while the reflection coefficient of first-order
multiples in the thin layer was RMuti. (RPrim: t(n)Down · t(n)Up · r(n+1)

Down , RMuti: r(n)Down · r(n+1)
Down).

The amplitude of a primary wave in a thin layer is

APrim = Ainc · RPrim. (44)

The amplitude of seismic waves reflected by second-order multiples within a thin
layer is

AMuti_2 = Ainc · RPrim · R2
Muti. (45)

The amplitude of m-order multiples in a thin layer is

AMuti_n = Ainc · RPrim · Rm
Muti. (46)

If infinite-order multiples are retained, i.e., m tends towards infinity, then the amplitude
is

AMuti_infinte =
(

Ainc · RPrim · R1
Muti

)
+
(

Ainc · RPrim · R2
Muti

)
+ · · ·+ (Ainc · RPrim · Rm

Muti). (47)

AMuti_infinte = (Ainc · RPrim) ·
(

RMuti + R2
Muti + · · ·+ Rm

Muti

)
= Ainc · RPrim ·

RMuti(1 − Rm
Muti)(

1 − RMuti
) . (48)

Since the reflection coefficient is between −1 and 1, when m tends to infinity, Rm
Muti tends

to 0:
AMuti_infinte= Ainc · RPrim ·

RMuti
1 − RMuti

. (49)

The ratio of the amplitude energy of first-order multiples to the amplitude energy of
all multiples can be written as follows:

AMuti_1

AMuti_infinte
=

Ainc · RPrim · RMuti

Ainc · RPrim · RMuti
1−RMuti

= 1 − RMuti. (50)
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The ratio of the amplitude energy of second-order multiples to the amplitude energy
of all multiples can be expressed as

AMuti_2

AMuti_infinte
=

Ainc · RPrim
(

RMuti + R2
Muti

)
Ainc · RPrim · RMuti

1−RMuti

= 1 − R2
Muti. (51)

The ratio of the reflection amplitude of multiples within the third-order to the reflection
amplitude of all multiples can be written as

AMuti_3
AMuti_infinte

=
Ainc · RPrim

(
RMuti + R2

Muti + R3
Muti

)
Ainc · RPrim · RMuti

1−RMuti

=
(

1 + RMuti + R2
Muti

)
· (1 − RMuti). (52)

We can also draw the ratio of the seismic wave reflection amplitude of the first-order
multiples with different conditions to the amplitude of all multiples in Figure 12.
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Figure 12. The ratio of the seismic wave reflection amplitude of the first-order (a), second-order

(b) and third-order (c) under different r(n)Up r(n)Down conditions to the amplitude of all multiples (rD

represents the r(n)Down, rU represents the r(n)Up ).

In Figure 12a, it shows that when both of the absolute values of the reflection coeffi-
cients of upward r(n)Up and downward r(n)Down on a single interface are both less than 0.07,
the energy of first-order multiples will occupy over 95% of the total energy. When the
absolute values of r(n)Up and r(n)Down are greater than 0.2, the energy of higher-order multiples
can exceed 15%. The absolute values of the reflection coefficients of the thin interbeds were
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less than 10−3 in this model, so the energy of the first-order multiples always accounted for
the main part of the energy of multiples. As shown in Figure 12b, the energy of first-order
and second-order multiples accounts for 98–99% of the high-order multiples in this model
(absolute values of r(n)Up and r(n)Down both less than 0.1). In Figure 12c, it shows that the third-
order and low-order multiples also account for over 99% of the total wave field amplitude,
which is not significantly different from the results in Figure 13. When the absolute value
of the thin-layer interface reflection coefficient is above 0.45, the energy of third-order and
above multiples should be considered.
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Figure 13. Comparison of reflection coefficient between second-order DAF and Kennett’s exact
isotropy of a thin layer. (a) Comparison of accurate and approximate PP wave results; (b) comparison
of accurate and approximate PS wave results; (c) comparison of accurate and approximate SP wave
results; and (d) comparison of accurate and approximate SS wave results.

However, the reflection coefficient of actual strata rarely exceeds the degree to which
third-order multiples need to be considered. Therefore, when calculating the reflection coeffi-
cient of thin interbeds with fractures, we mostly used a second-order approximation formula:

R(n)
Down = r(n)Down + t(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down + t(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downr(n)Up

~
R
(n+1)

Downt(n)Down. (53)

3. Error Analysis

After verifying the rationality of the second-order approximation, we continued to test
the accuracy of the second-order approximation Formula (53) using Kennett’s isotropic thin-
layer formula. We were able to degenerate the second-order approximation formula into an
isotropic formula by setting the Thomsen anisotropy parameter to 10−10. We abbreviated
this technology as second-order DAF. The reflection coefficients of the PP wave, PS wave,
SP wave, and SS wave can be calculated using Kennett’s exact formula and second-order
DAF. We then quantitatively analyzed the reflection coefficients observed by two methods.

We firstly established a thin layer sandwiched in a homogeneous medium. The
detailed information for the model is shown in Table 2. The overlying and underlying
strata of the thin-layer model were isotropy. The incidence angle was less than the critical
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angle, and the azimuth angle was 45◦. The comparison of the reflection coefficient observed
by second-order DAF and Kennett’s exact isotropic of a thin layer are shown in Figure 13.

Table 2. Parameters of HTI medium thin-layer model.

VP0 (km/s) VS0 (km/s) ρ (g/cm3) ε(V) δ(V) γ(V) φ (◦)

Overlying medium 2.361 1.381 2.36 10−10 10−10 10−10 45
HTI medium layer 2.375 1.408 2.394 10−10 10−10 10−10 45

Underlying medium 2.404 1.428 3.061 10−10 10−10 10−10 45

The maximum relative error between the second-order DAF and Kennett’s exact
isotropic formula was less than 0.01% in both the PP and PS wave fields. In the SP wave
field, the maximum error between Kennett’s exact formula and second-order DAF occurred
at the seismic wave incident of 25◦, with a relative error of 6.4%. In the SS wave field, the
maximum error between second-order DAF and Kennett’s exact formula occurred at the
incident angle of 0.1◦, with a relative error of 6.3%. Within the critical angle, the relative
error of SP-wave DAF exhibited a characteristic of increasing with the increase in incident
angle. The relative error of SS wave DAF decreased with increasing incident angle.

In order to evaluate the relative error in the joint influence of different azimuth angles
and incident angles, we varied the azimuth angles from 1◦ to 180◦ in steps of 0.1◦ and
changed the incident angle from 1◦ to 25◦ in steps of 0.1◦. The measured relative error
between the two reflection coefficients for P-wave incidence and S-wave incidence is shown
in Figures 14 and 15, respectively.
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Figure 14. The relative error plots of second-order DAF and Kennett’s exact isotropic formula with
P-wave incident in a thin layer of HTI medium at different azimuth and incidence angles. (a) relative
errors of reflected PP wave; (b) relative error of reflected PS wave.

Figure 14 shows that the relative errors of the reflection coefficient between the two
methods for PP and PS waves at azimuth angles of 1–180◦ and incidence angles of 1–25◦

remained below 0.01%, which was lower than the upper limit of 1%. Therefore, in the PP
and PS wave fields, the second-order approximation technique has high computational
accuracy. The relative error surfaces of the PP wave and PS wave were both symmetrical
around an azimuth angle of 90◦. The relative error of the PP waves increased with the
increase in incident angle, while the opposite was true for the PS waves.

Figure 15a shows that the SP wave relative error is only 1% with the azimuth varying
in the range of 0–70◦ and 120–180◦, and the incidence angle changing in the range of 1–25◦.
The relative error gradually increases with the azimuth angle increasing. When the azimuth
is 75◦, the relative error reaches 6.4%. The relative error increases from the azimuth of 75◦

to 100◦, with the maximum relative error of 98.7% at an azimuth of 91◦. However, when the
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azimuth exceeds 100◦, the relative error gradually decreases from 15% to 6% in the range
of 100–120◦. For the relative error of SS wave in Figure 15b, when the incidence angle of S
waves is less than the critical angle and the azimuth lies in the range of 0–75◦, the relative
errors are lower than 6.5%. The characteristics of the relative error of SS waves are like the
SP wave field. It increases sharply following an azimuthal angle in the range of 75–100◦,
with the maximum relative error of 89% at the azimuth angle of 91◦. The relative error
drops sharply below 5% in the azimuth range of 120–180◦ and an incident angle of 25◦.
Especially when the azimuth angle is greater than 130◦, the relative error is less than 2%.
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4. Discussion

For single thin layers and thin interbeds, internal multiples reflections are mixed with
primary reflections, and it is currently impossible to suppress multiples reflections without
affecting the energy of primary reflections. Therefore, the impact of multiples reflections
on reflection coefficients must be considered in seismic data processing and inversion of
single thin layers and thin interbeds. The Kennett formula system explicitly calculates all
types of multiples and also considers interbed transmission losses. The equation system
has no limitations on layer thickness conditions, making it suitable for calculating the
reflection coefficient of thin interbeds. We generalized the second-order approximation of
the Kennett equation for the reflection coefficient of isotropic layered media and obtained a
second-order approximation equation for the reflection coefficient of HTI thin interbeds.
The rationality of retaining second-order multiples and the rationality of the formula results
were verified. Therefore, in the subsequent simulation, analysis, and inversion of AVA
response, it could be more time-saving and maintain good accuracy compared to accurate
formulas when considering multiples. Due to the presence of high-angle fractures in
the formation, there are not only vertical fractures, but also some oblique fractures that
form a more complex azimuthal anisotropy. In the future, we will derive more complex
second-order approximate reflection coefficients for thin interbeds. And we combined the
reflection coefficient with Green’s function for wave field simulation, making the seismic
wave response characteristics of anisotropic thin interlayers more intuitive.

5. Conclusions

This article proposed a new second-order approximate formula for the total reflection
coefficient of thin interbeds composed of HTI. The rationality of the second-order approxi-
mation was verified by comparing the amplitude energy of multiples when the absolute
value of the single interface reflection coefficient was less than 0.45. The formula is only
applicable to the calculation of the reflection coefficient with the incidence angle less than
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the critical angle, and when the absolute value of the single interface reflection coefficient
is below 0.45. Additionally, it is necessary for the thin interbeds to have a low impedance
contrast, and weak anisotropy, and the method does not consider the influence of the
electromagnetic field properties of the strata on the elastic properties. When the P-wave is
incident, the relative error of the P-wave approximate reflection coefficient has an accuracy
of 99%, while the relative error of the S-wave approximate reflection coefficient is relatively
large between azimuth angles of 75–120◦, with an accuracy of 95% at 1–45◦ and 120–180◦.
When the S-wave is incident, the relative error is less than 5% in the azimuth range. The
calculation accuracy is mainly affected by the incident angle in the high-precision field (rel-
ative error < 5%). The accuracy decreases as the incident angle approaches the critical angle
for SP waves, while for SS waves, the accuracy increases as the incident angle approaches
the critical angle. Our second-order reflection coefficient approximation proves effective
in simulating a more comprehensive seismic wavefield in thin-interbed environments. It
holds significant potential for applications in thin-interbed AVO (Amplitude-Versus-Offset)
inversion and stratigraphic structure prediction, where the influence of these complexities
is crucial to consider. Therefore, this second-order approximation formula can guide the
subsequent inversion work of complex thin interbeds, and has certain significance for
searching for oil gas, reservoirs and predicting stratigraphic structures.
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Appendix A

The Christoffel equation is an equation that expresses the characteristics of seismic
wave propagation. Firstly, by omitting the term ρF from the wave equation, a homogeneous
equation such as (A1) can be obtained:

ρ
∂2P
∂t2 = L

(
CLTP

)
. (A1)

where t is the propagation time, ρ is the density of the medium, U = (u1, u2, u3)
T is the

displacement vector, σ is the stress vector, and L is the 3 × 6 partial derivative operator
matrix (A2):

L =


∂

∂x1
0 0 0 ∂

∂x3
∂

∂x2

0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x1

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

. (A2)

The expression of a harmonic plane wave is

U = P · exp[ik(n · x)− Vt], (A3)

where P = (P1, P2, P3)
T is the polarization vector, k is the wave number, n = (n1, n2, n3)

T is
the normal vector to the wavefront, x = (x1, x2, x3)

T is the position vector, V is the phase
velocity of the wave, and t is the propagation time. The direction vector n can be expressed
in the form of trigonometric functions with the incidence angle θ and azimuth angle
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φ: n = (sin θ cos φ, sin θ sin φ, cos θ)T. The relationship between the incidence angle and
azimuth angle in the material coordinate system is illustrated in the diagram.
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Substituting the harmonic plane wave (A3) into (A1) yields the general Christoffel
equation for the isotropic elastic media with full anisotropy (Equation (A4)):

(cijklnjnl − ρV2δik)Pk = 0, (A4)

The matrix form of (A4):Γ11 − ρV2 Γ12 Γ13
Γ12 Γ22 − ρV2 Γ23
Γ13 Γ23 Γ33 − ρV2

P1
P2
P3

 = 0, (A5)

Γ11 = c11n1n1 + c66n2n2 + c55n3n3 + 2c56n2n3 + 2c15n1n3 + 2c16n1n2
Γ12 = c16n1n1 + c26n2n2 + c45n3n3 + (c46 + c25)n2n3 + (c14 + c56)n1n3 + (c12 + c66)n1n2
Γ13 = c15n1n1 + c46n2n2 + c35n3n3 + (c36 + c45)n2n3 + (c13 + c55)n1n3 + (c14 + c56)n1n2
Γ22 = c66n1n1 + c22n2n2 + c44n3n3 + 2c24n2n3 + 2c46n1n3 + 2c26n1n2
Γ23 = c56n1n1 + c24n2n2 + c34n3n3 + (c23 + c44)n2n3 + (c36 + c45)n1n3 + (c46 + c25)n1n2
Γ33 = c55n1n1 + c44n2n2 + c33n3n3 + 2c34n2n3 + 2c35n1n3 + 2c45n1n2

From Equation (A5), it can be observed that the matrix equation is homogeneous.
Therefore, the polarization vector will only have a non-zero solution when the determinant
of the coefficient matrix in the equation is zero.∣∣∣∣∣∣

Γ11 − ρV2 Γ12 Γ13
Γ12 Γ22 − ρV2 Γ23
Γ13 Γ23 Γ33 − ρV2

∣∣∣∣∣∣ = 0, (A6)

The expanded form of (2–20c) is a cubic equation with the independent variable ρV2,
and its three solutions represent the velocities of qP waves, qPS1 waves, and qPS2 waves,
respectively (Equations (A7)–(A9)).

VqP =


1

2ρ (c33 + c66)·(cos2 θ + sin2 θ sin2 φ) + (c11 + c66)·(sin θ· cos φ)2

+

(
[(c33 − c66)·(cos2 θ + sin2 θ· sin2 φ)− (c11 − c66)·(sin θ· cos φ)2]

2

+4(c13 + c66)
2·(sin θ· cos φ)2·(cos2 θ + sin2 θ sin2 φ)

1/2

)
1/2

, (A7)
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VqP =


1

2ρ (c33 + c66)·(cos2 θ + sin2 θ sin2 φ) + (c11 + c66)·(sin θ· cos φ)2

+

(
[(c33 − c66)·(cos2 θ + sin2 θ· sin2 φ)− (c11 − c66)·(sin θ· cos φ)2]

2

+4(c13 + c66)
2·(sin θ· cos φ)2·(cos2 θ + sin2 θ sin2 φ)

1/2

)
1/2

, (A8)

VqS2 =

[
1
ρ
(c44· cos2 θ + sin2 θ· sin2 φ + c66(sin θ· cos φ)2)

]1/2
, (A9)

Equation (A4) divides both sides by the square of velocity V2 and the density of the
medium simultaneously ρ. The Christoffel Equation (A10), represented by slowness, can
be obtained:

(ρ−1cijklmjml − δik)Pk = 0, (A10)

In Equation (A10), mj and ml can be taken as m1, m2, and m3, respectively, representing
the components of the slowness vector m in the X1, X2, and X3 directions.

If the coefficient matrix (ρ−1cijklmjml − δik) before the polarization vector in Equation
(A10) is set to Hik, then Equation (A9) is simplified as

HikPk = 0, (A11)

Hik is expressed as

Hik =
3

∑
j=1

3

∑
l=1

ρ−1cijklmjml − δik, (A12)

Based on the elements present in the stiffness matrix of the HTI medium and their
symmetry, combined with Equation (A12), it can be concluded that

H11P1 + H12P2 + H13P3 = 0
H21P1 + H22P2 + H33P3 = 0,
H31P1 + H32P2 + H33P3 = 0

, (A13)

Solving the above equation system can obtain the polarization vector.

Appendix B

Consider a horizontally layered medium, where the medium parameters only vary
with depth, and all physical properties parameters are only functions of depth z.

Set the stress-displacement vector to B (stress, displacement). The wave equation
represented by stress-displacement is

∂zB = iωAB + F, (A14)

where z is the depth, A is the system matrix, ω is the angular frequency, and B is the stress-
displacement vector. V is the seismic wave vector. The elements of V may be identified
with the amplitudes of upward and downward traveling plane waves.

Let the eigenvalue matrix of the coefficient matrix A be D, and the eigenvalue vector
be a Λ. The relationship between them is

A = DΛD−1,B = DV. (A15)

Remove the physical force term F from the wave equation:

∂z(DV) = iωADV,(∂zD)V + D(∂zV) = iωADV,∂zV = [iωD−1AD − D−1∂zD]V. (A16)

The wave equation without physical terms can be written as

∂zV = iωΛV, (A17)
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The solution to this equation:

V(z) = exp[iωΛ(z − z0)]V(z0), (A18)

where exp[iωΛ(z − z0)] connects the wave vectors of two different thin layers, V(z) and
V(z0), and is called the propagation matrix.

We set it as E and expanded it:

E =

eiωqP(z−z0)

eiωqS1(z−z0)

eiωqS2(z−z0)

. (A19)

Due to the inclusion of phase change information in E, it is also known as the phase
shift factor.
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