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Abstract: In this research paper, we utilize the q-derivative concept to formulate specific differential
and integral operators denoted as Rn,m,λ

q , Fn,m,λ
q and Gn,m,λ

q . These operators are introduced with the
aim of generalizing the class of Ruscheweyh operators within the set of univalent functions. We extract
certain properties and characteristics of the set of differential subordinations employing specific
techniques. By utilizing the newly defined operators, this paper goes on to establish subclasses of
analytic functions defined on an open unit disc. Additionally, we delve into the convexity properties
of the two recently introduced q-integral operators, Fn,m,λ

q and Gn,m,λ
q . Special cases of the primary

findings are also discussed.
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1. Introduction

In recent times, the q-analysis has garnered substantial attention from mathematicians,
particularly in the realm of function theory, as evidenced in the comprehensive research
available in [1]. The expansion of operator theory in this context has served as inspiration
for numerous researchers, leading to the publication of various articles. The q-calculus
provides valuable tools extensively employed to investigate diverse classes of analytic
functions. Several geometric aspects, including coefficient estimates, convexity, close to
convexity, distortion bounds and radii of starlikeness, have been explored within these
proposed classes of functions.

Srivastava recently published a survey and expository review paper [2], offering
valuable insights for researchers and scholars delving into the subject matter. The sur-
vey extensively examines the mathematical descriptions and applications of fractional
q-derivative operators and fractional q-calculus within the realm of geometric function
theory. The investigation delves into the intricacies of how these fractional operators and
calculus concepts are employed in describing mathematical functions and their geometric
properties. The survey also explores the practical applications and implications of fractional
q-derivative operators within the broader context of geometric function theory. Overall, it
provides a thorough exploration of the theoretical foundations and practical uses of these
mathematical tools in the specified mathematical domain. Additionally, Srivastava and
collaborators [3] specifically examined certain classes of q-starlike functions associated with
conic regions.

The utilization of q-calculus in geometric function theory traces back to 1990, when
Ismail and colleagues, referenced by [4], first applied q-calculus. They employed the q-
derivative operator Dq to investigate an extension of the class of starlike functions within
the open unit disk. Another significant contribution was made by Purohit and Raina, as
cited in [5], where they introduced a generalized q-Taylor’s formula in fractional q-calculus.
In a different context, Mohammed and Darus, in their work denoted by [6], directed their
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focus towards the approximation and geometric properties of q-operators within specific
subclasses of analytic functions situated in compact disks. This research showcased the
versatility of q-calculus in addressing geometric aspects and the approximation within a
specific set of analytic functions. Collectively, these studies highlight the diverse appli-
cations of q-calculus in exploring various facets of geometric function theory. Kanas and
Raducanu [7] applied fractional q-calculus operators to examine specific function classes
using the concept of the conic domain. Bounds for q-convex functions and q-starlike with
respect to symmetric points were studied by Ramachandran et al. [8] using fractional
q-calculus operators. In the study conducted by Srivastava and colleagues [9], they de-
veloped comprehensive findings concerning the partial sums of meromorphically starlike
functions. These functions were defined within a specific class of q-derivative operators.The
research aimed to provide broader insights into the characteristics and properties of these
meromorphically starlike functions, leveraging the framework of a designated class of
q-derivative operators. In the research conducted by Ibrahim and collaborators, referenced
by [10], they introduced a novel q-differential operator within the open unit disk. This
operator played a crucial role in characterizing the analytic geometric representation of
solutions to the well-known Beltrami differential equation within a complex domain. The
study aimed to contribute to the understanding of solutions to the Beltrami equation in
a complex setting, utilizing the introduced q-differential operator in the context of the
open unit disk. In the work conducted by Nezir and co-authors, and referenced by [11],
they introduced particular subclasses of analytic and univalent functions within the open
unit disk. These subclasses were defined based on the q-derivative, and the study in-
volved an examination of conditions that analytic and univalent functions must satisfy to
belong to these specific classes. The research aimed to provide a deeper understanding
of the properties and characteristics of analytic and univalent functions in the context
of the introduced q-derivative, shedding light on the conditions governing membership
in the defined subclasses. Analytic functions in q-analogue associated with the cardioid
domain and limacon domain are examined with respect to various properties by Ul-Haq
et al. [12]. In the research conducted by Deniz et al. [13], they delved into the exploration
of j-neighborhoods associated with various subclasses of convex and starlike functions,
defined based on the q-Ruscheweyh derivative operator. In the research conducted by Khan
and colleagues, denoted by [14], they explored diverse subclasses of analytic functions,
q-starlike functions, and symmetric q-starlike functions. This exploration was carried out
through the application of q-analogue values of integral and derivative operators. This
study aimed to investigate and characterize the properties and behaviors of these specific
subclasses of analytic functions under the influence of q-calculus, employing integral and
derivative operators with q-analogue values. The research contributed to advancing the
understanding of analytic functions within the framework of q-calculus and the application
of relevant operators.

These discoveries, among numerous others, underscore the pressing need for signifi-
cant progress in q-calculus and fractional q-calculus within the framework of geometric
function theory in complex analysis. Various researchers have played a crucial role in
advancing this theory by introducing specific classes through the application of q-calculus.
The contributions of these researchers have collectively expanded the scope and understand-
ing of geometric function theory, paving the way for further exploration and developments
in the realm of complex analysis. The recognition of q-calculus as a valuable tool in defining
classes and understanding geometric properties emphasizes its importance in the ongoing
evolution of geometric function theory. To access more recent contributions on this subject,
interested individuals can refer to the provided references [15–20]. All of these sources
are likely to contain the latest research findings and advancements in the field, offering a
comprehensive overview of the current state of knowledge regarding q-calculus and its
applications within geometric function theory.

In this research paper, the central focus lies in the application of the concept of the
q-derivative to derive specific differential and integral operators, denoted as Rn,m,λ

q , Fn,m,λ
q
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and Gn,m,λ
q . These operators are introduced with the aim of generalizing the class of

Ruscheweyh operators within the set of univalent functions. This paper proceeds to estab-
lish various properties and characteristics related to the set of differential subordinations.
The derivation of these properties involves employing specific techniques tailored to the
q-derivative, leading to the attainment of interesting results in the realm of differential
subordination. By utilizing the newly defined operators, this paper goes on to establish
subclasses of analytic functions defined on an open unit disc. Furthermore, the research
delves into the convexity properties of the two recently introduced q-integral operators.
These operators are defined within specific classes of analytic functions, and their properties
are examined in the context of the newly introduced q-differential operator.

In this context, we revisit fundamental concepts from the Geometric Function Theory
literature, which are essential for ensuring clarity and comprehension of the forthcom-
ing analysis.

2. Main Results

In the customary notation, H(U) represent the set of analytic functions in the open unit
disk. Consider the subclass A of H(U), consisting of analytic functions f defined on the
open unit disk U = {z ∈ C | |z| < 1}. Members of this subclass are subject to normalization
conditions, specifically f (0) = 0 = f

′
(0)− 1. In simpler terms, functions f belonging to A

can be expressed in the form of a power series:

f (z) = z +
∞

∑
j=2

ajzj, z ∈ U. (1)

We revisit certain notations and concepts of q-calculus employed in this paper. The
theoretical underpinning of this framework rests upon the incorporation of q-analogues into
traditional formulas and functions. This foundation is established by acknowledging and
utilizing the concept that involves expressing traditional mathematical structures in terms
of q-analogues. The integration of q-analogues into established mathematical frameworks
forms the basis for developing a comprehensive theory that extends and adapts classical
formulas and functions in the realm of q-calculus, built upon the recognition that

lim
q→1

1 − qα

1 − q
= α, q ∈ (0, 1), α ∈ N, (2)

hence, the quantity 1−qα

1−q is occasionally referred to as the basic number [α]q. The q-factorial,
denoted as [α]q!, is a mathematical concept related to q-calculus that is specified by the
following formula:

[α]q! =
{

[α]q · [α − 1]q · · · [1]q, for α = 1, 2, . . . ;
1, for α = 0.

(3)

The q-factorial is a special function that arises in various areas of mathematics, includ-
ing combinatorics, number theory, and quantum algebra.

It is important to note that when q approaches 1, the q-factorial converges to the classi-
cal factorial function. In this sense, the q-factorial provides a q-analogue or a deformation
of the standard factorial.

The q-derivative of a function f (z) with respect to the variable z is determined by the
following definition:

Dq( f (z)) =
f (qz)− f (z)
(q − 1)z

, q ∈ (0, 1), z ∈ U, z ̸= 0 (4)

and Dq( f (0)) = f
′
(0), where Dq denotes the q consequently, we infer that

Dq( f (z)) = 1 +
∞

∑
j=2

[j]qajzj−1, q ∈ (0, 1), z ∈ U, z ̸= 0. (5)
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Hence, for a function f (z) = zk, the q-derivative is expressed as

Dq

(
zk
)
=

(
qk − 1

)
zk−1

q − 1
· zk−1 = [k]qzk−1, (6)

then lim
q→1

Dq( f (z)) = lim
q→1

[k]qzk−1 = kzk−1 = f
′
(z), where f

′
(z) is the ordinary derivative.

Given the assumption of the definition of the q-derivatives operator, for f and g
belonging to set A, the following rules apply:

mDq(( f (z))± ng(z)) = mDq f (z)± nDqg(z), for m, n ∈ C ,

Dq( f (z)g(z)) = g(z)Dq f (z) + f (qz)Dqg(z),

Dq

(
f (z)
g(z)

)
=

g(z)Dq f (z)− f (z)Dqg(z)
g(z)g(qz)

, with g(z)g(qz) ̸= 0.

Furthermore, the q-integral of a function f (x) over a subset of C is determined by

z∫
0

f (t)dqt = z(1 − q)
∞

∑
k=0

qk f
(

zqk
)

. (7)

Principle of Subordination (see [21]): If f and g are analytic functions in the domain
U, we express that f is subordinate to g, denoted as f ≺ g, when there exists a Schwarz
function w that is analytic in U, satisfying w(0) = 0 and |w(z)| < 1. This function w should
be such that f (z) equals g(w(z)), for all z in U. Specifically, when the function g is univalent
in U, the mentioned subordination is equivalent to f (0) being equal to g(0) and the image
of f over U being a subset of the image of g over U.

A function f ∈ A is said to be starlike of order α, 0 ≤ α < 1, if and only if

Re

{
z f

′
(z)

f (z)

}
> α, z ∈ U.

The collection of all of these functions is represented by S∗(α).
A function f belonging to the set A is said to be in the class C(α) of convex functions

of order α, where 0 ≤ α < 1, if and only if

Re

{
1 +

z f
′′
(z)

f ′(z)

}
> α, z ∈ U.

Particularly, the classes S∗(0) = S∗ and C(0) = C are, respectively, the well-known
classes of starlike and convex functions in U.

The q-analogues to the functions classes S∗(α) and C(α) are provided in the follow-
ing manner.

A function f belonging to the set A is said to be in the class S∗
q (α) of starlike functions

with respect to q-differentiation of order α, where 0 ≤ α < 1, if it meets the requirements

Re
{

zDq( f (z))
f (z)

}
> α, z ∈ U.

A function f belonging to the set A is said to be in the class Cq(α) of convex functions
with respect to q-differentiation of order α, for −1 ≤ α < 1, if it meets the conditions

Re

{
1 +

zD2
q( f (z))

Dq( f (z))

}
> α, z ∈ U.
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The classes S∗
q (0) = S∗

q and Cq(α) = Cq represent the classes of starlike and convex
functions with respect to q-differentiation.

A function f ∈ A is said to be in the class USq(α, k) of k-uniformly starlike functions
with respect to q-differentiation of order α, for 0 ≤ α < 1, if it meets the conditions

Re
{

zDq( f (z))
f (z)

− α

}
> k

∣∣∣∣ zDq( f (z))
f (z)

− 1
∣∣∣∣, z ∈ U.

A function f ∈ A is said to be in the class UCq(α, k) of k-uniformly- convex functions
with respect to q-differentiation of order α, for −1 ≤ α < 1, if it meets the conditions

Re

{
1 +

zD2
q( f (z))

Dq( f (z))
− α

}
> k

∣∣∣∣∣ zD2
q( f (z))

Dq( f (z))

∣∣∣∣∣, z ∈ U.

Definition 1 ([22]). Consider an function f belonging to the set A. Let Rn
q denote the q-analogue

of the Ruscheweyh operator, defined as follows:

Rn
q f (z) = z +

∞

∑
j=2

[j + n − 1]q!

[n]q![j − 1]q!
ajzj, (8)

where [α]q and [α]q! are specified within (2) and (3).

Remark 1. It can be inferred that when q → 1 in the preceding definition, we acquire

lim
q→1

Rn
q f (z) = z + lim

q→1

[
∞
∑

j=2

[j+n−1]q !
[n]q ![j−1]q ! ajzj

]
=

= z +
∞
∑

j=2

(j+n−1)!
n!·(j−1)! ajzj = Rn f (z),

(9)

where Rn f (z) is a Ruscheweyh differential operator defined in [23] and examined by various
researchers; see [24–26].

We hereby introduce a new q-operator, denoted as Rn,m,λ
q , with the following definition:

Rn,0,λ
q f (z) = Rn

q f (z),

Rn,1,λ
q f (z) = (1 − λ)Rn

q f (z) + λzDq

(
Rn

q f (z)
)

,

. . .

Rn,m,λ
q f (z) = Rn,1,λ

q

(
Rn,m−1,λ

q f (z)
)

, (10)

for n, m ∈ N, 0 < q < 1, λ ≥ 0, z ∈ U.
Assuming f ∈ A is represented by (1), we can derive the following from (10)

Rn,m,λ
q f (z) = z +

∞

∑
j=2

(
1 − λ + [j]qλ

)m [j + n − 1]q!

[n]q![j − 1]q!
a2

j zj, (11)

for n, m ∈ N, 0 < q < 1, λ ≥ 0, z ∈ U.

Proposition 1. For n, m ∈ N, 0 < q < 1, λ ≥ 0, z ∈ U, the operator Rn,m,λ
q satisfies the

following identity:

qnz
(

Dq

(
Rn,m,λ

q f (z)
))

= [n + 1]qR
n+1,m,λ
q f (z)− [n]qR

n,m,λ
q f (z), (12)

Proof. Considering that [n + 1]q = [n]q + qn, we acquire
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[n + 1]qR
n+1,m,λ
q f (z)− [n]qR

n,m,λ
q f (z) =(

[n + 1]q − [n]q
)

z +
∞
∑

j=2

(
1 − λ + [j]qλ

)m [j+n−1]q !
[n]q ![j−1]q !

(
[j + n]q − [n]q

)
a2

j zj =

qnz +
∞
∑

j=2

(
1 − λ + [j]qλ

)m [j+n−1]q !
[n]q ![j−1]q !

(
qj+n−1

q−1 − qn−1
q−1

)
a2

j zj =

qnz +
∞
∑

j=2

(
1 − λ + [j]qλ

)m [j+n−1]q !
[n]q ![j−1]q ! q

n[j]qa2
j zj =

qnz

(
1 +

∞
∑

j=2

(
1 − λ + [j]qλ

)m [j+n−1]q !
[n]q ![j−1]q ! [j]qa2

j zj−1

)
=

qnz

(
(q−1)z
(q−1)z +

∞
∑

j=2

(
1 − λ + [j]qλ

)m [j+n−1]q !
[n]q ![j−1]q !

qj−1
q−1 a2

j zj−1

)
=

qnz

 qz+
∞
∑

j=2

(
1−λ+[j]qλ

)m [j+n−1]q !

[n]q ![j−1]q ! a2
j qjzj

(q−1)z −
z+

∞
∑

j=2

(
1−λ+[j]qλ

)m [j+n−1]q !

[n]q ![j−1]q ! a2
j zj

(q−1)z

 =

qnz
Rn,m,λ

q f (qz)−Rn,m,λ
q f (z)

(q−1)z = qnz
(

Dq

(
Rn,m,λ

q f (z)
))

.

The demonstration for (12) is finished.

Proposition 2. For natural numbers n and m, with 0 < q < 1 and z ∈ U, the operator Rn,m,1
q

obeys the following equality:

z
(

Dq

(
Rn,m,1

q f (z)
))

= Rn,m+1,1
q f (z). (13)

Proof. We can derive from (11)

Dq

(
Rn,m,1

q f (z)
)
=

Rn,m,1
q f (qz)−Rn,m,1

q f (z)
qz − z

=

1
z(q − 1)

(
qz − z +

∞

∑
j=2

[j]mq [j + n − 1]q!

[n]q![j − 1]q!
a2

j zj
(

qj − 1
))

=

1 +
∞

∑
j=2

[j]mq [j + n − 1]q!

[n]q![j − 1]q!
a2

j zj−1 qj − 1
q − 1

= 1 +
∞

∑
j=2

[j]m+1
q [j + n − 1]q!

[n]q![j − 1]q!
a2

j zj−1.

Thus, the subsequent identity is valid for the operator Rn,m,1
q

z
(

Dq

(
Rn,m,1

q f (z)
))

= z +
∞

∑
j=2

[j]m+1
q [j + n − 1]q!

[n]q![j − 1]q!
a2

j zj = Rn,m+1,1
q f (z).

The proof is completed.

From the definition, it is evident that by setting specific parameters, the operator
Rn,m,λ

q transforms into well-known operators. Particularly, for q → 1, the q -operator
Rn,m,λ

q becomes the generalised Darus and Al- Shaqsi derivative operator [27]; for the
case of m = 0, the q-operator Rn,m,λ

q turn into q-analogue of the Ruscheweyh operator
introduced in [22]. Additionally, for q → 1, the q-operator Rn,m,λ

q convert into the q-
analogue of the Ruscheweyh operator given by (8). In the particular case where λ = 0,
n = 0 and q approaches 1, the q-operator Rn,m,λ

q takes a special form, and it is asserted that
in this limit, it coincides with an operator introduced by Al-Oboudi [28].

Prior to presenting our findings, we present the generalized lemmas introduced
in [29,30], utilizing q-derivative.
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Lemma 1 ([22]). Suppose the function v is analytic, convex, and univalent in the domain U, with
v(0) = 1. Let g(z) = 1 + b1z + b2z2 + . . . be an analytic function in U. If

g(z) +
1
a

zDq(g(z)) ≺ v(z), z ∈ U, a ∈ C\{0}, (14)

then

g(z) ≺ a
za

z∫
0

ta−1v(t)dqt, f orRea ≥ 0.

Proof. Assume that the function v is analytic, convex and univalent in U and g is analytic
in U.

Let q → 1 in (14).
We acquire

g(z) +
1
a

zg
′
(z) ≺ v(z), z ∈ U, a ∈ C\{0}.

Subsequently, employing the lemma in [29], we obtain

g(z) ≺ h(z),

where h(z) = a
za

z∫
0

ta−1v(t)dt, z ∈ U.

Lemma 2 ([22]). Consider v be a convex function in U and let h(z) = v(z) + αzDq(v(z)), for
z ∈ U and α > 0. If g(z) = 1 + b1z + b2z2 + . . . is analytic in U and

g(z) + αzDq(g(z)) ≺ h(z), for z ∈ U,

then
g(z) ≺ v(z), z ∈ U

and this result is sharp.

Proof. The method of proving this is akin to the approach used in proving the Lemma 1.

Lemma 3 ([22]). Let v be an univalent function in the unit disk U and let θ and ϕ be analytic
functions in a domain D containing v(U) with ϕ(ω) ̸= 0, when ω ∈ v(U). Consider Q(z) =
zDq(v(z))ϕ(v(z)) and h(z) = θ(v(z)) + Q(z). Suppose that

1. Q is starlike univalent in U;

2. Re
(

zDq(h(z))
Q(z)

)
> 0, for z ∈ U.

If p is an analytic function in U, with p(0) = v(0), p(U) ⊆ D and

zDq(p(z))ϕ(p(z)) + θ(p(z)) ≺ zDq(v(z))ϕ(v(z)) + θ(v(z)) = h(z),

then p ≺ v and v is the best dominant.

Proof. The method of proving this is akin to the approach used in proving the Lemma 1.

Utilizing the new q-operator, Rn,m,λ
q , we apply the techniques of the theory of differen-

tial subordination to undertake an investigation, leading to the discovery of intriguing new
differential subordination relationships and the identification of the best dominant.

We are set to demonstrate the initial outcome.
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Theorem 1. Let n, m ∈ N, 0 < q < 1, γ > 0, and −1 ≤ M ≤ N < 1. If f ∈ A satisfies the
subsequent subordination condition

(1 − γ)
Rn,m,1

q f (z)
z

+ γ
Rn,m+1,1

q f (z)
z

≺ 1 + Mz
1 + Nz

, (15)

then

Re


(
Rn,m,1

q f (z)
z

) 1
s
 ≥

 1
qγ

1∫
0

u
1

qγ −1 1 − Mu
1 − Nu

du


1
s

, s ≥ 1. (16)

and this result is sharp.

Proof. Allow

h(z) =
Rn,m,1

q f (z)
z

= 1 + c1z + c2z2 + . . . , z ∈ U. (17)

The function h(z) is analytic in U, for f ∈ A. Through employing the logarithmic
q-differentiation, we obtain

Dq(h(z)) = Dq

(
Rn,m,1

q f (z)
z

)
=

zDq

(
Rn,m,1

q f (z)
)
−Rn,m,1

q f (z)

qz2 =

Rn,m+1,1
q f (z)−Rn,m,1

q f (z)
qz2 .

So,

zDq(h(z))
h(z)

=
Rn,m+1,1

q f (z)−Rn,m,1
q f (z)

qRn,m,1
q f (z)

=

1
q

(
Rn,m+1,1

q f (z)

Rn,m,1
q f (z)

− 1

)

We derive

1 +
qzDq(h(z))

h(z)
=

Rn,m+1,λ
q f (z)

Rn,m,1
q f (z)

.

So,

1 +
qzDq(h(z))

h(z)
=

Rn,m+1,λ
q f (z)

zh(z)
.

Multiplying the result by h(z), we obtain

Rn,m+1,1
q f (z)

z
= h(z) + qzDq(h(z)).

Therefore, we have

(1 − γ)
Rn,m,1

q f (z)
z

+ γ
Rn,m+1,1

q f (z)
z

= (1 − γ)h(z) + γ
(
h(z) + qzDq(h(z))

)
=

h(z) + γqzDq(h(z)).

The expression for differential subordination (15) can be stated as

h(z) + γqzDq(h(z)) ≺
1 + Mz
1 + Nz

.
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Utilizing Lemma 1, we deduce

h(z) ≺ 1
qγ

z−
1

qγ

z∫
0

t
1

qγ −1 1 + Mt
1 + Nt

dt.

By employing the concept of subordination, we obtain

Rn,m,1
q f (z)

z
=

1
qγ

1∫
0

u
1

qγ −1 1 + Muw(z)
1 + Nuw(z)

du.

Considering the range −1 ≤ M ≤ N < 1, we acquire

Re

(
Rn,m,1

q f (z)
z

)
>

 1
qγ

1∫
0

u
1

qγ −1 1 − Mu
1 − Nu

du

. (18)

Employing the inequality Re
(

w
1
s

)
≥ (Rew)

1
s , for s ≥ 1 and Rew > 0, the inequality

(16) is a direct consequence of (18).
To establish the sharpness of (16), we define the function f in set A as:

Rn,m,1
q f (z)

z
=

1
qγ

1∫
0

u
1

qγ −1 1 − Mu
1 − Nu

du

We acquire

(1 − γ)
Rn,m,1

q f (z)
z

+ γ
Rn,m+1,1

q f (z)
z

=
1 + Mz
1 + Nz

and
Rn,m,1

q f (z)
z

→ 1
qγ

1∫
0

u
1

qγ −1 1 − Mu
1 − Nu

du, as z → −1.

The proof of the theorem is now concluded.

Corollary 1. Let n, m ∈ N, 0 < q < 1, γ > 0, and 0 ≤ α < 1. If f ∈ A satisfies the subsequent
subordination condition

(1 − γ)
Rn,m,1

q f (z)
z

+ γ
Rn,m+1,1

q f (z)
z

≺ (2α − 1)z + 1
z + 1

, (19)

then

Re


(
Rn,m,1

q f (z)
z

) 1
s
 ≥

(2α − 1) +
2(1 − α)

qγ

1∫
0

u
1

qγ −1 1
u + 1

du


1
s

, s ≥ 1. (20)

Proof. Applying identical steps as in the proof of Theorem 1 for h(z) =
Rn,m,1

q f (z)
z , the

differential subordination (19) transitions to:

h(z) + γqzDq(h(z)) ≺
(2α − 1)z + 1

z + 1
.
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Hence

Re


(
Rn,m,1

q f (z)
z

) 1
s
 >

 1
qγ

1∫
0

u
1

qγ −1 (2α − 1)u + 1
u + 1

du


1
s

=

 1
qγ

1∫
0

u
1

qγ −1
(
(2α − 1)− 2(α − 1)

u + 1

)
du


1
s

=

(2α − 1) +
2(1 − α)

qγ

1∫
0

u
1

qγ −1 1
u + 1

du


1
s

,

and the statement of Corollary 1 is valid.

Example 1. For the function f (z) = z + z2, n = 1, m = 1, λ = 1, γ = 2, α = 1
4 , s = 1,

we have (1 − γ)
Rn,m,1

q f (z)
z + γ

Rn,m+1,1
q f (z)

z = −R1,1,1
q f (z)

z + 2
R1,2,1

q f (z)
z = −

z+[2]2qz2

z + 2
z+[2]3qz2

z =
1 + z

(
2q3 + 5q2 + 4q + 1

)
. Utilizing the Corollary 1, we acquire 1 +

(
2q3 + 5q2 + 4q + 1

)
z ≺

2−z
2(z+1) , for z ∈ U, leading to

Re
{

z
(

q2 + 2q + 1
)
+ 1
}
≥ −1

2
+

3
4q

1∫
0

u
1
2q −1 1

u + 1
du, for z ∈ U.

Theorem 2. Assume n, m ∈ N, 0 < q < 1 and 0 ≤ p < 1. Moreover, consider the parameter
α ∈ C\{0} such that

∣∣∣ 2α−2αp−q
q

∣∣∣ ≤ 1 or
∣∣∣ 2α−αp+q

q

∣∣∣ ≤ 1. If the function f ∈ A fulfills the
subsequent inequality:

Re

(
Rn,m+1,1

q f (z)

Rn,m,1
q f (z)

)
> p, for z ∈ U, (21)

then (
Rn,m,1

q f (z)
z

)α

≺ (z − 1)
2αp−2α

q , for z ∈ U,

and (z − 1)
2αp−2α

q is the best dominant.

Proof. Allow

h(z) =

(
Rn,m,1

q f (z)
z

)α

, z ∈ U. (22)

By employing a logarithmic q-differentiation, we derive

Dq(h(z)) = Dq

(
Rn,m,1

q f (z)
z

)α

= α

(
Rn,m,1

q f (z)
z

)α−1
Rn,m+1,1

q f (z)−Rn,m,1
q f (z)

qz2 .

So
Dq(h(z))

h(z)
=

α

q
Rn,m+1,1

q f (z)

Rn,m,1
q f (z)

− α

q
.

We obtain
Rn,m+1,1

q f (z)

Rn,m,1
q f (z)

=
q
α

Dq(h(z))
h(z)

+ 1.
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From (21), we deduce

Rn,m+1,1
q f (z)

Rn,m,1
q f (z)

≺ z(1 − 2α) + 1
1 − z

.

By defining

θ(ω) := 1 and ϕ(ω) :=
q

αω
, v(z) = (z − 1)

2αp−2α
q

it can be readily confirmed that θ is analytic in C, ϕ is analytic in C\{0} and that ϕ(ω) ̸= 0,
ω ∈ C\{0}. Moreover, by allowing Q(z) = zDq(v(z))ϕ(v(z)) = z(2−2p)

1−z , we determine

that Q(z) is starlike and univalent in U. Allow g(z) = θ(v(z)) + Q(z) = z(1−2p)+1
1−z . Hence,

the criteria of Lemma 3 are satisfied, leading to

g(z) ≺ v(z), i.e.,

(
Rn,m,1

q f (z)
z

)α

≺ v(z), z ∈ U,

and v is the best dominant.

Theorem 3. Assume that g is an analytic and convex function within the domain U and let h

be defined by h(z) = u(z) + αqn+1

[n+1]q
zDq(u(z)), for z ∈ U, α ∈ C\{0}. If n, m ∈ N, 0 < q < 1,

λ ≥ 0, and f ∈ A satisfies

α

[(
1 + qn+1

[n+1]q

)
Rn+2,m,λ

q f (z)

Rn,m,λ
q f (qz)

+ q
(

1 − qn

[n+1]q

)
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (qz)

− Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

]
+

+
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

(
1 − αq

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

)
≺ h(z), z ∈ U,

(23)

then
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

≺ u(z), z ∈ U (24)

and this result is sharp.

Proof. Let

p(z) =
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

, z ∈ U. (25)

The function p(z) = 1 + p1z + p2z2 + . . . is analytic in U. By applying logarithmic
q-differentiation to both sides of the Equation (25), we derive

Dq(p(z))
p(z)

=
Rn,m,λ

q f (z)Dq

(
Rn+1,m,λ

q f (z)
)
−Rn+1,m,λ

q f (z)Dq

(
Rn,m,λ

q f (z)
)

Rn,m,λ
q f (qz)Rn,m,λ

q f (z)
. (26)

By multiplying the outcome with z and making use of the identity (12), we obtain

z Dq(p(z))
p(z) =

[n+2]q
qn+1

Rn+2,m,λ
q f (z)Rn,m,λ

q f (z)

Rn+1,m,λ
q f (z)Rn,m,λ

q f (qz)
− [n+1]q

qn+1
Rn,m,λ

q f (z)

Rn,m,λ
q f (qz)

−

− [n+1]q
qn

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

+
[n]q
qn

Rn,m,λ
q f (z)

Rn,m,λ
q f (qz)

.
(27)
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Multiplying the result by p(z), we obtain

zDq(p(z)) =
[n+2]q
qn+1

Rn+2,m,λ
q f (z)

Rn,m,λ
q f (qz)

− [n+1]q
qn+1

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

−

−
q[n+1]q

qn+1

(
Rn+1,m,λ

q f (z)
)2

Rn,m,λ
q f (z)Rn,m,λ

q f (qz)
+

q[n]q
qn+1

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

.
(28)

Considering that [n + 2]q = [n + 1]q + qn+1, [n]q = [n + 1]q − qn and by adding p(z),
we deduce

p(z) + α
qn+1

[n+1]q
zDq(p(z)) = α

(
1 + qn+1

[n+1]q

)
Rn+2,m,λ

q f (z)

Rn,m,λ
q f (qz)

+

+
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

(
1 − αq

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

)
+ αq

(
1 − qn

[n+1]q

)
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (qz)

− α
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (qz)

.
(29)

So,
p(z) + α

qn+1

[n+1]q
zDq(p(z)) =

α

[(
1 + qn+1

[n+1]q

)
Rn+2,m,λ

q f (z)

Rn,m,λ
q f (qz)

+ q
(

1 − qn

[n+1]q

)
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (qz)

− Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

]
+

+
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

(
1 − αq

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

)
.

Subsequently, (23) transforms into

p(z) + α
qn+1

[n + 1]q
zDq(p(z)) ≺ h(z) = u(z) + α

qn+1

[n + 1]q
zDq(u(z)),

for z ∈ U. Utilizing Lemma 2, we obtain

p(z) ≺ u(z) i.e.,
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

≺ u(z),

for z ∈ U, and this result is sharp.

Theorem 4. Suppose the function h is analytic, convex and univalent in U with h(0) = 1. If
n, m ∈ N, 0 < q < 1, λ ≥ 0 and f ∈ A satisfy,

[γ]q
qγ

[(
1 + qn+1

[n+1]q

)
Rn+2,m,λ

q f (z)

Rn,m,λ
q f (qz)

+ q
(

1 − qn

[n+1]q

)
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (qz)

− Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

]
+

+
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

(
1 − [γ]q

qγ−1
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (qz)

)
≺ h(z), z ∈ U,

(30)

then
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

≺ u(z), z ∈ U,

where u(z) =
[n+1]q

[γ]qqn+1−γ z
−

[n+1]q
[γ]qqn+1−γ

z∫
0

h(t)t
[n+1]q

[γ]qqn+1−γ −1
dqt. The function u is the best dominant.

Proof. Consider p(z) =
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

which is analytic in U. Following the analogous steps

outlined in Theorem 3, in the view of (29), the relation (30) transforms into

p(z) +
[γ]qqn+1−γ

[n + 1]q
zDq(p(z)) ≺ h(z), z ∈ U.
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In the light of Lemma 1, we find

p(z) =
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

≺ u(z), z ∈ U,

where

u(z) =
[n + 1]q

[γ]qqn+1−γ
z
−

[n+1]q
[γ]qqn+1−γ

z∫
0

h(t)t
[n+1]q

[γ]qqn+1−γ −1
dqt,

and the function u is the best dominant.

Corollary 2. Consider the function h(z) = 1+(2β−1)z
1+z , where 0 ≤ β < 1, which is convex in U. If

n, m ∈ N, 0 < q < 1, λ ≥ 0 and f ∈ A satisfies the differential subordination

[γ]q
qγ

[(
1 + qn+1

[n+1]q

)
Rn+2,m,λ

q f (z)

Rn,m,λ
q f (qz)

+ q
(

1 − qn

[n+1]q

)
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (qz)

− Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

]
+

+
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

(
1 − αq

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

)
≺ 1+(2β−1)z

1+z ,

z ∈ U, α ∈ C\{0},

(31)

then
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

≺ u(z), z ∈ U,

in which u is defined as u(z) = (2β − 1) +
2(1−β)[n+1]q
[γ]qqn+1−γ z

−
[n+1]q

[γ]qqn+1−γ
z∫

0

t

[n+1]q
[γ]qqn+1−γ

−1

1+t dqt. The

function u is the best dominant.

Proof. Obviously, the function h is analytic, convex and univalent in U with h(0) = 1. The
proof closely resembles the proof of Theorem 4.

Theorem 5. Let
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

∈ H(U), z ∈ U, f ∈ A, n, m ∈ N, 0 < q < 1, λ ≥ 0, and let the

function v(z) be both convex and univalent in U, with v(0) = 1. Suppose that

Re

{
1

v(qz)

[
v(z) + z

(
qv(z)D2

q(v(z))
Dq(v(z))

− Dq(v(z))

)]}
> 0, z ∈ U, (32)

and for α, β ∈ C, β ̸= 0,

ψn
q (α, β; z) = α +

[n+2]q
qβ[n+1]q

Rn+2,m,λ
q f (z)

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (z)

Rn,m,λ
q f (qz)

−

− 1
β

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

+

(
[n]q

β[n+1]q
− 1

βq

)
Rn,m,λ

q f (z)

Rn,m,λ
q f (qz)

, z ∈ U.
(33)

If v fulfills the subsequent subordination

ψn
q (α, β; z) ≺ α +

qnzDq(v(z))
β[n + 1]qv(z)

, (34)

for α, β ∈ C, β ̸= 0, then
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

≺ v(z), z ∈ U

and v is the best dominant.
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Proof. Define the function p as follows:

p(z) :=
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

, z ∈ U, z ̸= 0, f ∈ A.

The function p is analytic in U, with p(0) = 1. Through logarithmic q-differentiation
with respect to z on both sides of this function, multiplying the result by z, and leveraging
the identity (12), we acquire:

and
zDq(p(z))

p(z) =
[n+2]q
qn+1

Rn+2,m,λ
q f (z)

Rn,m,λ
q f (qz)

Rn,m,λ
q f (z)

Rn+1,m,λ
q f (z)

− [n+1]q
qn+1

Rn,m,λ
q f (z)

Rn,m,λ
q f (qz)

−

− [n+1]q
qn

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

+
[n]q
qn

Rn,m,λ
q f (z)

Rn,m,λ
q f (qz)

.
(35)

By defining

θ(ω) := α and ϕ(ω) :=
qn

β[n + 1]qω
, α, β ∈ C, β ̸= 0,

it can be readily confirmed that θ is analytic in C, ϕ is analytic in C\{0} and that ϕ(ω) ̸= 0,

ω ∈ C\{0}. Moreover, by allowing Q(z) = zDq(v(z))ϕ(v(z)) =
qnzDq(v(z))
β[n+1]qv(z) , we determine

that Q(z) is starlike and univalent in U. Allow h(z) = θ(v(z)) + Q(z) = α +
qnzDq(v(z))
β[n+1]qv(z) .

Upon differentiating the function h with respect to z and conducting the calculations,
we obtain:

zDq(h(z))
Q(z)

=
v(z)
v(qz)

− z
Dq(v(z))

v(qz)
+

qzv(z)D2
q(v(z))

v(qz)Dq(v(z))
=

1
v(qz)

[
v(z) + z

(
qv(z)D2

q(v(z))
Dq(v(z))

− Dq(v(z))

)]
.

Therefore, we obtain

Re
(

zDq(h(z))
Q(z)

)
= Re

{
1

v(qz)

[
v(z) + z

(
qv(z)D2

q(v(z))
Dq(v(z))

− Dq(v(z))

)]}
> 0.

By employing (35), we derive

α +
qnzDq(p(z))
β[n+1]q p(z) = α + qn

β[n+1]q

{
[n+2]q
qn+1

Rn+2,m,λ
q f (z)

Rn,m,λ
q f (qz)

Rn,m,λ
q f (z)

Rn+1,m,λ
q f (z)

−
[n+1]q
qn+1

Rn,m,λ
q f (z)

Rn,m,λ
q f (qz)

− [n+1]q
qn

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

+
[n]q
qn

Rn,m,λ
q f (z)

Rn,m,λ
q f (qz)

}
=

α +
[n+2]q

qβ[n+1]q

Rn+2,m,λ
q f (z)

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (z)

Rn,m,λ
q f (qz)

−

1
β

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (qz)

+

(
[n]q

β[n+1]q
− 1

βq

)
Rn,m,λ

q f (z)

Rn,m,λ
q f (qz)

.

Utilizing (34), we find

α +
qnzDq(p(z))
β[n + 1]q p(z)

≺ α +
qnzDq(v(z))
β[n + 1]qv(z)

.

Hence, the criteria of Lemma 3 are satisfied, leading to

p(z) ≺ v(z), i.e.,
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

≺ v(z), z ∈ U,
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and v is the best dominant.

Corollary 3. Allowing v(z) = 1

(1−z)
2β

[n+1]q
qn

, z ∈ U, β ∈ C, β ̸= 0, n, m ∈ N, 0 < q < 1, λ ≥ 0

and suppose that (32) is valid. If f ∈ A and

ψn
q (α, β; z) ≺ α +

2z
1 − z

,

for α, β ∈ C, β ̸= 0, where ψn
q (α, β; z) is defined in (32), then

Rn+1,m,λ
q f (z)

Rn,m,λ
q f (z)

≺ 1

(1 − z)2β
[n+1]q

qn

and 1

(1−z)
2β

[n+1]q
qn

is the best dominant.

Proof. The corollary is derived by applying Theorem 5 to q(z) = 1

(1−z)
2β

[n+1]q
qn

.

In the following, employing the newly defined q-operator and drawing inspiration
from operators introduced in references [31,32], the paper introduces two novel integral
operators, along with some new classes of analytic functions defined through these opera-
tors. Breaz and Breaz [31], as well as Breaz, Owa, and Breaz, [32] initiated and explored the
subsequent integral operators

Fγ1,...,γl (z) =
z∫

0

(
f1(t)

t

)γ1
. . .
(

fl(t)
t

)γl
dt =

z∫
0

l
∏
i=1

(
fi(t)

t

)γi
dt,

Gγ1,...,γl (z) =
z∫

0

(
f
′
1(t)

)γ1
. . .
(

f
′
l (t)

)γl
dt =

z∫
0

l
∏
i=1

(
f
′
i (t)

)γi
dt,

where fi ∈ A, γi ∈ R, γi > 0, i ∈ {1, 2, . . . , l}, l ∈ N.
Now, we present two novel q-integral operators in the following manner.

Definition 2. Let fi ∈ A, γi ∈ R, γi > 0, i ∈ {1, 2, . . . , l}, l ∈ N, n, m ∈ N, 0 < q < 1, λ ≥ 0.
Then, Fn,m,λ

q (z) : A → A is characterized by

Fn,m,λ
q (z) = Fn,m,λ

q,γ1,...,γl
( f1, . . . , fl) =

z∫
0

l

∏
i=1

(
Rn,m,λ

q fi(t)
t

)γi

dqt (36)

and Gn,m,λ
q (z) : A → A is expressed as

Gn,m,λ
q (z) = Gn,m,λ

q,γ1,...,γl
( f1, . . . , fl) =

z∫
0

l

∏
i=1

(
Dq

(
Rn,m,λ

q fi(t)
))γi

dqt, (37)

where Rn,m,λ
q is defined by (11).

Remark 2. As q → 1 and n = 0, we arrive at the two integral operators investigated by Breaz
et al. in [31,32].

Subsequently, we examine the q-integral operators Fn,m,λ
q and Gn,m,λ

q defined by (36)
and (37). Specifically, we investigate the convexity properties of the operators Fn,m,λ

q

and Gn,m,λ
q .

By employing the operator Rn,m,λ
q f (z) defined by (11) and applying q-differentiation,

we define two new subclasses of analytic functions in the following approach.
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A function f ∈ A is said to be in the class USn
q (α, k), if and only if

Re
{

[n+1]q
qn

(
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

− 1
)
+ 1 − α

}
≥

≥ k
∣∣∣∣ [n+1]q

qn

(
Rn+1,m,λ

q f (z)

Rn,m,λ
q f (z)

− 1
)∣∣∣∣, (38)

for −1 ≤ α < 1, k ≥ 0, n, m ∈ N, 0 < q < 1, λ ≥ 0.
A function f ∈ A is said to be in the class UCn

q (α, k), if and only if

Re

1 +
zD2

q

(
Gn,m,λ

q (z)
)

Dq

(
Gn,m,λ

q (z)
) − α

 ≥ k

∣∣∣∣∣∣
zD2

q

(
Gn,m,λ

q (z)
)

Dq

(
Gn,m,λ

q (z)
)
∣∣∣∣∣∣ (39)

for −1 ≤ α < 1, k ≥ 0, n, m ∈ N, 0 < q < 1, λ ≥ 0.

Theorem 6. Let n, m ∈ N, 0 < q < 1, λ ≥ 0, γ = (γ1, . . . , γl) ∈ Rl
+, −1 ≤ αi < 1, ki > 0

and fi ∈ USn
q (αi, ki), for all i ∈ {1, 2, . . . , l}, l ∈ N. If

0 ≤ 1 +
l

∑
i=1

γi(αi − 1) < 1, (40)

then, the q-integral operator Fn,m,λ
q (z), defined by (36), exhibits convexity with respect to q-differentiation

of order λ, with λ = 1 +
l

∑
i=1

γi(αi − 1).

Proof. Looking at (36), it is evident that Fn,m,λ
q (z) belongs to the class A. It is straightfor-

ward to confirm that

Dq

(
Fn,m,λ

q (z)
)
=

l

∏
i=1

(
Rn,m,λ

q fi(z)
z

)γi

, z ∈ U. (41)

This equality suggests that

ln Dq

(
Fn,m,λ

q (z)
)
= γ1 ln

Rn,m,λ
q f1(z)

z
+ . . . + γl ln

Rn,m,λ
q fl(z)

z
,

or, in other words

ln Dq

(
Fn,m,λ

q (z)
)
= γ1

[
lnRn,m,λ

q f1(z)− ln z
]
+ . . . + γl

[
lnRn,m,λ

q fl(z)− ln z
]
.

By q-differentiating both sides of the aforementioned equality, we obtain

D2
q

(
Fn,m,λ

q (z)
)

Dq

(
Fn,m,λ

q (z)
) =

l

∑
i=1

γi

Dq

(
Rn,m,λ

q fi(z)
)

Rn,m,λ
q fi(z)

− 1
z

. (42)

Hence,

1 +
zD2

q

(
Fn,m,λ

q (z)
)

Dq

(
Fn,m,λ

q (z)
) =

l

∑
i=1

γi

zDq

(
Rn,m,λ

q fi(z)
)

Rn,m,λ
q fi(z)

−
l

∑
i=1

γi + 1.



Mathematics 2024, 12, 208 17 of 20

This relationship is tantamount to

Re

1 +
zD2

q

(
Fn,m,λ

q (z)
)

Dq

(
Fn,m,λ

q (z)
)
 =

l

∑
i=1

γiRe

 zDq

(
Rn,m,λ

q fi(z)
)

Rn,m,λ
q fi(z)

−
l

∑
i=1

γi + 1. (43)

Utilizing (12), we obtain for i ∈ {1, 2, . . . , l}

zDq

(
Rn,m,λ

q fi(z)
)

Rn,m,λ
q fi(z)

=
[n+1]qR

n+1,m,λ
q fi(z)−[n]qR

n,m,λ
q fi(z)

qnRn,m,λ
q fi(z)

=

= 1
qn

[
[n + 1]q

Rn+1,m,λ
q fi(z)

Rn,m,λ
q fi(z)

− [n]q

]
.

Taking into account that [n + 1]q = [n]q + qn, we obtain

zDq

(
Rn,m,λ

q fi(z)
)

Rn,m,λ
q fi(z)

=
[n+1]q

qn
Rn+1,m,λ

q fi(z)

Rn,m,λ
q fi(z)

+
qn−[n+1]q

qn =

=
[n+1]q

qn

(
Rn+1,m,λ

q fi(z)

Rn,m,λ
q fi(z)

− 1
)
+ 1.

(44)

The relation (43) is equivalent to

Re

{
1 +

zD2
q

(
Fn,m,λ

q (z)
)

Dq

(
Fn,m,λ

q (z)
)
}

=
l

∑
i=1

γiRe
{

[n+1]q
qn

(
Rn+1,m,λ

q fi(z)

Rn,m,λ
q fi(z)

− 1
)
+ 1 − αi

}
+

+
l

∑
i=1

γi(αi − 1) + 1.

As fi ∈ USn
q (α, k), for all i ∈ {1, 2, . . . , l}, by making use of (38), we obtain

Re

{
1 +

zD2
q

(
Fn,m,λ

q (z)
)

Dq

(
Fn,m,λ

q (z)
)
}

≥ 1 +
l

∑
i=1

γi(αi − 1)+

+
l

∑
i=1

γiki

∣∣∣∣ [n+1]q
qn

(
Rn+1,m,λ

q fi(z)

Rn,m,λ
q fi(z)

− 1
)∣∣∣∣.

Since
l

∑
i=1

γiki

∣∣∣∣ [n+1]q
qn

(
Rn+1,m,λ

q fi(z)

Rn,m,λ
q fi(z)

− 1
)∣∣∣∣ > 0, for all i ∈ {1, 2, . . . , l}, we conclude

Re

1 +
zD2

q

(
Fn,m,λ

q (z)
)

Dq

(
Fn,m,λ

q (z)
)
 > 1 +

l

∑
i=1

γi(αi − 1).

Therefore, the integral operator Fn,m,λ
q (z) is a convex of order λ, where λ = 1 +

l
∑

i=1
γi(αi − 1).

Now, we establish the convexity result concerning to the q-differentiation of the
operator Gn

q (z).

Theorem 7. Let n, m ∈ N, 0 < q < 1, λ ≥ 0, γ = (γ1, . . . , γl) ∈ Rl
+, −1 ≤ αi < 1, ki > 0

and fi ∈ UCn
q (αi, ki), for all i ∈ {1, 2, . . . , l}, l ∈ N. If

0 ≤ 1 +
l

∑
i=1

γi(αi − 1) < 1, (45)
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then, the q-integral operator Gn,m,λ
q (z) defined by (37) is convex with respect to the q-differentiation

of order λ, with λ = 1 +
l

∑
i=1

γi(αi − 1).

Proof. From (37), it is evident that Gn,m,λ
q (z) ∈ A. It is straightforward to confirm that

Dq

(
Gn,m,λ

q (z)
)
=

l

∏
i=1

(
Dq

(
Rn,m,λ

q fi(z)
))γi

, z ∈ U. (46)

This equality suggests that

ln Dq

(
Gn,m,λ

q (z)
)
= γ1 ln

(
Dq

(
Rn,m,λ

q f1(z)
))

+ . . . + γl ln
(

Dq

(
Rn,m,λ

q fl(z)
))

.

By q-differentiating both sides of the aforementioned equality, we obtain

D2
q

(
Gn,m,λ

q (z)
)

Dq

(
Gn,m,λ

q (z)
) =

l

∑
i=1

γi

D2
q

(
Rn,m,λ

q fi(z)
)

Dq

(
Rn,m,λ

q fi(z)
)
. (47)

Therefore,

1 +
zD2

q

(
Gn,m,λ

q (z)
)

Dq

(
Gn,m,λ

q (z)
) =

l
∑

i=1
γi

(
1 +

zD2
q

(
Rn,m,λ

q fi(z)
)

Dq

(
Rn,m,λ

q fi(z)
) − αi

)
+

+
l

∑
i=1

γi(αi − 1) + 1.
(48)

This relation is equivalent to

Re

{
1 +

zD2
q

(
Gn,m,λ

q (z)
)

Dq

(
Gn,m,λ

q (z)
)
}

= 1 +
l

∑
i=1

γi(αi − 1)+

+
l

∑
i=1

γiRe

(
1 +

zD2
q

(
Rn,m,λ

q fi(z)
)

Dq

(
Rn,m,λ

q fi(z)
) − αi

)
.

(49)

As fi ∈ UCn
q (αi, ki), for all i ∈ {1, 2, . . . , l}, from (49), we deduce

Re

{
1 +

zD2
q

(
Gn,m,λ

q (z)
)

Dq

(
Gn,m,λ

q (z)
)
}

≥ 1 +
l

∑
i=1

γi(αi − 1)+

+
l

∑
i=1

γiki

∣∣∣∣∣ zD2
q

(
Rn,m,λ

q fi(z)
)

Dq

(
Rn,m,λ

q fi(z)
)
∣∣∣∣∣.

Since
l

∑
i=1

γiki

∣∣∣∣∣∣
zD2

q

(
Rn,m,λ

q fi(z)
)

Dq

(
Rn,m,λ

q fi(z)
)
∣∣∣∣∣∣ > 0,

for all i ∈ {1, 2, . . . , l}, we obtain

Re

1 +
zD2

q

(
Gn,m,λ

q (z)
)

Dq

(
Gn,m,λ

q (z)
)
 ≥ 1 +

l

∑
i=1

γi(αi − 1).

Therefore, the integral operator Gn,m,λ
q (z) is a convex of order λ, with λ = 1 +

l
∑

i=1
γi(αi − 1). The proof is now finished.
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Corollary 4. Let n, m ∈ N, λ ≥ 0, −1 ≤ αi < 1, ki > 0, γi > 0, i ∈ {1, 2, . . . , l}, fi ∈

US(αi, ki). If 0 ≤ 1 +
l

∑
i=1

γi(αi − 1) < 1, then the integral operator
z∫

0

l
∏
i=1

(
Rn,m,λ fi(t)

t

)γi
dt is a

convex of order λ, with λ = 1 +
l

∑
i=1

γi(αi − 1), where Rn,m,λ is the generalised Darus and Al-

Shaqsi derivative operator [27].

Proof. By allowing q → 1 in Theorem 6, we obtain the corresponding corollary.

Corollary 5. Let n, m ∈ N, λ ≥ 0, −1 ≤ αi < 1, ki > 0, γi > 0, i ∈ {1, 2, . . . , l}, fi ∈

UC(αi, ki). If 0 ≤ 1 +
l

∑
i=1

γi(αi − 1) < 1; then, the integral operator
z∫

0

l
∏
i=1

((
Rn,m,λ fi(t)

)′)γi
dt

is a convex of order λ, with λ = 1 +
l

∑
i=1

γi(αi − 1), where Rn,m,λ is the generalised Darus and Al-

Shaqsi derivative operator [27].

Proof. Letting q → 1 in Theorem 7, the corollary follows.

3. Conclusions

By employing the recently introduced q-operator, denoted as Rn,m,λ
q , we employ the

methods of the theory of differential subordination to conduct this study. This exploration
results in the identification of novel and compelling differential subordination relation-
ships, along with the determination of the best dominant. By making use of the new
defined q-operator, and inspired by the operators introduced in [31,32], two new q-integral
operators Fn,m,λ

q and Gn,m,λ
q are introduced in this work. Using these operators, specific

classes of functions are presented and analyzed, and convexity properties of the operators
Fn,m,λ

q and Gn,m,λ
q are examined. We anticipate that this research provides a groundwork

for future exploration into various classes of analytic functions. This can be achieved by
employing the previously introduced q-difference operator Rn,m,λ

q and the q-integral opera-
tors Fn,m,λ

q and Gn,m,λ
q , exploring their diverse geometric properties, including associated

coefficient estimates, sufficiency criteria, radii of starlikeness, convexity, close to convexity,
extreme points, and distortion bounds. The expected outcome is the application of these
considerations to explore additional classes of analytic functions.
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7. Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [CrossRef]
8. Ramachandran, C.; Kavitha, D.; Soupramanien, T. Certain bound for q-starlike and q-convex functions with respect to symmetric

points. Int. J. Math. Math. Sci. 2015, 7, 205682.
9. Srivastava, H.M.; Ahmad, Q.Z.; Tahir, M.; Khan, B.; Darus, M.; Khan, N. Certain subclasses of meromorphically-starlike functions

associated with the q-derivative operators. Ukr. Math. J. 2021, 73, 1260–1273. [CrossRef]
10. Rabha Ibrahim, W.; Suzan, J.; Obaiys, M.D. Studies on Generalized Differential-Difference Operator of Normalized Analytic

Functions. Southeast Asian Bull. Math. 2021, 45, 43–55.
11. Nezir, V.; Mustafa, N. Analytic Functions Expressed with q-Poisson Distribution Series. Turk. J. Sci. 2021, 6, 24–30.
12. Ul-Haq, M.; Raza, M.; Arif, M.; Khan, Q.; Tang, H. q-Analogue of Differential Subordinations. Mathematics 2019, 7, 724. [CrossRef]
13. Deniz, E.; Orhan, H. Some properties of certain subclasses of analytic functions with negative coefficients by using generalized

Ruscheweyh derivative operator. Czechoslovak Math. J. 2010, 60, 79–83. [CrossRef]
14. Khan, M.F.; Al-shbeil, I.; Khan, S.; Khan, N.; Haq, W.U.; Gong, J. Applications of a q-Differential Operator to a Class of Harmonic

Mappings Defined by q-Mittag–Leffler Functions. Symmetry 2022, 14, 1905. [CrossRef]
15. Khan, B.; Liu, Z.G.; Srivastava, H.M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multivalent q-starlike functions

involving higher-order q-derivatives. Mathematics 2020, 8, 1470. [CrossRef]
16. Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike

functions associated with a general conic domain. Mathematics 2019, 7, 181. [CrossRef]
17. Andrei, L.; Caus, V.-A. A Generalized Class of Functions Defined by the q-Difference Operator. Symmetry 2021, 13, 2361.

[CrossRef]
18. Andrei, L.; Caus, V.-A. Starlikeness of New General Differential Operators Associated with q-Bessel Functions. Symmetry 2021,

13, 2310. [CrossRef]
19. Amini, E.; Fardi, M.; Al-Omari, S.; Saadeh, R. Certain differential subordination results for univalent functions associated with q-

Salagean operators. AIMS Math. 2023, 8, 15892–15906. [CrossRef]
20. Nave, O. Modification of Semi-Analytical Method Applied System of ODE. Mod. Appl. Sci. 2020, 14, 75. [CrossRef]
21. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks, Pure and

Applied Mathematics; Marcel Dekker: New York, NY, USA, 2000; Volume 225.
22. Aldweby, H.; Darus, M. Some Subordination Results on q-Analogue of Ruscheweyh Differential Operator. Abstr. Appl. Anal. 2014,

2014, 958563. [CrossRef]
23. Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [CrossRef]
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