
Citation: Iordan, A.-E. An Optimized

LSTM Neural Network for Accurate

Estimation of Software Development

Effort. Mathematics 2024, 12, 200.

https://doi.org/10.3390/

math12020200

Academic Editors: Dawei Cheng,

Zhibin Niu and Yiyi Zhang

Received: 24 November 2023

Revised: 1 January 2024

Accepted: 3 January 2024

Published: 8 January 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Optimized LSTM Neural Network for Accurate Estimation
of Software Development Effort
Anca-Elena Iordan

Department of Computer Science, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
anca.iordan@cs.utcluj.ro

Abstract: Software effort estimation has constituted a significant research theme in recent years.
The more important provocation for project managers concerns reaching their targets within the
fixed time boundary. Machine learning strategies can lead software management to an entire novel
stage. The purpose of this research work is to compare an optimized long short-term memory neural
network, based on particle swarm optimization, with six machine learning methods used to predict
software development effort: K-nearest neighbours, decision tree, random forest, gradient boosted
tree, multilayer perceptron, and long short-term memory. The process of effort estimation uses five
datasets: China and Desharnais, for which outputs are expressed in person-hours; and Albrecht,
Kemerer, and Cocomo81, for which outputs are measured in person-months. To compare the accuracy
of these intelligent methods four metrics were used: mean absolute error, median absolute error, root
mean square error, and coefficient of determination. For all five datasets, based on metric values, it
was concluded that the proposed optimized long short-term memory intelligent method predicts
more accurately the effort required to develop a software product. Python 3.8.12 programming
language was used in conjunction with the TensorFlow 2.10.0, Keras 2.10.0, and SKlearn 1.0.1 to
implement these machine learning methods.

Keywords: software effort estimation; K-nearest neighbours; decision tree; random forest; gradient
boosted tree; multilayer perceptron; long short-term memory; particle swarm optimization

MSC: 68T07

1. Introduction

In the process of developing a software product, the stage of estimating the entire effort
required to obtain the product according to the initial specifications, is a very complex task
for the project manager. To facilitate the work of the project manager, multiple techniques
specific to artificial intelligence [1] have been used to predict as accurately as possible the
effort needed for software development. These techniques are rarely regarded as compelling
for uncertainty administration, and the results show their improbable prediction abilities
for effort estimation at underlying phases of the software lifecycle [2].

The concept of machine learning [3] is a subdomain of computer science that gives
computers the ability to act without explicit programming. Machine learning [4] deals
with the study and construction of algorithms that can learn certain patterns from a set of
training data, then make predictions and make decisions with a completely new dataset as
input. The provocation of this study is to reveal which of the six used methods—K-nearest
neighbours, decision tree, random forest, gradient boosted tree, multilayer perceptron, and
long short-term memory—is more efficient for the domain of software project management.

The best results obtained by the six used intelligent methods, implemented based on
the parameter tuning process, are compared with the results of other studies. In order to
obtain a more accurate estimate of the effort than the existing ones, the LSTM method is
improved by using particle swarm optimization which aims to optimize the weights of the

Mathematics 2024, 12, 200. https://doi.org/10.3390/math12020200 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020200
https://doi.org/10.3390/math12020200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9853-7102
https://doi.org/10.3390/math12020200
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020200?type=check_update&version=1

Mathematics 2024, 12, 200 2 of 22

LSTM neural network. The scientific contributions of this research work mainly consist of
the following two aspects:

• An improved LSTM model based on particle swarm optimization is proposed, and its
superiority is proved by comparing not only with the results obtained in this study,
but also with the results obtained in the analysed scientific works.

• The optimized LSTM neural network using particle swarm optimization is innova-
tively used in software development effort estimation.

The direct results of this study based on the six methods previously specified can be
used to simplify the tasks of project managers and increase the efficiency of the development
process. To understand this research work as a whole, this article is structured as follows:

• In the introduction is presented the reason for choosing the theme.
• The second section presents a brief description of the current stage in the effort

estimation process.
• The third section contains details about the used approach for software development

effort estimation.
• The next section includes an analysis of the results provided by the six used in-

telligent methods, following the parameter tuning process and comparison with
previous results.

• The fifth section presents the improved version of the LSTM method based on particle
swarm optimization, highlighting the superior results it provides.

• The last section presents all the conclusions reached after the implementation of
used methods.

2. Literature Survey

Over the years, software effort approximation has used approaches based on fuzzy
logic, evolutionary methods, and artificial neural networks.

In paper [5], two machine learning methods were used (linear regression, K-nearest
neighbours) and three versions of the Cocomo dataset. To determine which of the two
analysed methods is better, the following five metrics were considered: root mean square
error, relative absolute error, mean absolute error, and correlation coefficient. The model
proposed in the aforementioned work consisted in identifying the problem domain, scan-
ning data, and partition data in testing and training, using the WEKA tool. The reached
outputs unveil that the linear regression method is a superior estimator by contraposition
with KNN.

Another version for approximation of software effort is explored in [6] using the Case-
Based Reasoning method optimized by the Genetic Algorithm on seven datasets: Albrecht,
Maxwell, NASA, Telecom, Kemerer, China, and Desharnais (Table 1). The main goals of
the authors were to investigate the combination of the GA algorithm with CBR to find the
best combination of CBR parameters in order to improve the accuracy of software effort
prediction. The research methodology consisted of processing the dataset, splitting the
processed data for training and testing, and computing the CBR-GA model. Based on the
values obtained for the three metrics used—mean absolute error, mean balanced relative
error, and mean inverted balanced error—the proposed model provides more accurate
estimates, especially in the case of larger datasets.

A gradient boosting regressor model proposed in paper [7] was applied on two
datasets: Cocomo81 and China. The performance of the proposed model was reported to
seven models: stochastic gradient descent, K-nearest neighbours, decision tree, bagging
regressor, random forest regressor, Ada-boost regressor, and gradient boosting regressor
starting from four metrics: mean absolute error, mean square error, root mean square
error, and coefficient of determination. The gradient boosting algorithm is improved by
adding the summation of the predicted results of the previous tree, and this iteration
continues until the estimated accuracy is achieved. The research procedure consisted of
data collection, data preprocessing, splitting the data for training and testing in a ratio of
80:20, and implementing the gradient boosting model. The study results proved that the

Mathematics 2024, 12, 200 3 of 22

gradient boosting regressor performance is outstanding regarding the two datasets for all
used metrics, obtaining values such as 0.98 (Cocomo81) and 0.93 (China) for coefficient of
determination and 153 (Cocomo81) and 676.6 (China) for mean absolute error.

In study [8], three methods—linear regression, random forest, and multilayer
perceptron—were used to obtain an accurate estimation of software effort. These methods
were used on the Desharnais dataset, and the implementation was achieved through the
WEKA toolkit. The research methodology steps cover a preprocessing technique used to
eliminate irrelevant and excessive attributes, splitting the data for training and testing and
for developing the three chosen models. The conclusion obtained by comparing these three
methods was that linear regression determines a more accurate estimate than the other two
methods based on five metrics: mean absolute error, root mean square error, root relative
absolute error, relative squared error, and correlation coefficient.

In research presented in paper [9], more variants of the Cocomo dataset were used
with a different number of selected attributes to estimate effort based on four machine
learning algorithms: linear regression, support vector machine, regression tree, and random
forest. The experiment procedure phases include data collection, data preprocessing, data
analysis, data splitting, and prediction models development. The effects of the experiments
revealed that the support vector machine and random forest methods categorically provide
consistent results in the case of using only five important selected attributes compared to
the case of using all the attributes.

A comparison between the multiple linear regression method and the expert judge-
ment method applied on a real-time dataset obtained from a medium-sized multinational
organization was made in [10]. Multiple linear regression generates better results based on
the values of the used evaluation metrics.

In paper [11], the random forest method was compared with the regression tree
method based on three datasets: ISBSG R8, Tukutuku, and Cocomo. The improved random
forest method analyses the dependency by the number of used attributes from a dataset,
observing whether the accuracy was sensitive of considered parameters. The evaluation
metrics—magnitude of relative error, mean magnitude of relative error, and median mag-
nitude of relative error—show that the random forest technique surpasses the regression
tree technique.

In study [12], decision tree methods were used to estimate development effort and
the cost of software when agile principles are fulfilled. The training process was based
on 10-fold cross-validation, and the combining of three learning methods (decision tree,
random forest and Ada-boost regressor) led to the improvement of prediction accuracy.

Another research [13] proposed the Neural Coherent Clustered Ensemble Classifier
model combined with the Optimized Satin Bowerbird model applied to seven datasets:
Cocomo81, CocomoNasa93, CocomoNASA60, Desharnais, AlbrechtFPA, ChinaFPA, and
Cocomo_sdr (Table 1). The Neural Gas Coherent Clustering method was used with the
scope to group the datasets in a coherent approach using an index of the nearest character-
istic vector as the definitive parameter. The ECOPB proposed model was evaluated using
two metrics: clustering accuracy and mean magnitude of relative error.

An improved analogy-based effort estimation method was introduced in [14] through
the standard deviation technique. Validation of achieving improvement was based on a
magnitude of relative error metric applied to a dataset, which included information about
21 projects developed using Scrum-based agile software development collected from six
different software houses in Pakistan.

In the software development domain, the most accurate approximation of the software
effort represents one of the most controvertible problems. The accurate approximation of
the software effort needed for software project development is fundamental for performing
software administration. For this consideration, correct approximation of software effort is
a difficult research labour.

Mathematics 2024, 12, 200 4 of 22

Table 1. Software effort estimation—related works synthesis.

Existing Works Datasets Methods Metrics

Marapelli Cocomo Linear regression Root mean square error
[5] K-nearest neighbours Relative absolute error

Mean absolute error
Correlation coefficient

Hameed et al. Albrecht Genetic algorithm Mean absolute error
[6] Maxwell Mean balanced relative error

NASA Mean inverted balanced error
Telecom
Kemerer

China
Desharnais

Kumar et al. Cocomo81 Stochastic gradient descent Mean absolute error
[7] China K-nearest neighbours Mean square error

Decision tree Root mean square error
Bagging regressor Coefficient of determination

Random forest regressor
Ada-boost regressor

Gradient boosting regressor

Singh et al. Desharnais Linear regression Mean absolute error
[8] Random forest Root mean square error

Multilayer perceptron Root relative absolute error
Relative squared error
Correlation coefficient

Zakaria et al. Cocomo Linear regression Mean square error
[9] Support vector machine Root mean square error

Regression tree Mean absolute error
Random forest Mean absolute percentage error

Abdelali et al. ISBSG R8 Random forest Magnitude of relative error
[11] Tukutuku Regression tree Mean magnitude of relative error

Cocomo Median magnitude of relative error

Sanchez et al. Projects set from Decision tree Mean square error
[12] Pakistan Random forest Mean relative error

Ada-boost regressor Coefficient of determination
Mean magnitude of relative error

Resmi et al. Cocomo81 ECOPB Clustering accuracy
[13] CocomoNasa93 Mean magnitude of relative error

CocomoNASA60
Desharnais

AlbrechtFPA
ChinaFPA

Cocomo_sdr

Muhammad et al. 21 projects from Analogy-based effort Magnitude of relative error
[14] Pakistan

3. Research Approach
3.1. Data Preparation

To establish the effort needed to develop a software product, there is a large number
of data collections, such as: Albrecht, Cocomo81, China, Desharnais, ISBSG, Kemerer,
Kitchenham, Maxwell, Miyazaki, NASA, and Tukutuku. In the procedure to approximate
the software effort presented in this study, five datasets were used: Albrecht, Kemerer,
Cocomo81, China, and Desharnais.

The number of attributes and the number of analysed projects for these five datasets
are presented in Table 2. The Albrecht dataset [15] is characterized by eight attributes
obtained from 24 IBM software projects, the Kemerer dataset [16] is characterized by
seven attributes obtained from 15 analysed projects, and the Cocomo81 dataset [17] is
characterized by 17 attributes obtained from 63 NASA software projects. The outputs of all
these three datasets, representing the actual effort required to develop the software project,
were in the unit person-months. The China dataset [18] was represented by 16 attributes

Mathematics 2024, 12, 200 5 of 22

extracted from 499 analysed projects, and the Desharnais dataset [19] was represented by
12 attributes extracted from 81 software projects accomplished in Canada. The outputs of
these last two mentioned datasets, representing the actual effort required to develop the
software project, were in the unit person-hours.

Table 2. Datasets dimensions.

Datasets Projects Input Attributes Output Attribute Output Unit

Albrecht 24 7 1 Person-months
Kemerer 15 6 1 Person-months

Cocomo81 63 16 1 Person-months
China 499 15 1 Person-hours

Desharnais 81 11 1 Person-hours

From the collections of attributes associated with all datasets, six attributes were used;
information about them is presented in Table 3. The selection of the used input attributes
was performed arbitrarily, influencing the intelligent models implemented in this study.
The second column in Table 3 contains the names of the used attributes, and the third
column the meaning of each attribute. The last four columns of Table 3 contain information
about each of the used attribute values as follows: the fifth column specifies the minimum
value of the attribute, the sixth column specifies the maximum value of the attribute, the
seventh column specifies the average value of the attribute, and the eighth column specifies
the standard deviation of the attribute.

Table 3. Lists with chosen attributes for all five used datasets.

Datasets Used Attributes Attributes Description Min Max Mean Std

Albrecht

InputNumeric Input functions number 7 193 40.25 36.913
OutputNumeric Output functions number 12 150 47.25 35.169

FileNumeric Count of file processing 3 60 17.37 15.522
RawFPcouns Raw function points 189.52 1902 638.54 452.654

AdjfpNumeric Adjusted function points 199 1902 647.62 487.995
InquiryNumeric Count of query functions 0 75 16.87 19.337

Kemerer

Language Programming language 1 3 1.2 0.561
RawFP Unadjusted function points 97 2284 993.86 597.426

Duration Duration of the project 5 31 14.26 7.544
AdjFP Adjusted function points 99.9 2306.8 999.14 589.592

Hardware Hardware resources 1 6 2.33 1.676
KSLOC Kilo lines of code 39 450 186.57 136.817

Cocomo81

Data Database size 0.94 1.16 1.04 0.073
Time Time constraint 1 1.66 1.11 0.161
Cplx Complexity of product 0.7 1.65 1.09 0.202
Stor Storage constraint 1 1.56 1.14 0.179
Tool Software tools use 0.83 1.24 1.01 0.085
Loc Lines of code 1.98 1150 77.21 168.51

China

Input Function points of input 0 9404 167.12 486.301
Output Function points of external output 0 2455 113.61 221.299

File Function points of internal logical
files 0 2955 91.23 210.289

Added Function points of added
functions 0 13,580 360.41 829.797

Resource Team type 1 4 1.45 0.823
AFP Adjusted function points 9 17,518 486.91 1059.008

Desharnais

TeamExp Team experience −1 4 2.18 1.415
ManagerExp Manager experience −1 7 2.53 1.643

Length Length of the project 1 39 11.67 7.424
Entities Number of entities 7 387 122.33 84.882

Language Programming language 1 3 1.55 0.707
Adjustment Adjusted factor 5 52 27.63 10.592

Mathematics 2024, 12, 200 6 of 22

3.2. Used Metrics

Accurate assessment of the performance of artificial intelligence strategies [20] is very
complicated due to unbalanced data collections. The following four metrics were used to
achieve the previously stated scope: mean absolute error, root mean square error, median
absolute error, and coefficient of determination.

Mean absolute error [21], denoted by MAE, signifies the average sum of absolute
errors. The formula by which the mean absolute error is determined is established by
Equation (1).

MAE =
1
m
·

m

∑
k=1

∣∣xk − x′′k
∣∣ (1)

In this formula (as well as in the following three), m signifies the number of all data
points, xk signifies the value to be estimated, and xk

′′ is the estimated value. Median
absolute error [22], denoted by MdAE, calculates the median of all absolute differences
between the real effort and the estimated effort, defined by the formula represented in
Equation (2).

MdAE = median (
{∣∣xk − x′′k

∣∣}m
k=1) (2)

Root mean square error [23], denoted by RMSE, evaluates the standard deviation of
the estimated value. The mathematical relation by which the root mean square error is
evaluated is represented by Equation (3).

RMSE =

√
1
m
·

m

∑
k=1

(
xk − x′′k

)2 (3)

Coefficient of determination [21], denoted by CD, is defined by dividing the sum of
squared residual by the sum of all squares; the relation is given in Equation (4).

CD = 1− ∑m
k=1
(
xk − x′′k

)2

∑m
k=1
(
xk − x′k

)2 (4)

where:
x′ =

1
p
·∑m

k=1 xk. (5)

The range associated with the coefficient of determination is given by real numbers
between 0 and 1. In the best situation, the predicted values fit exactly the real values,
resulting in a value of 1 for coefficient of determination.

If the obtained value for the coefficient is negative, then a correlation does not exist
between the data and the used model. These four selected metrics represent a crucial
performance statistic in the case of regression models because are easy to understand,
interpretable, and reliable elements for evaluation of the prediction accuracy. The lower
the values associated with the first three metrics, the more accurately the model predicts.
The determination of characteristic values of these four metrics was realized through the
sklearn.metrics library belonging to the Scikit-learn [24] tool.

3.3. Selected Machine Learning Methods

For effort estimation, six machine learning methods were chosen: K-nearest neigh-
bours (KNN), decision tree (DT), random forest (RF), gradient boosted tree (GBT), multi-
layer perceptron (MLP), and long short-term memory (LSTM).

The K-nearest neighbours method [25] is the easiest machine learning method, and
the fact that it fetches the right results in a shorter time has led to its great use for both
classification and regression problems. This method is based on a feature similarity, which
represents that the similarity level of the values’ features to those of the training set
determines how a new input will be predicted. An output value will be predicted for the

Mathematics 2024, 12, 200 7 of 22

new input based on the features of the input neighbours, with the predicted value being
determined by the majority of its neighbours.

A decision tree [26] consists of internal nodes, branches, and leaf nodes, where each
internal node represents the test for a certain attribute, each branch expresses the result of
the test, and the leaf nodes represent the classes. The decision tree classifier includes two
stages: building the tree, and applying it as a solution model to the addressed problem.
To evaluate the utility of an attribute, the notion of information gain, defined in terms of
entropy, is used. Thus, the greater the information gain, the lower the entropy.

The random forest [27] strategy consists of a collection of decision trees in which each
tree is built by applying an algorithm and a random vector to the training dataset. The
prediction given by this method is obtained by a majority of votes over the predictions
given by each individual tree.

The gradient boosted tree [28] is one of the most powerful strategies for building
predictive models, involving three elements: a loss function to be optimized, a weak learner
to make the predictions, and an additive model to add weak learners to minimize the loss
function. The loss function depends on the type of problem to be solved. Decision trees
are used as weak learners in this strategy, being built in a greedy way in which the best
branching points are chosen based on the purity of the scores.

Artificial neural networks are computational systems inspired by the way biological
nervous systems process information. The main element of this paradigm is the structure of
the information processing system, which is composed of large number of highly intercon-
nected processing elements that work together to solve a certain task. The learning process
of biological systems involves adjustments of the synaptic connections that exist between
neurons, which also happens in the case of artificial networks that learn and adjust by
example. From the numerous types of artificial neural networks, the multilayer perceptron
and the long short-term memory neural networks were used in this study.

MLP includes more layers, every layer being connected to the following one. The
layers’ nodes are neurons characterized by activation functions, less so for the nodes from
the input layer. Between the input and the output layers there are one or more hidden layers.
Backpropagation is the learning strategy that allows multilayer perceptron to iteratively
adapt the weights in the network layers in order to optimize the cost function.

LSTM [29] is a category of artificial recurrent neural network [30] used in the deep
learning area. Compared with standard feed-forward neural networks, LSTM is character-
ized by feedback connections. Moreover, LSTM is very sensitive to the number of nodes in
hidden layers, the number of training epochs, the initial learning rate, the momentum, and
the dropout probability. These parameters will have a large impact on the software effort
estimation performance.

The Python 3.8.12 programming language [31] together with four libraries—Keras
2.10.0 [32], Tensorflow 2.10.0, MathPlotLib [33], and SKlearn 1.0.1—were chosen to imple-
ment and evaluate these six selected machine learning methods.

3.4. Development of Effort Estimation Software

To successfully achieve the proposed objectives, an intelligent software was developed
whose functionalities are included in the UML use case diagram [34] shown in Figure 1.
The use case diagram contains an actor (the user of the intelligent software), eleven use
cases, and relationships between them.

Thereby, the software functionalities consist of:

• Selecting a dataset from the five analysed sets used in model evaluation;
• Parameter tuning, training, testing, and evaluating an intelligent method selected from

the six intelligent methods used in this study;
• Improving the LSTM method through particle swarm optimization;
• Parameter tuning, training, testing, and evaluation of the optimized LSTM method;
• Comparing the performance of the improved LSTM method with the results generated

by the six intelligent chosen methods.

Mathematics 2024, 12, 200 8 of 22

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 24

learner to make the predictions, and an additive model to add weak learners to minimize
the loss function. The loss function depends on the type of problem to be solved. Decision
trees are used as weak learners in this strategy, being built in a greedy way in which the
best branching points are chosen based on the purity of the scores.

Artificial neural networks are computational systems inspired by the way biological
nervous systems process information. The main element of this paradigm is the structure
of the information processing system, which is composed of large number of highly inter-
connected processing elements that work together to solve a certain task. The learning
process of biological systems involves adjustments of the synaptic connections that exist
between neurons, which also happens in the case of artificial networks that learn and ad-
just by example. From the numerous types of artificial neural networks, the multilayer
perceptron and the long short-term memory neural networks were used in this study.

MLP includes more layers, every layer being connected to the following one. The
layers’ nodes are neurons characterized by activation functions, less so for the nodes from
the input layer. Between the input and the output layers there are one or more hidden
layers. Backpropagation is the learning strategy that allows multilayer perceptron to iter-
atively adapt the weights in the network layers in order to optimize the cost function.

LSTM [29] is a category of artificial recurrent neural network [30] used in the deep
learning area. Compared with standard feed-forward neural networks, LSTM is charac-
terized by feedback connections. Moreover, LSTM is very sensitive to the number of nodes
in hidden layers, the number of training epochs, the initial learning rate, the momentum,
and the dropout probability. These parameters will have a large impact on the software
effort estimation performance.

The Python 3.8.12 programming language [31] together with four libraries—Keras
2.10.0 [32], Tensorflow 2.10.0, MathPlotLib [33], and SKlearn 1.0.1—were chosen to imple-
ment and evaluate these six selected machine learning methods.

3.4. Development of Effort Estimation Software
To successfully achieve the proposed objectives, an intelligent software was devel-

oped whose functionalities are included in the UML use case diagram [34] shown in Fig-
ure 1. The use case diagram contains an actor (the user of the intelligent software), eleven
use cases, and relationships between them.

Figure 1. UML use case diagram.

Thereby, the software functionalities consist of:
• Selecting a dataset from the five analysed sets used in model evaluation;

Figure 1. UML use case diagram.

4. Analysis of the Six Selected Classical Intelligent Methods

In most methods of machine learning [35], the parameters represent variables used by
methods to learn the data characteristics and to adjust the learning from the dataset, with
the purpose of obtaining the best performance. The parameter tuning [36] concept involves
obtaining the suitable parameters for every learning method, such that the predicted results
are optimal.

After the parameter tuning process, it is necessary to split the datasets used for training
and testing. For every used dataset, in order to detect the suitable percentage to train and
test the data, a fitting strategy was used and a value of approximately 80% was chosen for
the training set and the remainder for the test set. Table 4 shows information about the
number of effort values (columns 2 and 7), the minimum effort value (columns 3 and 8), the
maximum effort value (columns 4 and 9), the average effort value (columns 5 and 10) and
the standard deviation (columns 6 and 11) used both in the training stage of the intelligent
methods and in their testing stage.

Table 4. Real effort values.

Datasets Training Testing
Number Minim Maxim Mean Std Number Minim Maxim Mean Std

Albrecht 18 0.5 105.2 18.41 25.609 6 2.9 102.4 32.26 36.225
Kemerer 11 23.2 1107.31 222.91 306.831 4 72.0 287.0 209.15 94.446

Cocomo81 47 5.9 11,400.0 819.91 2075.392 16 6.0 2040.0 282.06 525.316
China 374 26.0 54,620.0 4218.06 6679.07 125 89.0 49,034.0 3417.62 5826.511

Desharnais 60 651.0 23,940.0 5241.55 4714.124 21 546.0 14,987.0 4488.47 3478.961

4.1. K-Nearest Neighbours

The K-nearest neighbours method, having the six inputs presented in Table 3 and
an output (estimated effort), was set with the following features: Minkowski metric for
distance computation, leaf size equal with 30, and uniform weights. To implement this
method, the KNeighborsRegressor function from the SKlearn 1.0.1 library was used. For
the K-nearest neighbours method, in the parameter tuning process, the following two
parameters were used to determine the performance of this method:

• k—signifies the number of neighbours used to determine the prediction for new
instances. In this study, the eight used values of this parameter vary between 3 and 10.

Mathematics 2024, 12, 200 9 of 22

• p—signifies the power parameter from the Minkowski distance [37], characterized by
the following formula:

dMinkowski =
(
∑m

k=1

(∣∣xk − x′′k
∣∣)p
) 1

p (6)

The usefulness of the Minkowski distance within the KNN method consists in deter-
mining which neighbours will be analysed to compare their characteristics with those of
a new instance for which a new prediction is determined. Thereby, distance metrics are
used calculate which are the neighbours with the most appropriate features and choose the
first K neighbours to obtain the new prediction. For this second parameter, three values
between 1 and 3 were used by the KNN method to predict the effort. If the parameter p
is equal to the value 1, the Minkowski distance is reduced to the Manhattan distance [38]
given by the following formula:

dManhattan = ∑m
k=1

∣∣xk − x′′k
∣∣ (7)

In the case when the parameter p is equal with value 2, the Minkowski distance is
transformed into the Euclidean distance [39], represented by the next formula:

dEuclidean =
√

∑m
k=1

(
xk − x′′k

)2 (8)

Following the used values in the parameter tuning process (eight values for parameter
k and three values for parameter p), 24 variants of the KNN method were trained and
tested. In Table 5, columns 3 to 5 show the values obtained for the four used metrics by
these 24 variants of the KNN method: the third column shows the minimum value, the
fourth column shows the maximum value, and the fifth column shows the average value for
each metric. Columns 6 and 7 present the values of the parameters for which the minimum
values of the four metrics were obtained.

Table 5. Test results for KNN method.

Metrics
Datasets Metric Values Parameters Estimated Effort

Minim Maxim Mean p k Minim Maxim Mean

MAE

Albrecht 11.228 18.557 15.914 1 3 6.333 59.467 22.872
Kemerer 75.519 99.728 87.201 1 4 86.675 210.325 140.968

Cocomo81 221.619 257.051 235.505 2 3 14.001 476.333 170.152
China 1747.048 2154.672 1983.695 1 3 272.041 24,896.841 12,753.127

Desharnais 1422.878 1660.392 1562.577 1 7 1831.011 8977.015 4149.707

MdAE

Albrecht 4.556 6.657 5.671 2 8 6.251 30.187 16.237
Kemerer 57.933 105.039 89.929 1 3 63.233 237.001 130.167

Cocomo81 35.783 138.357 90.451 1 3 13.998 477.336 169.568
China 611.602 1228.203 963.552 1 5 211.713 21,100.605 11,009.203

Desharnais 921.667 1541.417 1270.797 1 3 1547.02 10,061.333 3580.746

RMSE

Albrecht 18.202 31.746 27.054 1 3 6.333 59.467 22.872
Kemerer 90.933 109.744 101.412 1 4 86.671 210.325 140.968

Cocomo81 446.987 483.493 466.399 1 7 17.742 448.714 203.692
China 3922.755 4436.163 4161.753 1 7 237.135 22,966.109 10,303.723

Desharnais 1847.561 2839.927 2230.060 1 6 1886.501 9945.833 4193.794

CD

Albrecht 0.389 0.437 0.416 1 3 6.333 59.467 22.872
Kemerer 0.303 0.351 0.332 1 4 86.675 210.325 140.968

Cocomo81 0.738 0.793 0.762 2 3 14.001 476.333 170.152
China 0.668 0.762 0.713 1 3 272.041 24,896.841 12,753.127

Desharnais 0.591 0.658 0.624 1 7 1831.011 8977.015 4149.707

The last three columns show information about the estimated effort by the KNN model
for which optimum values of the metrics were obtained. For all five datasets, by comparing

Mathematics 2024, 12, 200 10 of 22

the real effort values from Table 4 with the estimated values from Table 5, it is observed
that all estimated intervals are included in the intervals corresponding to the real values of
the effort.

4.2. Decision Tree

Characterized by the six inputs presented in Table 3 and an output (estimated effort),
the DT method was designed as follows: the minimum number of samples required to split
an internal node is equal with 2 and the strategy to split each node is the best split. This
method was implemented through the DecisionTreeRegressor function from the SKlearn
1.0.1 library. To determine the performance of the Decision Tree [40] method applied to the
five datasets, in the parameter tuning process, the following two parameters were tuned:

• d—represents the maximum depth of the tree. In this research study, six values were
used for this parameter varying between 5 and 10.

• n—represents the maximum leaf nodes. In this research study, 10 values were used for
this parameter varying between 11 and 20.

Following the used values in the parameter tuning process (six values for parameter
d and 10 values for parameter n), 60 variants of the DT method were trained and tested.
Table 6 shows the values provided by the 60 variants of the DT method, the meanings of
the columns from Table 6 being the same as those from Table 5. For all five datasets, by
comparing the real effort values from Table 3 with the estimated values from Table 6, it is
observed that all estimated intervals are included in the intervals corresponding to the real
values of the effort.

Table 6. Test results for DT method.

Metrics
Datasets Metric Values Parameters Estimated Effort

Minim Maxim Mean d n Minim Maxim Mean

MAE

Albrecht 6.975 23.439 12.378 5 12 7.751 101.202 68.357
Kemerer 95.853 123.987 105.829 6 12 73.202 159.006 124.358

Cocomo81 275.979 305.639 287.251 6 17 24.016 1069.077 453.055
China 1575.633 2556.485 2098.901 5 16 895.606 33,291.007 18,912.274

Desharnais 1953.361 2693.082 2087.125 7 17 2593.501 9100.246 4507.015

MdAE

Albrecht 3.825 9.868 6.738 5 12 7.751 101.202 68.357
Kemerer 81.802 123.525 99.104 5 18 81.121 162.015 132.831

Cocomo81 48.617 154.181 77.217 6 17 24.016 1069.077 453.055
China 755.642 1845.505 1398.297 6 19 895.603 33,291.075 17,588.015

Desharnais 1453.083 2108.705 1701.025 6 11 1414.447 14,973.075 7982.055

RMSE

Albrecht 10.213 32.872 17.083 5 12 7.751 101.202 68.357
Kemerer 106.226 137.477 119.253 6 12 73.202 159.006 124.358

Cocomo81 514.792 585.492 541.035 8 18 98.764 902.033 345.159
China 2848.557 4441.981 3471.155 5 16 895.606 33,291.007 18,912.274

Desharnais 2526.071 3704.809 3306.172 5 18 2507.501 9217.258 6988.345

CD

Albrecht 0.497 0.561 0.536 5 12 7.751 101.202 68.357
Kemerer 0.275 0.309 0.289 6 12 73.202 159.006 124.358

Cocomo81 0.691 0.774 0.733 6 17 24.016 1069.077 453.055
China 0.685 0.793 0.723 5 16 895.606 33,291.007 18,912.274

Desharnais 0.479 0.563 0.515 7 17 2593.501 9100.246 4507.015

4.3. Random Forest

Random forest [41] is an estimator that fits a number of decision trees on various
sub-samples of the dataset and uses averaging to improve the predictive accuracy. At the
implementation of RF method, the RandomForestRegressor function from the SKlearn
1.0.1 library was used. The RF method, having the six inputs presented in Table 3 and an
output (estimated effort), was set with the following features: squared error as a function
to measure the quality of a split, and the value of 2 for the minimum number of samples

Mathematics 2024, 12, 200 11 of 22

required to split an internal node and also for the minimum number of samples required to
be at a leaf node.

To determine the performance of the random forest method applied to the five datasets,
in the parameter tuning process, the following two parameters were tuned:

• d—represents the maximum depth of the tree. In this research study, six values were
used for this parameter varying between 5 and 10.

• t—represents the number of trees in the forest. In this research study, six values were
used for this parameter belonging to the following set: {50, 100, 150, 200, 250, 300}.

Following the used values in the parameter tuning process (six values for parameter
d and six values for parameter t), 36 variants of the RF method were trained and tested.
Table 7 shows the values provided by the 36 variants of the RF method, the meanings of
the columns from Table 7 being the same as those from Table 5.

Table 7. Test results for RF method.

Metrics
Datasets Metric Values Parameters Estimated Effort

Minim Maxim Mean d t Minim Maxim Mean

MAE

Albrecht 6.015 20.914 10.817 7 150 9.374 98.207 67.264
Kemerer 82.739 135.792 110.145 9 200 77.025 204.876 132.329

Cocomo81 235.857 299.066 267.743 8 250 33.099 1329.045 567.987
China 1409.324 2441.075 1970.845 6 300 706.125 35,987.755 20,075.177

Desharnais 1792.837 2479.175 1995.075 8 200 2275.045 11,975.357 5705.075

MdAE

Albrecht 3.579 8.528 4.381 8 100 12.842 86.925 46.152
Kemerer 69.174 117.026 98.713 10 150 82.038 236.109 157.235

Cocomo81 43.925 138.271 69.925 9 100 78.808 1099.125 458.794
China 621.782 1753.655 1203.555 10 250 819.255 36,606.177 19,877.095

Desharnais 1284.947 2095.175 1685.255 9 300 1155.038 13,475.105 6795.755

RMSE

Albrecht 7.726 30.714 24.003 7 150 9.374 98.207 67.264
Kemerer 83.726 128.057 102.113 9 200 77.025 204.876 132.329

Cocomo81 487.283 557.883 521.151 9 100 78.808 1099.125 458.794
China 2792.372 4337.077 3507.808 6 300 706.125 35,987.755 20,075.177

Desharnais 2379.063 3685.915 2985.175 9 300 1155.038 13,475.105 6795.755

CD

Albrecht 0.519 0.593 0.553 7 150 9.374 98.207 67.264
Kemerer 0.284 0.327 0.301 9 200 77.025 204.876 132.329

Cocomo81 0.658 0.732 0.693 8 250 33.099 1329.045 567.987
China 0.709 0.821 0.765 6 300 706.125 35,987.755 20,075.177

Desharnais 0.491 0.581 0.543 8 200 2275.045 11,975.357 5705.075

For all five datasets, by comparing the real effort values from Table 4 with the estimated
values from Table 7, it is observed that all estimated intervals are included in the intervals
corresponding to the real values of the effort.

4.4. Gradient Boosted Tree

The gradient boosted tree [42] estimator makes an additive model in a forward step-
wise manner, allowing the optimization of arbitrary differentiable loss functions. In each
step, a regression tree is fitted on the negative gradient of the given loss function. For
the implementation of the GBT method, the GradientBoostingRegressor function from the
SKlearn 1.0.1 library was used. The GBT method, characterized by the six inputs presented
in Table 3 and an output (estimated effort), has been designed with the following features:
the squared error to optimize the loss function, the friedman_mse function to measure the
quality of a split, the value of 3 as the minimum number of samples required to split an
internal node, and the value of 200 for the number of boosting stages to perform.

To determine the performance of the gradient boosted tree method applied to the five
datasets, in the parameter tuning process, the following two parameters were tuned:

Mathematics 2024, 12, 200 12 of 22

• d—represents the maximum depth of the individual regression estimators. In this
research study, five values were used for this parameter varying between 1 and 5.

• l—represents the learning rate which shrinks the contribution of each tree. In this
research study, five values were used for this parameter belonging to the following set:
{0.05, 0.1, 0.15, 0.2, 0.25}.

Following the used values in the parameter tuning process (five values for parameter
d and five values for parameter l), 25 variants of the GBT method were trained and tested.
Table 8 shows the values provided by the 25 variants of the GBT method, the meanings
of the columns from Table 8 being the same as those from Table 5. For all five datasets, by
comparing the real effort values from Table 3 with the estimated values from Table 8, it is
observed that all estimated intervals are included in the real intervals.

Table 8. Test results for GBT method.

Metrics
Datasets Metric Values Parameters Estimated Effort

Minim Maxim Mean d l Minim Maxim Mean

MAE

Albrecht 5.892 27.674 18.936 5 0.15 8.294 89.491 69.174
Kemerer 60.197 120.345 82.392 4 0.25 74.147 223.736 148.884

Cocomo81 209.198 279.885 251.092 5 0.2 31.725 1492.221 671.257
China 1287.382 2835.135 1487.655 4 0.25 95.125 39,875.755 15,978.045

Desharnais 1549.792 2278.755 1956.705 5 0.15 908.755 11,309.875 5995.255

MdAE

Albrecht 3.092 17.538 11.941 4 0.2 12.743 78.926 54.729
Kemerer 58.682 106.827 80.724 3 0.15 89.387 213.357 176.086

Cocomo81 39.826 127.864 81.023 3 0.25 81.216 1283.117 687.832
China 504.672 2095.185 1675.085 2 0.15 709.148 38,075.275 17,899.345

Desharnais 901.925 2399.075 1108.125 3 0.2 1093.445 8796.095 5750.174

RMSE

Albrecht 8.094 38.757 23.931 5 0.25 8.839 88.937 68.147
Kemerer 64.045 134.981 98.927 4 0.25 74.147 223.736 148.884

Cocomo81 463.782 521.236 482.226 3 0.25 81.216 1283.117 687.832
China 2563.824 6235.975 4387.187 4 0.25 95.125 39,875.755 15,978.045

Desharnais 2095.827 3190.725 2601.007 3 0.2 1093.445 8796.095 5750.174

CD

Albrecht 0.527 0.609 0.563 5 0.15 8.294 89.491 69.174
Kemerer 0.347 0.392 0.367 4 0.25 74.147 223.736 148.884

Cocomo81 0.759 0.812 0.774 5 0.2 31.725 1492.221 671.257
China 0.773 0.865 0.815 4 0.25 95.125 39,875.755 15,978.045

Desharnais 0.585 0.639 0.607 5 0.15 908.755 11,309.875 5995.255

4.5. Multilayer Perceptron

At the implementation of MLP method, the MLPRegressor function from the SKlearn
1.0.1 library was used. The MLP method, characterized by the six inputs presented in
Table 3 and an output (estimated effort), has been designed with the following features:
three hidden layers each with 100 neurons, the relu activation function for the hidden
layers, and an Adam solver for weight optimization. To determine the performance of the
multilayer perceptron [43] method applied to the five datasets, in the parameter tuning
process, the following two parameters were tuned:

• t—represents the maximum number of iterations. The values of this parameter are
represented by the elements of the set {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}.

• l—represents the initial learning rate. In this research study, the values of this parame-
ter are represented by the elements of the set {0.002, 0.003, 0.004, 0.005, 0.006}.

Following the used values in the parameter tuning process (10 values for parameter t
and five values for parameter l), 50 variants of the MLP method were trained and tested.
Table 9 shows the values provided by the 50 variants of the MLP method, the meanings of
the columns from Table 9 being the same as those from Table 5.

Mathematics 2024, 12, 200 13 of 22

Table 9. Test results for MLP method.

Metrics
Datasets Metric Values Parameters Estimated Effort

Minim Maxim Mean t l Minim Maxim Mean

MAE

Albrecht 7.555 32.306 17.046 800 0.003 3.726 92.538 56.623
Kemerer 48.145 523.383 275.035 400 0.003 85.215 239.455 135.764

Cocomo81 199.513 224.522 211.092 400 0.004 39.785 945.767 435.843
China 1383.713 2764.524 1309.175 500 0.004 100.262 36,214.905 17,088.325

Desharnais 1587.619 2434.246 1997.077 200 0.004 1189.909 8186.266 4378.075

MdAE

Albrecht 3.256 25.655 12.104 400 0.003 2.598 41.759 28.729
Kemerer 47.427 582.999 321.428 400 0.003 85.215 239.455 135.764

Cocomo81 57.833 98.139 69.924 1000 0.003 48.505 957.248 675.912
China 517.898 1929.029 1417.075 500 0.004 100.262 36,214.905 17,088.325

Desharnais 905.841 2521.222 1203.755 100 0.006 1114.505 7368.811 4877.075

RMSE

Albrecht 8.208 42.338 24.753 800 0.003 3.726 92.538 56.623
Kemerer 58.217 570.662 298.519 400 0.003 85.215 239.455 135.764

Cocomo81 355.245 371.664 362.214 500 0.002 60.725 964.043 542.912
China 2892.196 5864.361 3708.185 500 0.004 100.262 36,214.905 17,088.325

Desharnais 2176.591 3252.083 2709.122 200 0.004 1189.909 8186.266 4378.075

CD

Albrecht 0.503 0.547 0.522 800 0.003 3.726 92.538 56.623
Kemerer 0.382 0.438 0.413 400 0.003 85.215 239.455 135.764

Cocomo81 0.762 0.826 0.793 400 0.004 39.785 945.767 435.843
China 0.792 0.843 0.825 500 0.004 100.262 36,214.905 17,088.325

Desharnais 0.576 0.624 0.599 200 0.004 1189.909 8186.266 4378.075

For all five datasets, by comparing the real effort values from Table 4 with the estimated
values from Table 9, it is observed that all estimated intervals are included in the intervals
corresponding to the real values of the effort.

4.6. Long Short-Term Memory

In addition to recurrent neural networks, to which category it belongs, long short-term
memory [44] adds a gate structure to its architecture. Compared to traditional neural
networks, which are characterized by only one input, LSTM has two input sets: the current
information and the output vector provided by the previous unit, while the complex
processes associated with the LSTM cell are performed by the unit state. The essence of
LSTM lies in the hidden layer, which instead of having nodes contains blocks of memory
that contain components which make them smarter than nodes, called memory cells,
consisting of three separate gates to regulate the flow and modification of information. The
LSTM unit state consists of a forget gate, an input gate, and an output gate. The purpose of
the forget gate is to choose to retain or discard some information. The input gate has the
role of determining which information is retained internally and of ensuring that critical
information can be saved. The output gate’s role is to ascertain the output value and to
control the current LSTM state which must be pass to the enable function.

In order to implement the LSTM method, an instance of the LSTM class defined in
Keras.layers was used. The LSTM method, characterized by the six inputs presented in
Table 3 and an output (estimated effort), has been designed with the following features:
hyperbolic tangent as activation function, sigmoid as recurrent activation function, and a
value of 0.5 for dropout probability. To determine the performance of the LSTM method
applied to five datasets using an Adam optimizer, in the parameter tuning process the
following two parameters were tuned:

• e—represents the number of training epochs. The values of this parameter are repre-
sented by the elements of the set {100, 200, 300, 400, 500, 600, 700, 800, 900, 1000}.

• n—represents the number of neurons in the LSTM hidden layer. The values of this
parameter belong to the set {25, 50, 75, 100}.

Mathematics 2024, 12, 200 14 of 22

Following the used values in the parameter tuning process (10 values for parameter e
and four values for parameter n), 40 variants of the LSTM method were trained and tested.
Table 10 shows the values provided by the 40 variants of the LSTM method, the meanings
of the columns from Table 10 being the same as those from Table 5. For all five datasets, by
comparing the real effort values from Table 3 with the estimated values from Table 10, it is
observed that all estimated intervals are included in the intervals corresponding to the real
values of the effort.

Table 10. Test results for LSTM method.

Metrics
Datasets Metric Values Parameters Estimated Effort

Minim Maxim Mean e n Minim Maxim Mean

MAE

Albrecht 4.870 7.428 5.341 700 50 7.218 102.357 62.851
Kemerer 42.094 499.132 233.437 500 25 72.912 253.776 148.866

Cocomo81 178.051 433.352 256.467 300 25 93.918 1845.402 1001.563
China 865.122 2837.991 1899.123 1000 25 544.762 39,938.265 28,055.125

Desharnais 1404.571 2297.282 1709.153 600 100 610.162 9234.885 3545.995

MdAE

Albrecht 2.911 6.995 4.235 500 100 6.286 100.391 59.973
Kemerer 26.206 580.956 311.468 500 25 72.912 253.776 148.866

Cocomo81 30.642 332.799 187.395 900 50 21.553 500.38 245.728
China 272.353 2188.822 1550.135 900 50 224.834 26,239.266 15,066.025

Desharnais 880.121 2130.503 1406.345 1000 75 657.802 7847.106 5008.755

RMSE

Albrecht 6.560 8.209 7.349 100 75 7.637 99.044 55.862
Kemerer 57.560 544.419 279.828 500 25 72.912 253.776 148.866

Cocomo81 245.153 574.658 352.714 300 25 93.918 1845.402 1001.563
China 2034.574 4864.522 2897.095 1000 25 544.762 39,938.265 28,055.125

Desharnais 1960.007 3178.601 2499.065 600 100 610.162 9234.885 3545.995

CD

Albrecht 0.594 0.631 0.612 700 50 7.218 102.357 62.851
Kemerer 0.431 0.493 0.464 500 25 72.912 253.776 148.866

Cocomo81 0.816 0.897 0.845 300 25 93.918 1845.402 1001.563
China 0.784 0.902 0.845 1000 25 544.762 39,938.265 28,055.125

Desharnais 0.608 0.662 0.631 600 100 610.162 9234.885 3545.995

4.7. Comparative Analysis with Previous Works

In the case of the Albrecht dataset, the minimum value obtained for the MAE metric
is 4.870, the minimum value obtained for the MdAE metric is 2.911, and the minimum
value obtained for the RMSE metric is 6.560, all these three values being obtained using the
LSTM method.

Thus, this method provides the most efficient estimate for the Albrecht dataset among
the six analysed. Comparing the results obtained for the Albrecht dataset with the value
of 7.742 (Table 11) for the MAE metric presented in the paper [6], it is observed that the
optimal variants of the DT, RF, RBT, MLP, and LSTM methods provide lower values, and
therefore is a better estimate of the effort. Only in the case of the KNN method was a value
greater than 7.742 obtained.

For the Kemerer dataset, the minimum value obtained for the MAE metric is 42.094,
the minimum value obtained for the MdAE metric is 26.206, the minimum value obtained
for the RMSE metric is 57.560, and the maximum value for the CD metric is 0.493, all these
values also being obtained using the LSTM method. Therefore, the LSTM method provides
the most efficient estimate for the Kemerer dataset among the six analysed methods.
Comparing the results obtained for the Kemerer dataset with the value 138.911 (Table 11)
for the MAE metric presented in paper [6], it is observed that the optimal variants of all six
analysed methods provide lower values for the MAE metric, and is thus a better estimation
of effort.

Mathematics 2024, 12, 200 15 of 22

Table 11. Comparison with the results of other studies.

Datasets
Metrics Metric Values

Other Studies LSTM—This Study

Albrecht MAE 7.742 [6] 4.870

Kemerer MAE 138.911 [6] 42.094

Cocomo81

MAE
928.3318 [9]

178.051255.2615 [5]
153 [7]

RMSE
2278.87 [9]

245.153533.4206 [5]
228.7 [7]

CD 0.98 [7] 0.897

China

MAE 926.182 [6] 865.122
676.6 [7]

RMSE 1803.3 [7] 2034.574

CD 0.93 [7] 0.902

Desharnais
MAE 2244.675 [6] 1404.571

2013.7987 [8]

RMSE 2824.57 [8] 1847.560

In the case of the Cocomo81 dataset, the minimum value obtained for the MAE metric
is 178.051, the minimum value obtained for the MdAE metric is 30.642, the minimum value
obtained for the RMSE metric is 245.153, and the maximum value for the CD metric is 0.897,
all these values being obtained thanks to the LSTM method. Thus, this method provides
the most efficient estimate for the Cocomo81 dataset among the six analysed methods.
Comparing the results obtained for the Cocomo81 dataset with the value 928.3318 (Table 11)
for the MAE metric and with the value 2278.87 for the RMSE metric presented in the
paper [9], it is observed that the optimal variants of all six analysed methods provide
lower values, and so it is a better estimate of the effort. Comparing the results obtained
for Cocomo81 dataset with the value 255.2615 (Table 11) for the MAE metric presented in
the paper [5], it is observed that the optimal variants of KNN, RF, GBT, MLP, and LSTM
methods provide lower values, and is thus a better estimate of the effort. Only in the case of
the DT method was a value greater than 255.2615 obtained. Comparing the results obtained
for the Cocomo81 dataset with the value of 533.4206 for the RMSE metric presented in
the paper [5], it is observed that the optimal variants of all the six analysed methods
provide lower values, and is thus a better estimation of the effort. Comparing the minimum
value 178.051 obtained for the MAE metric through the LSTM method with the value 153
(Table 11) presented in the paper [7], the minimum value 245.153 obtained for the RMSE
metric through LSTM method with the value 228.7 presented in the paper [7], and the
maximum value 0.897 obtained for the CD metric through the LSTM method with the value
0.98 presented in the same paper, it can be concluded that the model presented in [7] is
more efficient than the LSTM method used in this research work.

For the China dataset, the minimum value obtained for the MAE metric is 865.122, the
minimum value obtained for the MdAE metric is 272.353, the minimum value obtained
for the RMSE metric is 2034.574, and the maximum value for the CD metric is 0.902, all
these values being obtained using the LSTM method. Thus, this method provides the
most efficient estimate for China dataset among the six analysed methods. Comparing
the results obtained for the China dataset with the value 926.182 (Table 11) for the MAE
metric presented in paper [6], it is observed that only the LSTM method provides lower
values, and is thus a better estimate of the effort. In the case of the KNN, DT, RF, GBT, and
MLP methods, values higher than 926.182 were obtained, and so they are more ineffective
methods. Comparing the minimum value 865.122 obtained for the MAE metric by means of
the LSTM method with the value 676.6 (Table 11) presented in the paper [7], the minimum
value 2034.574 obtained for the RMSE metric by means of the LSTM method with the

Mathematics 2024, 12, 200 16 of 22

value 1803.3 presented in paper [7], and the maximum value 0.902 obtained for the CD
metric through the LSTM method with the value 0.93 presented in the same paper, it can
be concluded that the model presented in [7] is more efficient than the LSTM method used
in this research paper for the China dataset.

In the case of the Desharnais dataset, the minimum value obtained for the MAE
metric is 1404.571, the minimum value obtained for the MdAE metric is 880.121, and
the minimum value obtained for the RMSE metric is 1847.561, the first two values being
obtained thanks to the LSTM method, and the last one through the KNN method. For the
CD metric, the maximum value 0.662 was obtained using the LSTM method. Comparing
the results obtained for the Desharnais dataset with the value 2244.675 (Table 11) for the
MAE metric presented in the paper [6], it is observed that the optimal variants of all
six analysed methods provide lower values, therefore it is a better estimate of the effort.
Moreover, comparing the results obtained for the Desharnais dataset with the value 2013.79
for the MAE metric presented in the work [8] and with value 2824.57 for the RMSE metric
presented in the same work, it is observed that the optimal variants of all six analysed
methods provide lower values, so it is a better estimation of the effort.

As can be seen from the second paragraph, the research methodologies in the case of
the five used works [5–9] in the comparison of the results are similar to the methodological
process used in this study, but with different percentages used when dividing the data for
training and testing. After comparing the results obtained with the values presented in the
research works selected for comparison, it can be observed that for the Albrecht, Kemerer,
and Desharnais datasets, the LSTM method provides better estimates of the effort. Because,
for Cocomo81 and China datasets, the architecture of the LSTM method presented in this
paper does not provide satisfactory results in comparison with the results obtained by the
model presented in the paper [7], further research should be carried out to improve the
LSTM method.

5. Optimized LSTM Based on Particle Swarm Optimization

Particle swarm optimization (PSO) [45] is an optimization method belonging to the
computational intelligence field, being derived from the study of bird predation behaviour.
Every particle in the PSO method fits to a possible solution of the problem, being charac-
terized by three metrics: velocity, position, and fitness. PSO calculates the fitness value of
the particles through a process of continuously updating the position and velocity during
the iterative process to reach the global optimum. The PSO method is characterized by a
fast search speed, easy convergence, and great efficiency. Starting from this aspect, the PSO
method combined with LSTM has been applied in many fields, such as: stock forecast [46],
smart agriculture [47], financial risk [48], and teaching quality [49].

In the case of the standard LSTM method, the values of some hyperparameters,
such as the initial learning rate, the dropout probability, and the momentum, must be set
manually. The choice of suitable values for these parameters is based on the experience of
the researchers. The weight of the LSTM hidden layer represents the input of the particle
swarm. The initial output error of the LSTM is used as the fitness of the particle swarm,
then the particle performance is analysed according to condition. The random initial
particle swarm updates its own parameter according to the individual extremum and
global extremum.

For a better initialization of these three hyperparameters, in this research paper the
advantages of the PSO method are combined with the LSTM method. The activities
performed within the optimized LSTM method based on PSO are shown in the UML
activity diagram drawn in Figure 2. It can be observed that after the activity of establishing
the training set and before the training of the LSTM method, the PSO method is used to
establish the values of the previously mentioned hyperparameters. The initial values of the
PSO method parameters are 10 for the population size, 50 for the number of iterations, and
1.5 for the two acceleration factors, and the range of optimized LSTM hyperparameters is
shown in Table 12.

Mathematics 2024, 12, 200 17 of 22

Mathematics 2024, 12, x FOR PEER REVIEW 18 of 24

then the particle performance is analysed according to condition. The random initial par-
ticle swarm updates its own parameter according to the individual extremum and global
extremum.

For a better initialization of these three hyperparameters, in this research paper the
advantages of the PSO method are combined with the LSTM method. The activities per-
formed within the optimized LSTM method based on PSO are shown in the UML activity
diagram drawn in Figure 2. It can be observed that after the activity of establishing the
training set and before the training of the LSTM method, the PSO method is used to es-
tablish the values of the previously mentioned hyperparameters. The initial values of the
PSO method parameters are 10 for the population size, 50 for the number of iterations,
and 1.5 for the two acceleration factors, and the range of optimized LSTM hyperparame-
ters is shown in Table 12.

Figure 2. UML activity diagram.

Table 12. Range of optimized LSTM parameters.

Parameters Lower Value Upper Value
Initial learning rate 0.0001 0.1

Momentum 0.5 0.9
Dropout probability 0 1

To estimate the soft effort using the optimized LSTM method, the same two param-
eters (number of training epochs, and number of neurons in the LSTM hidden layer) are
used in the tuning process as in the case of the standard LSTM method, their values be-
longing to the same sets. Table 13 shows the values provided by the 40 variants of the
improved LSTM method, the meanings of columns from Table 13 being the same as those
from Table 5.

Figure 2. UML activity diagram.

Table 12. Range of optimized LSTM parameters.

Parameters Lower Value Upper Value

Initial learning rate 0.0001 0.1
Momentum 0.5 0.9

Dropout probability 0 1

To estimate the soft effort using the optimized LSTM method, the same two parameters
(number of training epochs, and number of neurons in the LSTM hidden layer) are used in
the tuning process as in the case of the standard LSTM method, their values belonging to
the same sets. Table 13 shows the values provided by the 40 variants of the improved LSTM
method, the meanings of columns from Table 13 being the same as those from Table 5.

Table 13. Test results for improved LSTM method.

Metrics
Datasets Metric Values Parameters Estimated Effort

Minim Maxim Mean e n Minim Maxim Mean

MAE

Albrecht 3.604 20.026 12.046 1000 100 7.879 102.378 62.199
Kemerer 35.294 81.210 51.715 300 25 72.475 281.969 151.872

Cocomo81 133.096 498.216 243.865 700 100 42.699 1996.398 875.823
China 331.089 686.181 498.155 600 75 136.281 40,989.973 24,775.855

Desharnais 1253.781 1857.354 1437.557 100 25 1369.367 14,461.862 7868.247

MdAE

Albrecht 2.902 11.568 5.092 1000 100 7.879 102.378 62.199
Kemerer 13.747 83.125 47.836 1000 100 79.445 280.277 149.346

Cocomo81 30.142 363.576 215.732 500 50 34.991 1239.811 676.557
China 111.213 464.951 277.955 600 75 136.281 40,989.973 24,775.855

Desharnais 849.929 1393.136 1007.793 400 25 667.482 7990.067 5908.635

RMSE

Albrecht 4.717 32.982 19.187 800 75 7.808 100.381 59.035
Kemerer 41.412 133.247 78.945 100 75 75.541 274.121 147.326

Cocomo81 217.794 790.626 373.584 700 100 42.699 1996.398 875.823
China 873.102 1386.098 1175.075 500 75 116.507 42,016.782 29,775.095

Desharnais 1535.852 2949.732 2211.123 100 25 1369.367 14,461.862 7868.247

CD

Albrecht 0.615 0.697 0.648 1000 100 7.879 102.378 62.199
Kemerer 0.528 0.579 0.541 300 25 72.475 281.969 151.872

Cocomo81 0.917 0.986 0.953 700 100 42.699 1996.398 875.823
China 0.893 0.951 0.937 600 75 136.281 40,989.973 24,775.855

Desharnais 0.627 0.683 0.645 100 25 1369.367 14,461.862 7868.247

Mathematics 2024, 12, 200 18 of 22

The real effort values provided by the Albrecht test dataset are between 2.9 and 102.4
(Table 4). The range of effort values estimated by the model provided by the minimum
values of MAE and MdAE metrics and by the maximum value of CD metric is determined
by the values 7.879 and 102.378 (Table 13). The range of effort values estimated by the
model provided by the minimum values of the RMSE metric is determined by the values
7.808 and 100.381.

The real effort values provided by the Kemerer test dataset are between 72 and 287
(Table 4). The range of effort values estimated by the model provided by the minimum
values of the MAE metric and by the maximum value of the CD metric is determined by
the values 72.475 and 281.969 (Table 13). The range of effort values estimated by the model
provided by the minimum values of the MdAE metric is determined by the values 79.445
and 280.277. The range of effort values estimated by the model provided by the minimum
values of the RMSE metric is determined by the values 75.541 and 274.121.

Figure 3 shows a graphical representation of the predicted values for the software
effort by optimized LSTM method in the case of the minimum values of the metrics relative
to the real effort specific to each of the five datasets.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 24

estimated by the model provided by the minimum values of the MdAE metric is deter-
mined by the values 34.991 and 1239.811.

Comparing the minimum value 331.089 (Table 13) obtained for the MAE metric by
means of the optimized LSTM method with the value 676.6 (Table 11) presented in the
paper [7], the minimum value 873.102 obtained for the RMSE metric by means of the op-
timized LSTM method with the value 1803.3 presented in the paper [7], and the maximum
value 0.951 obtained for the CD metric by means of the optimized LSTM method with the
value 0.93 presented in the same paper, it can be concluded that the optimized LSTM
method presented in this study is more efficient than the model presented in [7] for the
China dataset. The real effort values provided by the China test dataset are between 89
and 49,034 (Table 4). The range of effort values estimated by the model provided by the
minimum values of the MAE and MdAE metrics and by the maximum value of the CD
metric is determined by the values 136.281 and 40,989.973 (Table 13).

Figure 3. Effort estimated by optimized LSTM method compared to the real effort. (a) Albrecht
dataset; (b) Kemerer dataset; (c) China dataset; (d) Cococmo81 dataset; (e) Desharnais dataset.

Mathematics 2024, 12, 200 19 of 22

Comparing the minimum value 133.096 (Table 13) obtained for the MAE metric by
means of the optimized LSTM method with the value 153 (Table 11) presented in the
paper [7], the minimum value 217.794 obtained for the RMSE metric by means of the
optimized LSTM method with the value 228.7 presented in the paper [7], and the maximum
value 0.986 obtained for the CD metric by means of the optimized LSTM method with
the value 0.98 presented in the same paper, it can be concluded that the optimized LSTM
method presented in this study is more efficient than the model presented in [7] for the
Cocomo81 dataset. The real effort values provided by the Cocomo81 test dataset are
between 6 and 2040 (Table 4). The range of effort values estimated by the model provided
by the minimum values of the MAE and RMSE metrics and by the maximum value of the
CD metric is determined by the values 42.699 and 1996.398 (Table 13). The range of effort
values estimated by the model provided by the minimum values of the MdAE metric is
determined by the values 34.991 and 1239.811.

Comparing the minimum value 331.089 (Table 13) obtained for the MAE metric
by means of the optimized LSTM method with the value 676.6 (Table 11) presented in
the paper [7], the minimum value 873.102 obtained for the RMSE metric by means of
the optimized LSTM method with the value 1803.3 presented in the paper [7], and the
maximum value 0.951 obtained for the CD metric by means of the optimized LSTM method
with the value 0.93 presented in the same paper, it can be concluded that the optimized
LSTM method presented in this study is more efficient than the model presented in [7] for
the China dataset. The real effort values provided by the China test dataset are between 89
and 49,034 (Table 4). The range of effort values estimated by the model provided by the
minimum values of the MAE and MdAE metrics and by the maximum value of the CD
metric is determined by the values 136.281 and 40,989.973 (Table 13).

The range of effort values estimated by the model provided by the minimum values
of the RMSE metric is determined by the values 116.507 and 42,016.782. The real effort
values provided by the Desharnais test dataset are between 546 and 14,987 (Table 4). The
range of effort values estimated by the model provided by the minimum values of the
MAE and RMSE metrics and by the maximum value of the CD metric is determined by the
values 1369.367 and 14,461.862 (Table 13). The range of effort values estimated by the model
provided by the minimum values of the MdAE metric is determined by the values 667.482
and 7990.067. For all five datasets, by comparing the real effort values from Table 4 with
the estimated values from Table 13, it is observed that all estimated intervals are included
in the intervals corresponding to the real values of the effort. Table 14 presents a synthesis
of the optimal values obtained for all four used metrics in the case of all the intelligent
methods used in this study.

Table 14. Optimal metrics values.

Datasets Methods MAE MdAE RMSE CD

Albrecht KNN 11.228 4.556 18.202 0.437
DT 6.975 3.825 10.213 0.561
RF 6.015 3.579 7.726 0.593

GBT 5.892 3.092 7.094 0.609
MLP 7.555 3.256 8.208 0.547

LSTM 4.870 2.911 6.560 0.631
Optimized LSTM 3.604 2.902 4.717 0.697

Kemerer KNN 75.519 57.933 90.933 0.351
DT 95.853 81.802 106.226 0.309
RF 82.739 69.174 83.726 0.327

GBT 60.197 58.682 64.045 0.392
MLP 48.145 47.427 58.217 0.438

LSTM 42.094 26.206 57.560 0.493
Optimized LSTM 35.294 13.747 41.412 0.579

Mathematics 2024, 12, 200 20 of 22

Table 14. Cont.

Datasets Methods MAE MdAE RMSE CD

Cocomo81 KNN 221.619 35.783 446.987 0.793
DT 275.979 48.617 514.792 0.774
RF 235.857 43.925 487.283 0.732

GBT 209.198 39.826 463.782 0.812
MLP 199.513 57.833 355.245 0.826

LSTM 178.051 30.642 245.153 0.897
Optimized LSTM 133.096 30.142 217.794 0.986

China KNN 1747.048 611.602 3922.755 0.762
DT 1575.633 755.642 2848.557 0.793
RF 1409.324 621.782 2792.372 0.821

GBT 1287.382 504.672 2563.824 0.865
MLP 1383.713 517.898 2892.196 0.843

LSTM 865.122 272.353 2034.574 0.902
Optimized LSTM 331.089 111.213 873.102 0.951

Desharnais KNN 1422.878 921.667 1847.561 0.658
DT 1953.361 1453.083 2526.071 0.563
RF 1792.837 1284.947 2379.063 0.581

GBT 1549.792 901.925 2095.827 0.639
MLP 1587.619 905.841 2176.591 0.624

LSTM 1404.571 880.121 1960.007 0.662
Optimized LSTM 1253.781 849.929 1535.852 0.683

From the comparison of the values of the metrics obtained (Tables 11 and 14), it is
concluded that the optimized LSTM method provides a more efficient option for estimating
the software effort.

6. Conclusions

Estimating the effort required to develop software products is one of the most vexing
problems for software project managers because it affects the status of the projects in terms
of success or failure. This research paper proposes an optimized LSTM neural network
method which use PSO methods to optimize three hyperparameters of LSTM with the
aim of obtaining the most accurate estimate of the effort required to develop a software
product. The results obtained by the optimized LSTM method were compared with the
results provided by six other prediction methods: KNN, DT, RF, GBT, MLP, and LSTM,
by applying to the values of five datasets: Albrecht, Kemerer, Cococmo81, China, and
Desharnais. The superiority of the optimized LSTM method compared to the other six
prediction methods resulted from obtaining lower values for the three metrics used in the
evaluation: MAE, MdAE, RMSE, and CD.

There were some limitations, especially for small datasets such as Albrecht and Ke-
merer, which have a small number of observations and low dimensionality. Future work
will be needed to investigate the reason for this discrepancy and what optimization method
can search in small datasets. In addition, as a further direction, optimization of the LSTM
method should be attempted using other techniques with the purpose to obtain a better
estimation of effort estimation with the existing datasets.

From this scientific work, software developers will be able to benefit in selecting
the best models for predicting the development effort of software products before they
are developed.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are openly available in Albrecht
dataset at [10.1109/TSE.1983.235271] [15]. Kemerer dataset https://zenodo.org/record/268464 [16].
Cocomo81 dataset https://doi.org/10.1109/TSE.1984.5010193 [17]. China dataset https://zenodo.
org/record/268446 [18]. Desharnais dataset [19].

https://zenodo.org/record/268464
https://doi.org/10.1109/TSE.1984.5010193
https://zenodo.org/record/268446
https://zenodo.org/record/268446

Mathematics 2024, 12, 200 21 of 22

Conflicts of Interest: The author declares no conflict of interest.

References
1. Panoiu, M.; Panoiu, C.; Mezinescu, S.; Militaru, G.; Baciu, I. Machines Learning Techniques Applied to the Harmonic Analysis of

Railway Power Supply. Mathematics 2023, 11, 1381. [CrossRef]
2. Walter, B.; Jolevski, I.; Garnizov, I.; Arsovic, A. Supporting Product Management Lifecycle with Common Best Practices. In

Systems, Software and Services Process Improvement; Springer: Grenoble, France, 2023; pp. 207–215.
3. Muscalagiu, I.; Popa, H.E.; Negru, V. Improving the Performances of Asynchronous Search Algorithms in Scale-Free Networks

using the Nogoood Processor Technique. Comput. Inform. 2015, 34, 254–274.
4. Iordan, A.E. Supervised learning use to acquire knowledge from 2D analytic geometry problems. In Recent Challenges in Intelligent

Information and Database Systems; Springer: Singapore, 2022; pp. 189–200.
5. Marapelli, B. Software Development Effort and Cost Estimation using Linear Regression and K-Nearest Neighbours Machine

Learning Algorithms. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 2278–3075.
6. Hameed, S.; Elsheikh, Y.; Azzeh, M. An Optimized Case-Based Software Project Effort Estimation Using Genetic Algorithm. Inf.

Softw. Technol. 2023, 153, 107088. [CrossRef]
7. Kumar, P.S.; Behera, H.; Nayak, J.; Naik, B. A Pragmatic Ensemble Learning Approach for Effective Software Effort Estimation.

Innov. Syst. Softw. Eng. 2022, 18, 283–299. [CrossRef]
8. Singh, A.J.; Kumar, M. Comparative Analysis on Prediction of Software Effort Estimation using Machine Learning Techniques.

In Proceedings of the International Conference on Intelligent Communication and Computational Research, Punjab, India,
25 January 2020.

9. Zakaria, N.A.; Ismail, A.R.; Ali, A.Y.; Khalid, N.H.; Abidin, N.Z. Software Project Estimation with Machine Learning. Int. J. Adv.
Comput. Sci. Appl. 2021, 12, 726–734. [CrossRef]

10. Fedotova, O.; Teixeira, L.; Alvelos, H. Software Effort Estimation with Multiple Linear Regression: Review and Practical
Application. J. Inf. Sci. Eng. 2018, 29, 925–945.

11. Abdelali, Z.; Mustapha, H.; Abdelwahed, N. Investigating the Use of Random Forest in Software Effort Estimation. Procedia
Comput. Sci. 2019, 148, 343–352. [CrossRef]

12. Sanchez, E.R.; Santacruz, E.F.V.; Maceda, H.C. Effort and Cost Estimation Using Decision Tree Techniques and Story Points in
Agile Software Development. Mathematics 2023, 11, 1477. [CrossRef]

13. Resmi, V.; Anitha, K.L.; Narasimha Murthy, G.K. Optimized Satin Bowerbird for Software Project Effort Estimation. Eur. Chem.
Bull. 2023, 12, 410–423.

14. Muhammad, A.L.; Khalid, M.K.; Hani, U. Using Standard Deviation with Analogy-Based Estimation for Improved Software
Effort Prediction. KSII Trans. Internet Inf. Syst. 2023, 17, 1356–1375.

15. Albrecht, A.J.; Gaffney, J.E. Software Function, Source Lines of Code, and Development Effort Prediction: A Software Science
Validation. IEEE Trans. Softw. Eng. 1993, 9, 639–648. [CrossRef]

16. Zenodo. Kemerer. Available online: https://zenodo.org/record/268464 (accessed on 11 July 2023).
17. Boehm, B.W. Software Engineering Economics. IEEE Trans. Softw. Eng. 1984, 10, 4–21. [CrossRef]
18. Zenodo. China: Effort Estimation Dataset. Available online: https://zenodo.org/record/268446 (accessed on 15 July 2023).
19. Desharnais, J.M. Analyse Statistique de la Productivitie des Projets Informatique a Partie de la Technique des Point des Function.

Master’s Thesis, University of Montreal, Montréal, QC, Canada, 1999.
20. Panoiu, M.; Panoiu, C.; Iordan, A.; Ghiormez, L. Artificial Neural Networks in Predicting Current in Electric Arc Furnaces. IOP

Conf. Ser. Mater. Sci. Eng. 2014, 57, 012011. [CrossRef]
21. Handelman, G.S.; Kok, H.K.; Chandra, R.; Razavi, A.; Huang, S.; Brooks, M.; Lee, M.; Asadi, H. Peering into the Black Box of

Artificial Intelligence: Evaluation Metrics of Machine Learning Methods. Am. J. Roentgenol. 2019, 212, 38–43. [CrossRef]
22. Botchkarev, A. Performance Metrics in Machine Learning Regression, Forecasting and Prognostics: Properties and Topology.

Interdiscip. J. Inf. Knowl. Manag. 2019, 14, 45–79.
23. Hossin, M.; Sulaiman, M.N. A Review on Evaluation Metrics for Data Classification Evaluations. Int. J. Data Min. Knowl. Manag.

Process 2015, 5, 1–12.
24. Gavin Hackeling, G. Mastering Machine Learning with Scikit-Learn; Packt Publishing Ltd.: Birmingham, UK, 2018.
25. Covaciu, F.; Pisla, A.; Iordan, A.E. Development of a Virtual Reality Simulator for an Intelligent Robotic System Used in Ankle

Rehabilitation. Sensors 2021, 21, 1537. [CrossRef]
26. Patel, H.; Prajapati, P. Study and Analysis of Decision Tree Based Classification Algorithms. Int. J. Comput. Sci. Eng. 2018, 6, 74–78.

[CrossRef]
27. Spoon, K.; Beemer, J.; Whitmer, J.; Fan, J.; Frazee, J.; Stronach, J.; Bohonak, A.; Levine, R. Random Forests for Evaluating Pedagogy

and Informing Personalized Learning. J. Educ. Data Min. 2016, 8, 20–50.
28. Castro-Martín, L.; Mar Rueda, M.; Ferri-García, R.; Hernando-Tamayo, C. On the Use of Gradient Boosting Methods to Improve

the Estimation with Data Obtained with Self-Selection Procedures. Mathematics 2021, 9, 2991. [CrossRef]
29. Iordan, A.E. Usage of Stacked Long Short-Term Memory for Recognition of 3D Analytic Geometry Elements. In Proceedings of

the International Conference on Agents and Artificial Intelligence, Lisbon, Portugal, 3–5 February 2022.

https://doi.org/10.3390/math11061381
https://doi.org/10.1016/j.infsof.2022.107088
https://doi.org/10.1007/s11334-020-00379-y
https://doi.org/10.14569/IJACSA.2021.0120685
https://doi.org/10.1016/j.procs.2019.01.042
https://doi.org/10.3390/math11061477
https://doi.org/10.1109/TSE.1983.235271
https://zenodo.org/record/268464
https://doi.org/10.1109/TSE.1984.5010193
https://zenodo.org/record/268446
https://doi.org/10.1088/1757-899X/57/1/012011
https://doi.org/10.2214/AJR.18.20224
https://doi.org/10.3390/s21041537
https://doi.org/10.26438/ijcse/v6i10.7478
https://doi.org/10.3390/math9232991

Mathematics 2024, 12, 200 22 of 22

30. Alamia, A.; Gauducheau, V.; Paisios, D.; VanRullen, R. Comparing Feedforward and Recurrent Neural Network Architectures
with Human Behavior in Artificial Grammar Learning. Sci. Rep. 2020, 10, 22172. [CrossRef] [PubMed]

31. Awar, N.; Zhu, S.; Biros, G.; Gligoric, M. A performance portability framework for Python. In Proceedings of the ACM
International Conference on Supercomputing, New York, NY, USA, 14–18 June 2021.

32. Ullo, S.L.; Del Rosso, M.P.; Sebastianelli, A.; Puglisi, E.; Bernardi, M.L.; Cimitile, M. How to develop your network with Python
and Keras. Artif. Intell. Appl. Satell.-Based Remote Sens. Data Earth Obs. 2021, 98, 131–158.

33. Hunt, J. Introduction to Matplotlib. In Advanced Guide to Python 3 Programming; Springer: Cham, Switzerland, 2019; Volume 5,
pp. 35–42.

34. Iordan, A.E.; Covaciu, F. Improving design of a triangle geometry computer application using a creational pattern. Acta Tech.
Napoc. Appl. Math. Mech. Eng. 2020, 63, 73–78.

35. Covaciu, F.; Crisan, N.; Vaida, C.; Andras, I.; Pusca, A.; Gherman, B.; Radu, C.; Tucan, P.; Hajjar, N.A.; Pisla, D. Integration of
Virtual Reality in the Control System of an Innovative Medical Robot for Single-Incision Laparoscopic Surgery. Sensors 2023, 23,
5400. [CrossRef] [PubMed]

36. Mabayoje, A.; Balogun, A.; Hajarah, H.; Atoyebi, J.; Mojeed, H.; Adeyemo, V. Parameter tuning in KNN for software defect
prediction: An empirical analysis. J. Teknol. Sist. Komput. 2019, 7, 121–126. [CrossRef]

37. Kumbure, M.; Luukka, P. A generalized fuzzy k-nearest neighbor regression model based on Minkowski distance. Granul.
Comput. 2022, 7, 657–671. [CrossRef]

38. Uyanik, B.; Orman, G.K. A Manhattan distance based hybrid recommendation system. Int. J. Appl. Math. Electron. Comput. 2023,
11, 20–29. [CrossRef]

39. Iordan, A.E. Optimal Solution of the Guarini Puzzle Extension using Tripartite Graphs. IOP Conf. Ser. Mater. Sci. Eng. 2019, 477,
012046. [CrossRef]

40. Roshanski, I.; Kalech, M.; Rokach, L. Automatic Feature Engineering for Learning Compact Decision Trees. Expert Syst. Appl.
2023, 229, 120470. [CrossRef]

41. Yu, Y.; Wang, L.; Huang, H.; Yang, W. An Improved Random Forest Algorithm. J. Phys. Conf. Ser. 2020, 1646, 012070. [CrossRef]
42. Xia, Y.; Chen, J. Traffic Flow Forecasting Method based on Gradient Boosting Decision Tree. Adv. Eng. Res. 2017, 130, 413–416.
43. Han, Y.; Zhang, Z.; Kobe, F. The Hybrid of Multilayer Perceptrons: A New Geostatistical Tool to Generate High-Resolution

Climate Maps in Developing Countries. Mathematics 2023, 11, 1239. [CrossRef]
44. Hsieh, S.C. Tourism demand forecasting based on an LSTM network and its variants. Algorithms 2021, 14, 243. [CrossRef]
45. Higashitani, M.; Ishigame, A.; Yasuda, K. Particle swarm optimization considering the concept of predator-prey behavior. In

Proceedings of the IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006;
pp. 434–437.

46. Lv, L.; Kong, W.; Qi, J.; Zhang, J. An improved long short-term memory neural network for stock forecast. MATEC Web Conf.
2018, 232, 01024. [CrossRef]

47. Zheng, C.; Li, H. The Prediction of Collective Economic Development based on the PSO-LSTM Model in Smart Agriculture. PeerJ
Comput. Sci. 2023, 9, 1304. [CrossRef]

48. Chen, X.; Long, Z. E-Commerce Enterprises Financial Risk Prediction Based on FA-PSO-LSTM Neural Network Deep Learning
Model. Sustainability 2023, 15, 5882. [CrossRef]

49. Qu, Z.; Yin, J. Optimized LSTM Networks with Improved PSO for the Teaching Quality Evaluation Model of Physical Education.
Int. Trans. Electr. Energy Syst. 2022, 2022, 8743694. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/s41598-020-79127-y
https://www.ncbi.nlm.nih.gov/pubmed/33335190
https://doi.org/10.3390/s23125400
https://www.ncbi.nlm.nih.gov/pubmed/37420568
https://doi.org/10.14710/jtsiskom.7.4.2019.121-126
https://doi.org/10.1007/s41066-021-00288-w
https://doi.org/10.18100/ijamec.1232090
https://doi.org/10.1088/1757-899X/477/1/012046
https://doi.org/10.1016/j.eswa.2023.120470
https://doi.org/10.1088/1742-6596/1646/1/012070
https://doi.org/10.3390/math11051239
https://doi.org/10.3390/a14080243
https://doi.org/10.1051/matecconf/201823201024
https://doi.org/10.7717/peerj-cs.1304
https://doi.org/10.3390/su15075882
https://doi.org/10.1155/2022/8743694

	Introduction
	Literature Survey
	Research Approach
	Data Preparation
	Used Metrics
	Selected Machine Learning Methods
	Development of Effort Estimation Software

	Analysis of the Six Selected Classical Intelligent Methods
	K-Nearest Neighbours
	Decision Tree
	Random Forest
	Gradient Boosted Tree
	Multilayer Perceptron
	Long Short-Term Memory
	Comparative Analysis with Previous Works

	Optimized LSTM Based on Particle Swarm Optimization
	Conclusions
	References

