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Abstract: This paper considers a make-to-order production–inventory system that comprises a
production facility and an inventory warehouse. Customers arrive at the facility to place an order,
and the orders are processed using the first-come-first-served (FCFS) discipline. The warehouse
supplies inventory items (raw materials) for the production process, and the warehouse inventory
is replenished by internal production. The speed of internal production can be controlled through
additional costs. If the inventory level drops to zero, the unmet demand waits in the facility until the
inventory is replenished. During the stockout period, newly arriving demand is lost. The stationary
joint probability of unmet demands and inventory items is derived, and a cost model is constructed.
The optimal control policy for internal production is investigated to minimize the cost per unit time
of the system. The experimental results show that such a production speed adjustment could reduce
costs by up to 42% compared to the cases without the adjustment.

Keywords: make-to-order production system; inventory control; queuing–inventory model; optimal
policy; lost sales; variable replenishment speed
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1. Introduction

The relationship between inventory management and manufacturing processes contin-
ues to be a critical factor in determining operational effectiveness within the domain of pro-
duction and inventory management. This study introduces a new production facility model
integrated with an inventory warehouse that is distinguished by its adaptive inventory
replenishment methodology. At the core of this model lies a strategic approach to inventory
management: a system designed to escalate the pace of inventory production when stock
levels descend below a predetermined threshold. This mechanism stands to address the
dual challenges of fluctuating demand patterns and the optimization of inventory-related
costs. Operating within the framework of make-to-order production, the system manu-
factures finished products on demand in response to customer demands. The warehouse,
a critical component of this system, supplies the necessary inventory to the production
facility. These inventory items are continuously replenished via internal production.

The proposed system is based on the ‘lost sales’ assumption, where production of
the finished items pauses and waits for inventory replenishment if the warehouse cannot
satisfy inventory needs. During this pause, incoming customer demands are counted as lost
sales. Speeding up internal production of inventory items can reduce the costs associated
with these lost sales but also incur extra costs, complicating cost management. Effective
cost analysis and optimization are thus crucial and complex. This paper introduces the
system as a queueing-inventory model and explores the cost optimization problem. The
schematic diagram of the proposed model is shown in Figure 1.

This study extends the work of [1], who investigated a make-to-order production–
inventory system utilizing internal and external batch supply methods for inventory
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replenishment. Diverging from their methodology, this research adopts a base stock model,
characterized by an (S, S− 1) policy, initiating inventory replenishment at any indication
of shortfall. The model integrates internal production of inventory items, featuring two
distinct production modes: the high-cost, high-speed mode, and the low-cost, normal mode.
The high-speed mode, albeit elevating production costs and necessitating frequent activa-
tion of production equipment, effectively diminishes the costs associated with lost sales. In
contrast, the normal mode presents a cost-effective production alternative, reducing both
inventory production costs and expenses related to equipment activation per unit time, but
potentially elevating lost-sales costs due to inventory shortages.

Warehouse inventory: (s, S)-policy

Inventory queue (IQ) with capacity S

Customer's demand 

(Poisson with )

...

Production facility

production process: exp( ) spending one 

inventory item on demand

Finished goods 

delivered to the 

customer

Demand queue 

(DQ, infinite capacity)

Production facility

Internal  production 

process 

(Poisson with rate N 

or H)

1) Decrease in full IQ level by 1 unit reactivates internal production process at speed N.

2) Internal production process speed escalates to H when IQ reaches level s.

3) Internal production process pauses when IQ is full; reactivates under condition 1)'s criteria.

1) If IQ equals 0, the production facility pauses the production process.

2) The production process is reactivated when IQ is replenished.

When IQ = 0, the system blocks 

newly arriving demands, 

resulting in lost sales.

Figure 1. The proposed production–inventory system.

While acknowledging the observations of Cohen and Mahafzah [2] on the complexities
of parallel program characteristics and the potential limitations of assuming exponential
distributions in computer and production–inventory systems, this research opts for the
M/M/1 queue model and exponentially distributed inventory production time for its
analytical simplicity. This choice is made with an understanding of the model’s constraints
in accurately capturing more complex distribution patterns in arrival intervals and service
times. Therefore, investigating models that more precisely represent general distribution
patterns remains an area for future studies.

The central contribution of this research is the demonstration of substantial cost
reduction through strategic adjustments in inventory production speed. The objective is to
identify and implement an optimal operational strategy that balances different production
modes to minimize overall costs. The proposition is that careful adjustments in production
speed can result in significant cost savings, surpassing traditional methods restricted
to these two modes. Numerical studies presented in Section 5 validate this, indicating
potential cost reductions of up to 42%. This highlights the significant financial benefits of
modulating production speed in inventory management, which is the primary focus of
this research.

2. Literature Review and Motivation

In this paper, the proposed system is modeled as a type of queuing–inventory model.
The queuing–inventory model is a stochastic process that combines a queuing model, and
an inter-correlated inventory model. In the model, customers arrive at a server to place an
order for finished goods, and the server processes the customers’ demands. The system
has a finite inventory storage that contains the raw material for the production of goods.
The inventory is managed according to a predetermined control policy.

Historical exploration in this domain began with the ‘assembly-like queue’ and ‘kitting
queue’ studies [3–6], paving the way for subsequent analyses focused on cost-efficient
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management of production and manufacturing systems [7–9]. Application models for
production systems were furthered by He and Jewkes [10] and He et al. [11].

More contemporary research has delved into the nuanced aspects of the joint probabil-
ity distribution of queue length and inventory level [12,13]. Schwarz et al. [12] conducted
an extensive study on the joint probability of models under the lost-sales assumption, ran-
dom lead times, and various inventory control policies. Later, Schwarz and Daduna [13]
studied models with the back-ordering assumption instead of lost sales. More details on
the joint probability for queuing–inventory models can be found in [1,14–18].

Next, researchers focused on diverse customers (demand), inventory, and service
characteristics. Zhao and Lian [19] studied a priority M/M/1 queuing–inventory model
with two demand classes. Benny et al. [20] studied a model with two types of inven-
tory items. They derived the stationary joint distribution by adapting the (s,S) control
policy for each commodity item. A model with various service types was investigated
by Mathew et al. [21], wherein the server owns two channels for service: one channel
for a single service and the other channel for batch service. Models with customer re-
trials were studied by Krishnamoorthy and Shajin [22] and Krishnamoorthy et al. [23].
For more details on systems with generalized arrival processes, readers are referred to
Chakravarthy et al. [24] and the references therein.

Recent developments in queuing–inventory system research have emphasized the
integration of customer priority and the management of unpredictable disruptions, leading
to more nuanced and realistic models. Liu et al. [25] and Jeganathan et al. [26] have been
instrumental in incorporating customer priorities into QIS. Liu et al. developed a model for
systems like airlines and railways, focusing on level-dependent retrial rates influenced by
customer perceptions of wait times, while Jeganathan et al. introduced a threshold-based
inventory level affecting customer service priority. These studies collectively highlight the
importance of customer priority in enhancing system efficiency and customer satisfaction.

Simultaneously, Melikov et al. [27] and Ozkar et al. [28] have advanced queuing–
inventory system modeling by considering negative customers and warehouse catastro-
phes. Melikov et al.’s single-server QIS model, using Markovian arrival processes and
Phase-Type distribution, diverges from traditional approaches by combining varied re-
plenishment policies. Ozkar et al. further extended this framework, examining two QISs
with both (s,S) and (s,Q) policies, offering deeper insights into system performance under
complex scenarios. Together, these studies represent significant strides in QIS research,
underscoring the need for models that account for both internal customer dynamics and
external operational challenges.

Recent advancements in queuing–inventory system research have addressed key
issues like customer priority integration and responses to unpredictable disruptions. How-
ever, there is a significant gap in exploring the concept of variable inventory production
speed within these models. Although previous research has extensively analyzed aspects
such as customer retrials, priority levels, the impact of negative customers, and warehouse
catastrophes, it has not sufficiently delved into the relationship between inventory pro-
duction speed and inventory levels, which is vital for enhancing service efficiency and
managing costs.

This lack of exploration in dynamically adjusting inventory production speed accord-
ing to the levels represents a critical area for further research. The primary focus of this
study is to introduce a new model that facilitates such optimization. This proposed model is
designed to better understand and manage the interplay between inventory replenishment
speed and its associated costs, thereby offering a framework for more efficient inventory
management strategies.

The remainder of this paper is organized as follows: Section 3 describes the proposed
model in detail, introducing a novel modified model crucial for the ensuing analysis.
Basic model assumptions are introduced followed by a summary of notation. Section 4
is devoted to deriving the stationary joint probability distribution and delineating the
system performance measures in explicit form. Section 5 is reserved for the construction
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and evaluation of the cost model supplemented with illustrative numerical examples. The
paper culminates in Section 6 with concluding remarks, offering insights into potential
generalizations and the broader applicability of the model.

3. The System and the Model

This section describes the proposed model in detail and introduces a modified model
for the analysis.

3.1. The Model

The proposed system, as illustrated in Figure 1, is modeled as a production–inventory
system encompassing both a production facility and an attached inventory warehouse (refer
to Figure 2). The warehouse’s inventory storage, with a capacity of S, stores raw materials.
The operational framework of the proposed model is based on a set of fundamental
assumptions, which are summarized as follows:

N(t)=4

Poisson 

demand 

arrival (l)

Internal production

with variable rates

(bN , bH )

Finished 

goods

I(t)=2

exp(m)

M/M/1 queue 

(production facility)

(s, S)-inventory 

model

Figure 2. The schematic diagram of the proposed model

1. Customers arrive at the system according to a Poisson process with a rate of λ. Upon
arrival, they place orders (demands) for finished products.

2. Orders are processed by the server on a first-come-first-served basis; the server thus
produces the finished goods according to the sequence of orders.

3. Upon completion of each of the finished goods, the server consumes an item from the
warehouse inventory.

4. The system adheres to a ’lost sales’ policy; customers who find the inventory empty
upon their arrival will immediately leave the system without being served, resulting
in a lost-sales cost.

5. The warehouse inventory is continuously replenished through internal production,
which operates in two distinct modes: a normal mode and a high-speed mode.

6. Once the inventory level drops to s, the high-speed mode is activated, and then the
mode is switched back to normal as soon as the warehouse is restocked to its full
capacity, which is denoted as S.

7. The production times for inventory items and the manufacturing times for finished
goods are governed by exponential distributions.

Remark 1. Assumption 6 allows for the detailed adjustment of inventory replenishment speed in the
proposed model, differing from traditional research that typically adopts a single-speed replenishment
policy. This assumption forms the basis of the model and aims to demonstrate the possibility of
operational cost savings through such speed adjustments.

Remark 2. Assumption 7, which adopts exponential distributions for the production times, was
chosen for its analytical simplicity as outlined in Section 1. This simplification enables a concentrated
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examination of the effects of varying inventory production speeds. However, it is important to
note that this may not fully represent the more complex distribution patterns that can occur in
real-world systems.

The notations used for the proposed model are summarized as follows:

- λ : arrival rate of customers;
- 1/µ : expected production time of a finished product;
- 1/βN :expected production time of an inventory item in normal mode;
- 1/βH :expected production time of an inventory item in high-speed mode;
- s : the threshold level of inventory to activate the high-speed mode;
- S : the capacity of the ready-to-use inventory storage;
- N(t) : the number of unmet orders in the system at time t;
- I(t) : the amount of ready-to-use inventory in the system at time t.

Figure 3 depicts a typical sample path of the model for S = 6 and s = 3. At any
given time t, N(t) indicates the number of unmet demands, and I(t) shows the inventory
level. The production system of the finished goods is modeled as an M/M/1 queue,
where the production times are independent, identically distributed exponential random
variables with mean 1

µ . Each unit of production consumes one inventory item. When the
warehouse runs out of stock, the server pauses and awaits inventory replenishment. Under
the lost sales assumption, any new demand that arrives during this out-of-stock period is
considered lost, incurring a cost for lost sales.

The warehouse inventory is replenished by internal production under two production
modes: normal and high-speed. The normal mode is triggered when the inventory level
reaches S. In this mode, the replenishment follows a Poisson process with rate βN where
βN < λ. The high-speed mode commences as the inventory level falls to s, with the
replenishment rate increasing to βH , satisfying λ < βH . This high-speed mode continues
until the inventory is fully restocked.

t

t

High-speed 

period (TH)

I
 (t)

C

Normal

period (TN)

N(t)

s=3

S=6

Cycle (C)

TN TN

C

Lost-sales

Stockout

period

Figure 3. Sample path of the proposed model.

The length of time from level S to the threshold level s, as determined by the first
passage time, is defined as a ‘normal period’ and is denoted by TN . The ‘high-speed period’,
denoted by TH , is defined by the length of the first passage time needed to return to level S
from the threshold level s. Additionally, a ‘cycle’, represented by C, refers to the length of
the first returning time required to reach level S once again, thereby completing a full cycle
of this process. Thus, a cycle consists of two distinct phases: a normal period followed
potentially by a high-speed period. Note that the unmet demand process {N(t) : t ≥ 0}
strictly depends on the warehouse inventory process {I(t) : t ≥ 0}. However, the inventory
level process behaves as a regenerative process in which the normal period starting points
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are the regeneration points. This concept of the regenerative process plays an important
role in analyzing the proposed model.

3.2. The Modified Model

This section presents a modified model, designed to facilitate both effective and
efficient analysis of the proposed model.

Definition 1 (Modified Model, Krishnamoorthy and Viswanath [17]). The modified model
represents a specific variant of the proposed model, characterized by setting the production times of
the facility to zero.

Figure 4 presents a comparison between the modified model’s sample path and the
unmet demand process of the proposed model, both plotted on the same time scale. The
upper section of the figure displays the unmet demand process, {N(t) : t ≥ 0}, from the
original model and the arrival process, {A(t) : t ≥ 0}. The figure also depicts the inventory
level process of the modified model as {Imod : t ≥ 0}, demonstrating an immediate decrease
in inventory upon demand arrival, which is a consequence of assuming zero production
time. Therefore, the modified model can be viewed as a stochastic inventory system, where
demands arrive according to a Poisson process with rate λ, and inventory replenishment is
conducted as outlined in Section 3.1.

t

t

t

TH

Imod

 (t)

C

TN

N(t)

s=3

S=6

Cycle (C)

TN TN

C

A(t)

Lost-sales in modified model

Lost-sales in original model

Figure 4. Sample path of the modified model.

For analysis of the modified model, an indicator function ξ(t) is defined as

ξ(t) =

{
1, if the system is in normal mode at time t,
2, if the the system is in high-speed mode at time t.

Every normal period starts with S warehouse inventory items. Moreover, the inter-
arrival times of the demands and internal production times follow exponential distributions.
Therefore, the process {(Imod(t), ξ(t)) : t ≥ 0} becomes a Markov process. Next, the
following probabilities are defined

χN(k, t) = Pr[I(t) = k, ξ(t) = 1],

χH(k, t) = Pr[I(t) = k, ξ(t) = 2],

χN(k) = lim
t→∞

χN(k, t), χH(k) = lim
t→∞

χH(k, t),

to obtain the following steady-state equations:
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λχN(S) = βNχN(S− 1) + βHχH(S− 1) (1)

(βN + λ)χN(k) = βNχN(k− 1) + λχN(k + 1), s + 2 ≤ k ≤ S− 1, (2)

(λ + βN)χN(s + 1) = λχN(s + 2) (3)

(λ + βH)χH(k) =βHχH(k− 1) + λχH(k + 1), k = 1, . . . , s− 1, s + 1, . . . , S− 1, (4)

(λ + βH)χH(s) = βHχH(s− 1) + λχN(s + 1) + λχH(s + 1), (5)

βHχH(0) = λχH(1) (6)

4. Analysis

This section derives the stationary joint probability of the proposed model in closed
form and then obtains the mean performance measures explicitly.

4.1. The Joint Probability Distribution

The following probabilities are defined for constructing the steady-state equations of
the original process {(N(t), I(t), ξ(t)) : t ≥ 0}:

XN(n, k, t) = Pr[N(t) = n, I(t) = k, ξ(t) = 0],

XH(n, k, t) = Pr[N(t) = n, I(t) = k, ξ(t) = 1],

XN(n, k) = lim
t→∞

XN(n, k, t), XH(n, k) = lim
t→∞

XH(n, k, t).

Then, the following system equations are given:

0 = −λXN(0, S) + βN XN(0, S− 1) + βHXH(0, S− 1), (7)

0 =− (λ + µ)XN(n, S) + λXN(n− 1, S) + βN XN(n, S− 1) + βHXH(n, S− 1), n ≥ 1, (8)

0 =− (λ + βN)XN(0, k) + µXN(1, k + 1) + βN XN(0, k− 1), s + 2 ≤ k ≤ S− 1, (9)

0 =− (λ + µ + βN)XN(n, k) + λXN(n− 1, k) + µXN(n + 1, k + 1) (10)

+ βN XN(n, k− 1), n ≥ 1, s + 2 ≤ k ≤ S− 1,

0 = −(λ + βN)XN(0, s + 1) + µXN(1, s + 2), (11)

0 =− (λ + µ + βN)XN(n, s + 1) + λXN(n− 1, s + 1) + µXN(n + 1, s + 2), n ≥ 1, (12)

0 = −(λ + βH)XH(0, k) + µXH(1, k + 1) + βHXH(0, k− 1), (13)

k = 1, . . . , s− 1, s + 1, s + 2, . . . , S− 1,
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0 = −(λ + µ + βH)XH(n, k)+λXH(n− 1, k) + µXH(n + 1, k + 1) + βHXH(n, k− 1), (14)

n ≥ 1, k = 1, . . . , s− 1, s + 1, s + 2, . . . , S− 1,

0 =− (λ + βH)XH(0, s) + µXN(1, s + 1) + µXH(1, s + 1) + βHXH(0, s− 1), (15)

0 =− (λ + µ + βH)XH(n, s) + λXH(n− 1, s) (16)

+ µXN(n + 1, s + 1) + µXH(n + 1, s + 1) + βHXH(n, s− 1), n ≥ 1,

0 = −βHXH(0, 0) + µXH(1, 1), (17)

0 = −βHXH(n, 0) + µXH(n + 1, 1), n ≥ 1. (18)

Then, following theorem is given.

Theorem 1. Let P(n) =
(

1− λ
µ

)(
λ
µ

)n
, n ≥ 0 be the queue length probability of the classical

M/M/1 queue. Then, the stationary joint probability distribution of the proposed model is given as

XN(n, k) = P(n) · χN(k), n ≥ 0, s + 1 ≤ k ≤ S, (19)

XH(n, k) = P(n) · χH(k), n ≥ 0, 0 ≤ k ≤ S− 1. (20)

Proof. The proof is given in Appendix A.

Remark 3. Theorem 1 suggests that the joint probability distribution in the proposed model can be
divided into two distinct components: one representing the unmet demand process and the other the
warehouse inventory process. The latter is congruent with the stationary inventory level distribution
in the modified model.

Remark 4. Furthermore, the theorem states that both the conditional and marginal stationary
queue length distributions of the unmet demands can be found to be equivalent to those in the

standard M/M/1 queue, which are characterized by the formula
(

1− λ
µ

)(
λ
µ

)n
, n ≥ 0.

Consequently, Equations (19) and (20) can be completely determined only by obtaining
stationary inventory level distribution of the modified process.

4.2. Analysis of Modified Model

This section derives the stationary probabilities χN(k) and χH(k) of the modified
model to complete Theorem 1.

In the modified model, every normal period starts at inventory level S, and the inter-
arrival times of the demand are i.i.d exponential random variables. Therefore, the modified
process {Imod(t) : t ≥ 0} becomes a regenerative process in which the normal period
starting points play the role of regeneration points. Consequently, classical renewal theory
can be applied to analyze the modified process. A normal period may end without reaching
the level s, indicating that the regeneration cycle of the modified process comprises a
normal period followed by a potentially ensuing high-speed period (see Figure 4).

4.2.1. Analysis of the High-Speed Period

This section derives the stationary probability χH(k) of the warehouse inventory level
at an arbitrary time during a high-speed period. To achieve this, the dual inventory level
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process of the modified model is defined as {Idual
mod (t) : t ≥ 0} = {S− Imod(t) : t ≥ 0}. Then,

the stationary probability χH(k) is given in the following theorem.

Theorem 2. χH(k) is given as

χH(k) =



(
λ

βH

)s−k
−
(

λ
βH

)S−k

K(s, S)(βH − λ)
, 0 ≤ k ≤ s,

1−
(

λ
βH

)S−k

K(s, S)(βH − λ)
, s + 1 ≤ k ≤ S− 1,

(21)

where K(s, S) is a normalization constant.

Proof. Let TH(k) and Tdual
H (k) be the total sojourn times at warehouse inventory level k

during a high-speed period in a modified process and a dual process, respectively. Then,
by noting E[TH(k)] = E[Tdual

H (S− k)], χH(k) can be obtained from

χH(k) = χdual
H (S− k) =

E[Tdual
H (S− k)]
K(s, S)

, (22)

where 1
K(s,S) is multiplied as a normalization constant.

Note that every high-speed period starts with s initial inventory items and ends as
soon as the level reaches S. The demands arrive according to the Poisson process with a rate
λ, and the internal production replenishes the warehouse inventory at a rate βH according
to the Poisson process. This implies that the high-speed period in the dual process is
stochastically identical to the busy period of the classical M/M/1/S queue starting with
(S− s) initial customers, in which the arrival and service rates are λ and βH , respectively.
Consequently, a busy period analysis of the classical M/M/1/S queue can be applied to
obtain E[Tdual

H (k)].
For the classical M/M/1/S queue with arrival rate λ and service rate βH , let Ñ(t) be

the number of customers in the system to define the following probability:

p(i)(k, t|λ, βH) = Pr[Ñ(t) = k, 0 < Ñ(u) ≤ S f or 0 ≤ u ≤ t|N(0) = i], 1 ≤ k ≤ S. (23)

Here, p(i)(k, t|λ, βH) represents the probability that a busy period of an M/M/1/S
queue starting with i initial customers visits the state wherein the number of customers is k
at time t. Defining p̃(i)(k|λ, βH) =

∫ ∞
0 p(i)(k, t|λ, βH)dt, E[Tdual

H (k)] can be obtained using
the following equation:

E[Tdual
H (k)] = p̃(S−s)(k|λ, βH).

Now, a generating function P̃(i)(z|λ, βH) = ∑S
k=1 zk p̃(i)(k|λ, βH) is defined, summing

over all states. Then, the results in Takagi and Tarabia [29] give

P̃(S−s)(z|λ, βH) =

z

zS−s − 1 +
λ(z−1)zS

[(
λ

βH

)s
−
(

λ
βH

)S
]

βH−λ


(1− z)(βH − zλ)

, (24)

=
1

βH − λ

[
S−s

∑
k=1

zk −
S

∑
k=1

(
λ

βH
z
)k

+ zS−s
s

∑
k=1

(
λ

βH
z
)k
]

.

Finally, the inversion yields
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E[Tdual
H (k)] =



(
λ

βH

)k−(S−s)
−
(

λ
βH

)k

βH − λ
, S− s ≤ k ≤ S,

1−
(

λ
βH

)k

βH − λ
, 1 ≤ k ≤ S− s− 1,

(25)

and finishes the proof by noting that E[TH(k)] = E[Tdual
H (S− k)].

Remark 5. Applying some algebra reveals that the stationary probability χH(k) is directly pro-
portional to the stationary inventory level probability production period in the classical (s, S)
production–inventory model (Krishnamoorthy and Viswanath [17]). Consequently, this indicates
that the inventory process during high-speed periods is stochastically identical to the inventory level
process during production periods in the existing study.

4.2.2. Analysis of the Normal-Speed Period

This section derives the stationary probability χN(k) of the warehouse inventory level
at an arbitrary time in a normal period.

Theorem 3. χN(k) is given as

χN(k) =
1

K(s, S)

(
βN
λ

)k−s
− 1

βN − λ
, s + 1 ≤ k ≤ S. (26)

Proof. In steady state, the expected number of departures from the normal period per unit
time equals the expected number of entries into the period, resulting in the equation:

λχN(s + 1) = βHχH(S− 1). (27)

Applying Equation (21) in the above equation yields

χN(s + 1) =
1/λ

K(s, S)
. (28)

Applying Equation (27) to Equation (1) gives

χN(S) =
βN
λ

χN(S− 1) + χN(s + 1). (29)

In addition, using Equations (2) and (29) yields

χN(k) =
βN
λ

χN(k− 1) + χN(s + 1), s + 2 ≤ k ≤ S− 1. (30)

Then, Equations (29) and (30) can be rewritten as the following reclusive form:

χN(k) +
λχN(s + 1)

βN − λ
=

βN
λ

[
χN(k− 1) +

λχN(s + 1)
βN − λ

]
, s + 2 ≤ k ≤ S. (31)

Solving Equation (31) with the boundary conditions in Equation (28) yields

χN(k) =

(
βN
λ

)k−s
− 1

K(s, S)(βN − λ)
, s + 2 ≤ k ≤ S, (32)

and finishes the proof.
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To complete Equations (21) and (26), the normalization constant K(s, S) needs to be
determined. The normalization condition ∑S

k=s+1 χN(k) + ∑S−1
k=0 χH(k) = 1 yields

K(s, S) =
S− s

λ− βN
−

βN

[
1−

(
βN
λ

)S−s
]

(λ− βN)
2 +

S− s
βH − λ

−
λ

[(
λ

βH

)s
−
(

λ
βH

)S
]

(βH − λ)2 . (33)

4.3. Mean Performance Measures

This section derives the mean performance measures. Theorem 1 gives the joint
distribution in a decomposed form. Therefore, the expected number E(N) of unsatisfied
demands is the same as the expected queue length of the classical M/M/1 queue, given as

E(N) =
∞

∑
n=0

S

∑
k=s+1

nP(n) · χN(k) +
∞

∑
n=0

S−1

∑
k=0

nP(n) · χH(k) (34)

=
∞

∑
n=0

n
(

1− λ

µ

)(
λ

µ

)n
=

λ

µ− λ
.

The expected level E(Ilow) of the warehouse inventory during a normal period is
given as

E(Ilow) =
S

∑
k=s+1

kχN(k) (35)

=
1
2
(S− s)(S + s + 1)
K(s, S)(λ− βN)

+

βN

(
S
(

βN
λ

)S−s
− s
)

K(s, S)(λ− βN)2 +

βN

(
λ
(

βN
λ

)S−s
− λ

)
K(s, S)(λ− βN)3 .

Additionally, the expected level E(Ihigh) of the warehouse inventory during the high-
speed period is obtained as

E(Ihigh) =
s

∑
k=0

kχ2(k) +
S−1

∑
k=s+1

kχ2(k) (36)

=
s

∑
k=0

k

(
λ

βH

)s−k
−
(

λ
βH

)S−k

K(s, S)(βH − λ)
+

S−1

∑
k=s+1

k
1−

(
λ

βH

)S−k

K(s, S)(βH − λ)

=

βHλ

((
λ

βH

)s
−
(

λ
βH

)S
)

K(s, S)(βH − λ)3 +
1
2
(S− s)((S + s− 1)βH − (S + s + 1)λ)

K(s, S)(βH − λ)2 .

Using Equations (35) and (36), the expected number E(I) of warehouse inventory
items can be obtained as

E(I) = E(Ilow) +E(Ihigh). (37)

4.4. Special Cases

This section revisits the findings in Krishnamoorthy and Viswanath [17], deriving
them as a particular instance through Equations (21), (26) and (33). They examined an
M/M/1 queuing–inventory model with (s, S) inventory where the production of inventory
starts at level s with rate η and stops upon reaching capacity. Thus, replenishment of the
inventory does not occur until the inventory level falls back to s. They characterized the
interval during which inventory is being replenished as the on-period, and the interval
during which production is halted as the off-period. Let Xon(n, k; η, s, S) be the stationary
joint probability distribution of the queue length and inventory level during the on-period,
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and Xo f f (n, k; η, s, S) for the off-period, respectively. Then, taking βN → 0 and βH → η in
Equations (19) and (20) yields the following results:

Xon(n, k; η, s, S) =


P(n) ·

(
λ
η

)s−k
−
(

λ
η

)S−k

Ksp(s, S; η)(η − λ)
, n ≥ 0, 0 ≤ k ≤ s,

P(n) ·
1−

(
λ
η

)S−k

Ksp(s, S; η)(η − λ)
, n ≥ 0, s + 1 ≤ k ≤ S− 1,

(38)

Xo f f (n, k; η, s, S) = P(n) · 1
λKsp(s, S; η)

, n ≥ 0, s + 1 ≤ k ≤ S, (39)

in which,

Ksp(s, S; η) =
S− s

λ
(

1− λ
η

) −
(

λ
η

)s+2
[

1−
(

λ
η

)S−s
]

(
1− λ

η

)2 . (40)

Equations (38)–(40) confirm the results in Krishnamoorthy and Viswanath [17].

5. Cost Model and Numerical Examples

This section presents cost models followed by numerical examples. Two different cost
models are considered. The high-speed period causes an additional cost per unit time.

5.1. The Cost Models

For the cost function of the proposed model, the following cost coefficients are considered:

(a) ch: inventory holding cost per unit time per unit item;
(b) ccust: demand holding cost per unit time per unit demand;
(c) cnormal : operating cost in the normal mode per unit time;
(d) chigh: operating cost in the high-speed mode per unit time;
(e) cl : lost-sales cost per unit demand;
(f) cw: unmet demand holding cost per unit time per unit demand;
(g) rN : reactivation cost of the normal mode;
(h) rH : reactivation cost of the high-speed mode.

Then, drawing upon the cost functions used in Krishnamoorthy and Viswanath [17]
and Baek and Moon [14], the average operating cost function EC(s, S) per unit time is
defined as follows:

EC(s, S) = chE(I) + cnormal PN + chighPH + clλχH(0) + cwE(N) + rN RN + rH RH (41)

= chE(I) + cnormal + (chigh − cnormal)PH + clλχH(0) + cwE(N) + rN RN + rH RH ,

in which E(N) = λ
µ−λ is the mean queue length of the conventional M/M/1 queue.

In Equation (41), PN and PH represent the steady-state probabilities of the system
operating in normal and high-speed modes, respectively. Additionally, RN and RH denote
the expected numbers of reactivations per unit time to the normal and high-speed modes,
respectively. From Equations (21) and (26), PN and PH are, respectively, given as

PN =
S

∑
k=s+1

χN(k) =
S− s

K(s, S)(λ− βN)
+

βN

(
1−

(
βN
λ

)S−s
)

K(s, S)(λ− βN)2 , (42)

and
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PH =
S

∑
k=s+1

χH(k) =
S− s

K(s, S)(βH − λ)
+

λ

((
λ

βH

)S
−
(

λ
βH

)s
)

K(s, S)(βH − λ)2 . (43)

RN and RH can be obtained from Equations (21) and (26) and are given as follows:

RN = βHχH(S− 1) =
1

K(s, S)
, (44)

and

RH = λχN(s + 1) =
1

K(s, S)
. (45)

5.2. The Optimal Policy

The cost function, denoted as EC(s, S), encompasses a complex structure. Conse-
quently, identifying any significant analytical properties proves to be a laborious task.
Nevertheless, numerous numerical examples have been examined, including all examples
presented in the following section. These examples suggest that the function is convex with
respect to s and S. Figure 5 serves as a representative example, where s∗ and S∗ represent
the optimal values. The optimal search algorithm was executed on an Intel Core i9 proces-
sor equipped with 32 GB RAM, utilizing Mathematica version 11 for implementation. The
computation was completed in approximately 0.0013754 s. The ‘AbsoluteTiming’ function
in Mathematica was employed to measure the computation time.

(s*, S*) = (5, 14)

EC(s*, S*) = 213.93

Figure 5. Contour plot of EC(s, S) with respect to s and S when λ = 2, µ = 3, βN = 1.1, βH = 2.2,
ch = 10, cnormal = 50, chigh = 100, cl = 500 , cw = 1, rN = 100 and rH = 200.

To determine the optimal policy (s∗, S∗) that minimizes the expected cost EC(s∗, S∗) =
mins,S EC(s, S), a numerical search method is applied. The method is detailed in Algorithm 1
as follows:
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Algorithm 1 Finding Optimal Policy (s*, S*) Algorithm

1: Initialize the value of s.
2: Set ε as a small threshold value.
3: Initialize diff with a large value.
4: repeat
5: Compute S∗s such that EC(s, S∗s ) = minS EC(s, S).
6: With S∗s fixed, compute s∗S such that EC(s∗S, S∗s ) = mins EC(s, S∗s ).
7: Calculate currentEC = EC(s, S∗s ).
8: Calculate newEC = EC(s∗S, S∗s ).
9: Update diff = |newEC− currentEC|.

10: if diff < ε then
11: Set (s∗, S∗) = (s∗S, S∗s ).
12: break.
13: else
14: Set s = s∗S.
15: end if
16: until Optimal values are found or diff < ε.

5.3. Cost–Benefit Analysis of Controlling Inventory Replenishment Speed: Numerical Examples

This section provides a cost comparison associated with exclusive reliance on either
high-speed (high-cost) or normal (low-cost) production modes, against the backdrop of the
proposed policy of adjusting production speeds. This numerical study aims to delineate
the cost effectiveness of the proposed strategy in contrast to traditional approaches that are
limited to singular mode utilization. Through this, this section underscores the significance
of strategic production speed adjustment, highlighting its role in reducing operational costs
in inventory management.

The models operating exclusively in either high-speed (high-cost) or normal (low-
cost) modes are characterized as (S− 1, S) queuing–inventory models. For these exclusive
operational scenarios, mean performance measures and average operating costs are derived
from Equations (38)–(40). This is achieved by setting s to S− 1 and substituting η with
the respective production speed parameters (βN for normal mode and βH for high-speed
mode). For the comparison, the average operating costs ECH(S) and ECN(S) for high-speed
(high-cost) and normal (low-cost) modes are, respectively, defined as follows:

ECH(S) = chighPon(βH) + chEsp(I; βH) + clλχsp(0; βH) + cwE(N) +
rH

Ksp(S− 1, S; βH)
, (46)

and

ECN(S) = cnormal Pon(βN) + chEsp(I; βN) + clλχsp(0; βN) + cwE(N) +
rN

Ksp(S− 1, S; βN)
, (47)

in which, Pon(η) = ∑∞
n=0 ∑S−1

k=0 Xon(n, k; η, S− 1, S), Esp(I; η) = ∑∞
n=0 ∑S−1

k=0 kXon(n, k; η, S−
1, S) + S ∑∞

n=0 Xo f f (n, S; η, S− 1, S), and χsp(0; η) = ∑∞
n=0 Xon(n, 0; η, S− 1, S).

In the numerical example, the parameters rH , chigh, and cnormal were varied to assess
their impact on the optimal average system operating cost, with all other cost coefficients
and parameters held constant. To assess the benefit of adopting the proposed policy, Gmax
is defined as follows:

Gmax =
EC(s∗, S∗)−min(ECN(S∗), ECH(S∗))

min(ECN(S∗), ECH(S∗))
. (48)

Gmax provides as the maximum potential cost savings achieved by implementing the
proposed control policy. It is expressed as a percentage relative to the lower cost of either
the normal or high-speed modes.
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Table 1 presents a cost comparison of varying the reactivation cost rH in the high-
speed mode. Notably, ECN(S∗) remains constant regardless of changes in rH , as systems
operating solely in normal mode are unaffected by changes in rH . Furthermore, the results
indicate an increase in Gmax with higher rH values. This is attributed to the elevated costs
incurred by frequent reactivations of the high-speed mode in the high-speed-only model.
In contrast, the proposed policy optimizes the threshold, leading to significant cost savings
compared to an exclusively high-speed operation.

Table 1. Optimal average operating cost per unit time for varying rH when other parameters are
fixed as λ = 2, µ = 3, βN = 1.1, βH = 2.2, ch = 10, cnormal = 50, chigh = 100, cl = 500 , cw = 1, and
rN = 100.

rH EC(s∗, S∗) ECN(S∗) ECH(S∗) Gmax

50 209.412 512.222 219.55 4.62%
100 210.997 512.222 232.767 9.35%
150 212.473 512.222 245.762 13.55%
200 213.864 512.222 258.561 17.29%
250 215.187 512.222 271.186 20.65%
300 216.451 512.222 283.654 23.69%
350 217.667 512.222 295.979 26.46%
400 218.84 512.222 308.176 28.99%
450 219.976 512.222 320.254 31.31%
500 221.077 512.222 332.224 33.46%
550 222.149 512.222 344.094 35.44%
600 223.194 512.222 355.872 37.28%
650 224.214 512.222 367.563 39.00%
700 225.211 512.222 379.175 40.60%
750 226.187 512.222 390.711 42.11%

Table 2 shows the impact of varying the operating cost, chigh, on the overall system
costs. Similar to the previous analysis, ECN(S∗) remains unchanged as the inventory is
produced exclusively in the normal mode and is unaffected by changes in chigh. A key
observation is that Gmax consistently stays above 0, underscoring the effectiveness of the
proposed model in achieving cost savings. This is achieved by dynamically adjusting
the s and S thresholds, enabling the system to operate efficiently under both high-speed
and normal modes, as opposed to a high-speed-only model, which would incur higher
operational costs.

Table 2. Optimal average operating cost per unit time for varying chigh when other parameters are
fixed as λ = 2, µ = 3, βN = 1.1, βH = 2.2, ch = 10, cnormal = 50, cl = 500 , cw = 1, rN = 100, and
rH = 200.

chigh EC(s∗, S∗) ECN(S∗) ECH(S∗) Gmax

50 175.671 512.222 223.631 21.45%
60 183.332 512.222 232.366 21.10%
70 190.982 512.222 241.1 20.79%
80 198.621 512.222 249.831 20.50%
90 206.248 512.222 258.561 20.23%

100 213.864 512.222 267.29 19.99%
110 221.469 512.222 276.016 19.76%
120 229.062 512.222 284.741 19.55%
130 236.643 512.222 293.464 19.36%
140 244.212 512.222 302.185 19.18%
150 251.768 512.222 310.904 19.02%
160 259.313 512.222 319.621 18.87%
170 266.845 512.222 328.337 18.73%
180 274.364 512.222 337.05 18.60%
190 281.87 512.222 345.762 18.48%
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Table 3 shows that the lost-sales cost parameter, cl , significantly influences the system’s
operational costs. Unlike previous scenarios, in this case ECN(S∗) varies with changes in
cl , due to the pronounced impact of lost sales in a system operating solely in normal mode.
This mode, characterized by slower inventory production, leads to increased occurrences
of lost sales.

Table 3. Optimal average operating cost per unit time for varying cl when other parameters are fixed
as λ = 2, µ = 3, βN = 1.1, βH = 2.2, ch = 10, cnormal = 50, chigh = 100, cw = 1, rN = 100, and
rH = 200.

cl EC(s∗, S∗) ECN(S∗) ECH(S∗) Gmax

50 139.649 107.222 208.318 −30.24%
100 155.259 152.222 216.252 −2.00%
150 166.8 197.222 223.259 15.43%
200 176.215 242.222 229.564 23.24%
250 184.273 287.222 235.314 21.69%
300 191.371 332.222 240.614 20.47%
350 197.747 377.222 245.538 19.46%
400 203.555 422.222 250.142 18.62%
450 208.901 467.222 254.472 17.91%
500 213.864 512.222 258.561 17.29%
550 218.503 557.222 262.44 16.74%
600 222.861 602.222 266.13 16.26%
650 226.977 647.222 269.651 15.83%
700 230.878 692.222 273.021 15.44%
750 234.588 737.222 276.252 15.08%

Notably, at very low cl values, the normal-only mode proves to be the most cost-
effective strategy. This is attributed to the economic feasibility of tolerating customer lost
sales over incurring the higher costs associated with switching to the high-speed mode.

However, as cl surpasses a certain threshold, the proposed model demonstrates su-
perior performance compared to both normal-only and high-speed-only modes. This
efficiency is attributed to the model’s ability to dynamically balance operational costs
between the two modes, optimizing overall system costs. Particularly in scenarios where
managing lost sales cost is critical, the proposed model’s adaptability leads to significant
cost savings, underscoring its superiority in effectively handling varying cost conditions.

In conclusion, the analyses conducted across various scenarios affirm the proposed
model’s efficacy in reducing system costs. It adeptly balances between high-speed and nor-
mal operational modes, leading to significant cost savings. The maximum observed Gmax
value, exceeding 40%, highlights the model’s substantial cost efficiency over single-mode
systems. This underscores the value of the proposed model in operational optimization, as
it offers flexibility and adaptability in managing costs within queuing–inventory systems

6. Concluding Remarks and Future Study

This study focuses on a small supply chain system consisting of a make-to-order
production facility and a raw material warehouse. Modeled as an M/M/1 queue linked to
inventory, the system operates under a modified (s, S) policy, which dynamically adjusts
production speed to maintain optimal inventory levels. The analysis led to the derivation
of the stationary joint distribution of unmet demands and warehouse inventory levels in
product form. From these results, comprehensive cost models were developed. Numerical
search methods indicated that the proposed policy could yield maximum cost savings of
up to 42%, significantly enhancing cost efficiency over traditional models.

Recent advancements in queuing–inventory systems research, primarily focusing on
customer priority integration and responses to disruptions, have informed this study’s
motivation. Despite these advancements, a significant gap in exploring variable inventory
production speed within these models was identified. Previous studies have extensively
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analyzed customer retrials, priority levels, negative customer impacts, and warehouse
catastrophes, but the relationship between inventory production speed and inventory
levels has not been sufficiently explored. This study introduces a model to optimize this
relationship, aiming to facilitate more efficient inventory management strategies.

Future work could introduce several generalizations to render the system more re-
alistic. These might include diversifying probability distributions for inter-arrival and
production times, incorporating various customer behaviors such as reneging and balking,
and exploring a multi-threshold policy for varying internal production speeds. Such en-
hancements are intended to address the limitations of the current study and to expand the
model’s applicability to more complex and realistic supply chain scenarios.

Funding: This research was supported by a National Research Foundation of Korea (NRF) grant
funded by the Korean government (MSIT) (No. 2021R1A2C1011207).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Proof of Theorem 1

The theorem can be proved by directly substituting the equations given by (19) and (20)
into Equations (7)–(18). Let ρ = λ/µ. Then, using Equations (19) and (20),
Equations (7) and (8) can be rewritten, respectively, as follows:

0 =− (1− ρ)λχN(S) + βN(1− ρ)χN(S− 1) + βH(1− ρ)χH(0, S− 1), (A1)

and

0 =− (λ + µ)(1− ρ)ρnχN(S) (A2)

+ λ(1− ρ)ρn−1χN(S) + βN(1− ρ)ρnχN(S− 1) + βH(1− ρ)ρnχH(S− 1), n ≥ 1.

The above equations confirm that Equations (A1) and (A2) are identical to those in
Equation (1), regardless of the value of n.

Similarly, Equations (9) and (10) can be rewritten as follows:

0 =− (λ + βN)(1− ρ)χN(k) + µ(1− ρ)ρχN(k + 1) (A3)

+ βN(1− ρ)χN(k− 1), s + 2 ≤ k ≤ S− 1,

and

0 =− (λ + µ + βN)(1− ρ)ρnχN(k) (A4)

+ λ(1− ρ)ρn−1χN(k) + µ(1− ρ)ρn+1χN(k + 1)

+ βN(1− ρ)ρnχN(k− 1), n ≥ 1, s + 2 ≤ k ≤ S− 1.

After simplifying, (A3) and (A4) can be expressed as Equation (2), regardless of the
value of n.

Next, Equations (11) and (12) yield:

0 = −(λ + βN)(1− ρ)χN(s + 1) + µ(1− ρ)ρχN(s + 2), (A5)

and

0 =− (λ + µ + βN)(1− ρ)ρnχN(s + 1) + (1− ρ)ρn−1λχN(s + 1) (A6)

+ µ(1− ρ)ρn+1χN(s + 2), n ≥ 1

Therefore, it is confirmed that Equations (A5) and (A6) are the same as those in
Equation (3) for all values of n.
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Similar manipulations can be applied to Equations (13)–(14), (15)–(16), and (17)–(18)
to derive Equations (4), (5), and (6), respectively, thus completing the proof. �
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