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Abstract: The paper proves the existence of a family of axisymmetric equilibrium figures as solutions
of a stationary problem with unknown boundaries for the Navier–Stokes equations corresponding
to the slow rotation of a viscous compressible two-layer liquid mass about some axis. It is assumed
that the liquids are barotropic and capillary, and have different viscosities, the internal fluid being
bounded by a closed surface. This interface does not intersect with the external boundary of the
cloud. The proof is based on implicit function theorem and carried out in the Hölder spaces.
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1. Introduction

Existence of an equilibrium surface for an isolated compressible liquid mass rotating
about a fixed axis was first proved in [1]. Our aim is to prove the existence of equilibrium
figures for a rotating compressible two-layer fluid.

The problem of the rotation of an isolated incompressible liquid mass about a fixed
axis as a rigid body was considered by many famous mathematicians, including New-
ton, Maclaurin, Jacobi, Kovalevskaya, Lyapunov, Poincare, and others [2–4], who mainly
studied the movement without capillarity. The capillary fluids were first investigated by
Globa-Mikhailenko [5], Boussinesq, and Charrueau in the beginning of 20th century. The
latter gave a detailed analysis of the problem, calculated the shape of equilibrium figures,
including the toroidal case, and considered some aspects of the stability [6,7]. These results
were included in a big review on this subject, presented in the book of Appell [8]. The
stability problem for various ellipsoidal equilibrium figures is analyzed in monograph [9].

The existence of equilibrium figures for a two-layer incompressible self-gravitating
capillary liquid (oblate embedded spheroids) was obtained by V.A. Solonnikov in [10].

Now we state, in a complete setting, the problem on unsteady motion of two com-
pressible barotropic fluids of finite volume separated by a closed unknown interface.

At the initial instant t = 0, let a fluid with dynamic viscosities µ+, µ+
1 be in a bounded

domain Ω+
0 ⊂ R3, and in the domain Ω−

0 , surrounding it, let there be a fluid with dynamic
viscosities µ−, µ−

1 ;
µ± > 0, 2µ± + 3µ±

1 ⩾ 0.

The domain Ω0 ≡ Ω+
0 ∪ Ω−

0 is bounded by the free surface Γ−
0 and includes the closed

interface Γ+
0 ≡ ∂Ω+

0 ; Γ±
0 are given. This two-component cloud rotates about the vertical

axis x3 with an angular velocity ω.
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For t > 0, it is necessary to find the surfaces Γ−
t , Γ+

t , as well as the velocity vector
field v(x, t) = (v1, v2, v3) and the density ρ(x, t) > 0 of the fluids satisfying the diffraction
problem for the Navier–Stokes system

ρ
(
Dtv + (v · ∇)v

)
−∇ ·T = 0, Dtρ +∇ · (ρv) = 0 in Ω−

t ∪ Ω+
t , t > 0,

v|t=0 = v0(x), ρ|t=0 = ρ0(x) in Ω−
0 ∪ Ω+

0 ,

T(v, p)n
∣∣
Γ−

t
= σ−H−n on Γ−

t , (1)

[v]
∣∣
Γ+

t
≡ lim

x→x0∈Γ+
t ,

x∈Ω+
t

v(x, t)− lim
x→x0∈Γ+

t ,
x∈Ω−

t

v(x, t) = 0, [T(v, p)n]
∣∣
Γ+

t
= σ+H+n on Γ+

t ,

Vn = v · n on Γt ≡ Γ+
t ∪ Γ−

t ,

where
T =

(
− p(ρ) + µ±

1 ∇ · v
)
I+ µ±S(v)

is the stress tensor,
(
S(v)

)
ij =

∂vi
∂xj

+
∂vj
∂xi

is the double strain rate tensor, and I is the identity

matrix; µ±, µ±
1 are step functions of dynamic viscosities, equal to µ+, µ+

1 in Ω+
t and µ−, µ−

1
in Ω−

t , respectively; p(ρ) is the fluid pressure given by a known smooth density function;
v0 and ρ0 > 0 are initial distributions of velocity and density of the liquids, and n is the
outward normal vector to boundary union Γt; H±(x, t) are twice the mean curvatures of
the surfaces Γ±

t (moreover, H+ < 0 at points of convexity Γ+
t towards Ω−

t ); σ−, σ+ > 0 are
surface tension coefficients on Γ−

t and Γ+
t , respectively; and Vn is the rate of evolution of Γt

in the direction n. We assume that the Cartesian coordinate system {x} is introduced in the
space R3. The central dot denotes the Cartesian scalar product.

We mean summation over repeated indices from 1 to 3 if they are denoted by Latin
letters, and from 1 to 2 if they are Greek. We mark vectors and vector spaces in bold. The

notation ∇ ·T denotes the vector with the components (∇ ·T)j =
∂Tij
∂xi

, j = 1, 2, 3.
The kinematic boundary condition Vn = v · n excludes mass transfer across fluid

boundaries. It follows from our assumption that the fluid particles do not leave the
boundaries Γ±

t during the time.
The evolution problem for two viscous compressible immiscible liquids with an

unknown interface belongs to the class of free boundary problems being intensively studied.
The theory of these problems for the Navier–Stokes equations has only been in development
for about three to four decades, although their setting goes back to the classical works of
the 19th century.

The main difficulty of such nonlinear problems is due to the fact that the surfaces of
the fluids are unknown. Another obstacle is surface tension. So, most of the authors study
the problem without the capillarity. The case where surface tension on a free boundary is
taken into account is essentially more difficult to investigate because the capillary forces
generate noncoercive boundary conditions. The latter do not allow us to apply the methods
developed for the classical problems with fixed boundaries. Interface conditions in sys-
tem (1) follow from the continuity of a velocity vector field and momentum conservation
when passing across the interface between the media. Similar conditions appear on the free
boundary. One can find the explanations, for example, in the textbook of Pukhnachov [11]
or in [12].

First, local (in time) solvability was proved for a problem similar to (1) in the whole
space R3, with a closed interface between the fluids. The result was obtained both in the
Sobolev–Slobodetskiı̌ and Hölder classes of functions [13]. One can prove similar results for
a two-component domain bounded by a free surface if one takes into account the estimates
for a model problem in a half-space [14]. In the paper of the Japanese researchers [15],
solvability theory was developed for the problem in the anisotropic Sobolev spaces Lp − Lq,
with different orders of summability with respect to the spatial and time variables. In the
same spaces, the authors of [16] studied a compressible two-fluid problem without surface
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tension and finding interface between the fluids. They showed local and global solvability
of the problem under additional smallness assumptions on initial data in the global case.

The next step of the study will be to prove global unique solvability of the unsteady
problem (1) for small data. If we have equilibrium two-layer figures, we can hope to
obtain the convergence of the global solution to a stationary one. Thus, the motion of a
two-component compressible liquid mass ∪Ω±

t slow rotating about a fixed axis will tend
during the time to the rigid rotation of the corresponding equilibrium figure ∪F±. Another
question is the stability of equilibrium figures obtained. A similar study for two viscous
incompressible immiscible liquids was published in our recent papers, one of which is [17].

As we have mentioned, we suppose the liquids to be barotropic, which implies that
the pressure p is a known increasing function of the density: p′(ρ) > 0. Let, in addition,
ρ = ρ(|x′|), x′ = (x1, x2, 0).

Next, we assume that equilibrium figures F+, F ≡ F+ ∪ F− are nearly globular
domains with the radiuses R±

0 (R+
0 < R−

0 ), respectively, and the motion of fluids is close
to the state of rest, i.e., the velocity is small, and the density differs little from a step
function ρ± > 0. This picture is schematically presented in Figure 1. We denote the balls
{x ∈ R3 : |x| ⩽ R±

0 } by BR±
0

.

We are going to prove the existence of G+ and G−, the boundaries of the figures F+

and F , respectively. We follow the plan of paper [1].
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Figure 1. Equilibrium figures for a two-layer compressible fluid.

At rest, the bubble consists of the nested spherical two layers BR+
0

and BR−
0
\ BR+

0
with

the uniform distributions of densities ρ± and with the piecewise constant pressure:

p(ρ−) =
2σ−

R−
0

in BR−
0
\ BR+

0
,

p(ρ+) =
2σ+

R+
0

+
2σ−

R−
0

in BR+
0

.
(2)

The masses of the layers are

ρ+|BR+
0
| = m+, ρ−

(
|BR−

0
| − |BR+

0
|
)
= m−, (3)

where |BR±
0
| = 4

3 πR±
0

3.
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Steady motion of a two-layer gaseous body F uniformly rotating about the axis x3
with a constant angular velocity ω is governed by the homogeneous stationary Navier–
Stokes equations

ρ(V · ∇)V −∇ ·T = 0, ∇ · (ρV ) = 0 in ∪ F± (4)

(here, the density ρ and velocity V depend only on x) and the boundary conditions

T(V ,P)n
∣∣
G− = σ−H−n on G−,

[V ]
∣∣
G+ = 0, [T(V ,P)n]

∣∣
G+ = σ+H+n on G+, (5)

V · n = 0 on G = G+ ∪ G−,

where H−, H+ are twice the mean curvatures of G−, G+, respectively. The last relation
follows from the boundary condition v · n = Vn. The pressure P depends on ρ and should
be given by an increasing function.

It is easily seen that the velocity vector field

V(x) = ωe3 × x ≡ ω(−x2, x1, 0) (6)

satisfies (4) together with the pressure function gradient

∇P(ρ) = ρω2x′ ≡ ρ
ω2

2
∇|x′|2, (7)

where ei is the ith basis vector, |x′|2 = x2
1 + x2

2.
First, we consider the simple case when equality (7) coincides with the following one

∇P(ρ) = P ′(ρ)∇
(ω2

2
|x′|2

)
,

whence P ′(ρ) = ρ(x) and P±(ρ) ≡ ρ2(x)
2 + p± in F± with constants p±, because pressure

functions can differ from each other by a constant in different domains. These constants
can be found from relations (2):

p− =
2σ−

R−
0

− ρ−2

2
,

p+ =
2σ+

R+
0

+
2σ−

R−
0

− ρ+
2

2
.

(8)

Let S1 be the unit sphere in R3 with the center in zero, ξ = x
|x| ∈ S1. We suppose G±

to be given by functions R±(ξ) on S1. In addition, let R±(ξ) be rotationally symmetric, i.e.,

they depend only on |ξ ′| =
√

ξ2
1 + ξ2

2 and ξ3, and be even in ξ3.
By substituting V given by (6) and P = P± into boundary conditions (5), we obtain

the equations for the surface G− of domain F and for the interface G+ between the fluids:

σ−H−(x) + P(ρ) = 0, x ∈ G−,

σ+H+(x) + [P(ρ)]
∣∣
G+= 0, x ∈ G+.

(9)

The rotationally symmetry implies that R±(ξ) do not depend on arctan( ξ2
ξ1
). It is clear

that n = ( ξ1
c0

, ξ2
c0

, n3), since the first two components of n are proportional to those of the
radius-vector of the circles, being horizontal sections of G±. Therefore, V · n = 0 on G±.
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Obviously, the density is given by the formulas

ρ(x) =
ω2

2
|x′|2 + c+ in F+,

ρ(x) =
ω2

2
|x′|2 + c− in F−

(10)

with arbitrary positive constants c+ and c−. Equations (9) take the form

σ−H−(x) + P−(ω2

2
|x′|2 + c−

)
= 0, x ∈ G−,

σ+H+(x) + P+
(ω2

2
|x′|2 + c+

)
−P−(ω2

2
|x′|2 + c−

)
= 0, x∈G+.

(11)

One can determine the constants c± by prescribing the masses of fluids to be the same
as the masses of the nested spherical liquid layers (3):

∫

F±
ρ(x)dx ≡

∫

F±

(ω2

2
|x′|2 + c±

)
dx = m±. (12)

We consider the angular momentum to be one more parameter of the problem. It
is given:

β ≡
∫

F+∪F−
ρ(x)V · η3 dx = ω

∫

∪F±

(ω2

2
|x′|2 + c±

)
|x′|2 dx, (13)

where ηi = ei × x is the ith rigid rotation vector, i = 1, 2, 3. Then, the angular velocity ω is
a function of β.

We denote by Cs, s > 0, s /∈ N, the Hölder space of functions f on the sphere S1 with
the norm

| f |Cs(S1)
≡ max

k={1,...,N}

(
∑
|j|<s

sup
ξ∈ζk

|Dj f (ξ)|+ ∑
|j|=[s]

sup
ξ,ξ̄∈ζk

|ξ − ξ̄|−(s−[s])|Dj f (ξ)−D j f (ξ̄)|
)

,

where Dj f is the |j|th derivative of f , calculated in local coordinates on the subdomain
ζk ⊂ S1,

⋃N
k=1 ζk = S1. Under C̃s(S1), we mean the subspace of Cs(S1), consisting of

rotationally symmetric functions that are even with respect to ξ3.

Theorem 1. Let α > 0, α /∈ N, and let the data of problem (4), (5) be such that condition (26)
holds. Then, for an arbitrary β satisfying the estimate

|β| < ε (14)

with small enough ε, there exists a unique solution (R±, ω, c±) ∈ C̃2+α(S1)× C̃2+α(S1)×R×
R×R to system (11)–(13). It obeys the inequality

∑
±

{
|R± − R±

0 |C2+α(S1)
+ |c± − ρ±|

}
+ |ω| < c|β|. (15)

2. Proof of Theorem 1

Proof. In order to linearize system (11), we apply the formula for the first variation of a
functional δ0R[r] = d

ds R[sr]
∣∣
s=0. According to [10,18], the first variation of twice the mean

curvature of G± with respect to the double curvature of the sphere SR±
0

is

δ0
(
H±[r(ξ)] +

2
R±

0

)
=

1

R±2

0

(
∆S1 r± + 2r±

)
,
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where ∆S1 is the Laplace–Beltrami operator on S1 and r± ≡ R± − R±
0 ; G± = {x = R±

0 ξ +
r±(ξ)N, ξ ∈ S1}, and N is the outward normal to S1. This yields

σ−

R−
0

2

(
∆S1 r− + 2r−

)
= k− + f−, ξ ∈ S1,

σ+

R+
0

2

(
∆S1 r+ + 2r+

)
= k+ + f+, ξ ∈ S1,

(16)

where k− = 2σ−
R−

0
− P−(c−) ≡ P−(ρ−) − P−(c−), k+ = 2σ+

R+
0

− P+(c+) + P−(c−) ≡
P+(ρ+)−P+(c+) + P−(c−)−P−(ρ−) in view of (2);

f− = σ−
(

δ0
(
H−(x) +

2
R−

0

)
−

(
H−(x) +

2
R−

0

))
−P−(ω2

2
|x′|2 + c−

)

+ P−(c−),

f+ = σ+
(

δ0
(
H+(x) +

2
R+

0

)
−

(
H+(x) +

2
R+

0

))
−P+

(ω2

2
|x′|2 + c+

)

+ P−(ω2

2
|x′|2 + c−

)
+ P+(c+)−P−(c−).

(17)

We integrate Equation (16) over S1 by parts, then we obtain

2σ±

R±
0

2

∫

S1

r± dξ =
∫

S1

(k± + f±)dξ. (18)

The integrals
∫

S1
r± dξ can be expressed in terms of the differences of the volumes

|F | − |BR−
0
| and |F+| − |BR+

0
|. For example,

|F | − |BR−
0
| = 1

3

∫

S1

(R−3 − R−
0

3
)dξ = R−

0
2
∫

S1

r− dξ + R−
0

∫

S1

r−2 dξ +
1
3

∫

S1

r−3 dξ,

and hence ∫

S1

r+ dξ =
1

R+
0

2

(
|F+| − |BR+

0
|
)
+ Q[r+],

∫

S1

r− dξ =
1

R−
0

2

(
|F | − |BR−

0
|
)
+ Q[r−],

(19)

where Q[r±] ≡ − 1
R±

0

∫
S1

r±2 dξ − 1
3R±

0
2

∫
S1

r±3 dξ.

We rewrite (12) as follows:

m+ =
∫

S1

dξ
∫ R+(ξ)

0

ω2

2
|ξ ′|2s4 ds + c+|F+| = ω2

10

∫

S1

R+5
(ξ)|ξ ′|2 dξ + c+|F+|,

m− =
∫

S1

dξ
∫ R−(ξ)

R+(ξ)

ω2

2
|ξ ′|2s4 ds + c−|F−| = ω2

10

∫

S1

(R−5 − R+5
)|ξ ′|2 dξ + c−|F−|,

where |ξ ′|2 = ξ2
1 + ξ2

2. On the other hand, m+ = ρ+|BR+
0
|, m− = ρ−(|BR−

0
| − |BR+

0
|). That

is why

0 =
ω2

10

∫

S1

R+5
(ξ)|ξ ′|2 dξ + ρ+

(
|F+| − |BR+

0
|
)
+ |F+|

(
c+ − ρ+

)
,

0 =
ω2

10

∫

S1

(R−5− R+5
)|ξ ′|2 dξ + ρ−

(
|F−| − |BR−

0
|+ |BR+

0
|
)
+ |F−|

(
c− − ρ−

)
.

(20)
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We express the differences |F±| − |BR±
0
| from (20) and substitute them into (19). Then

equalities (18) imply that

2σ+

R+
0

2

{ −1

ρ+R+
0

2

(ω2

10

∫

S1

R+5
(ξ)|ξ ′|2 dξ + |F+|

(
c+ − ρ+

))
+ Q[r+]

}
=
∫

S1

(k+ + f+)dξ (21)

and
2σ−

R−
0

2

( 1

R−
0

2

(
|F+|+ |F−| − |BR−

0
| ± |BR+

0
|
)
+ Q[r−]

)
=

∫

S1

(k− + f−)dξ.

And finally, we have

2σ−

R−
0

2

{ −1

ρ−R−
0

2

{ω2

10

∫

S1

(R−5 − R+5
)|ξ ′|2 dξ + |F−|

(
c− − ρ−

)

+
ρ−

ρ+

(ω2

10

∫

S1

R+5
(ξ)|ξ ′|2 dξ + |F+|

(
c+ − ρ+

))}
(22)

+ Q[r−]
}

=
∫

S1

(k− + f−)dξ.

In order to prove the solvability of system (13), (16), (21), and (22), we use implicit
function theorem. We represent this system as a nonlinear vector equation:

Φ(φ) = 0, (23)

where Φ(φ) = (Φ±
1 , Φ2, Φ±

3 ), φ ≡ (r±, ω, λ±), λ± ≡ c± − ρ±,

Φ±
1 (φ) =

σ±

R±2

0

(
∆S1 r± + 2r±

)
− k± − f±,

Φ2(φ) = ω
∫

S1

|ξ ′|2 dξ
∫ R+

0 +r+

0

(ω2

2
|ξ ′|2s2 + c+

)
s4 ds

+ ω
∫

S1

|ξ ′|2 dξ
∫ R−

0 +r−

R+
0 +r+

(ω2

2
|ξ ′|2s2 + c−

)
s4 ds − β,

Φ+
3 (φ) =

2σ+

R+
0

2

{ 1

ρ+R+
0

2

(ω2

10

∫

S1

R+5
(ξ)|ξ ′|2 dξ + |F+|λ+

)
− Q[r+]

}

+
∫

S1

(k+ + f+)dξ,

Φ−
3 (φ) =

2σ−

R−
0

2

{
1

ρ−R−
0

2

{∫

S1

dξ
∫ R−

0 +r−

R+
0 +r+

ω2

2
|ξ ′|2s4 ds + |F−|λ−

+
ρ−

ρ+

(ω2

10

∫

S1

R+5
(ξ)|ξ ′|2 dξ + |F+|λ+

)}

− Q[r−]
}
+

∫

S1

(k− + f−)dξ.

We linearize (23) at zero and show that the derivative of Φ′ at this point is not equal to
zero. Thus,

Φ′(0)φ+ ψ(φ) = 0, (24)



Mathematics 2024, 12, 94 8 of 15

where Φ′(0) = (Φ±
1
′, Φ′

2, Φ±
3
′
)(0) is the Fréchet derivative of Φ, that is,

Φ+
1
′
(0)φ =

σ+

R+2

0

(
∆S1 r+ + 2r+

)
+ ρ+λ+ − ρ−λ−,

Φ−
1
′
(0)φ =

σ−

R−2

0

(
∆S1 r− + 2r−

)
+ ρ−λ−,

Φ′
2(0)φ = ωρ+

∫

S1

|ξ ′|2 dξ
∫ R+

0

0
s4 ds + ωρ−

∫

S1

|ξ ′|2 dξ
∫ R−

0

R+
0

s4 ds

=
8π

15
ω
{

ρ+R+
0

5
+ ρ−

(
R−

0
5 − R+

0
5)},

Φ+
3
′
(0)φ =

2σ+

R+
0

2

|BR+
0
|λ+

ρ+R+
0

2 − 4πρ+λ+ + 4πρ−λ−

= 4π
{(P+(ρ+)−P−(ρ−)

3ρ+
− ρ+

)
λ+ + ρ−λ−

}
,

Φ−
3
′
(0)φ =

2σ−

R−
0

2
1

ρ−R−
0

2

{(
|BR−

0
| − |BR+

0
|
)
λ− +

ρ−

ρ+
|BR+

0
|λ+

}
− 4πρ−λ−

= 4π
{P−(ρ−)R+

0
3

3ρ+R−
0

3 λ+ +
(R−

0
3 − R+

0
3

3ρ−R−
0

3 P−(ρ−)− ρ−
)

λ−
}

,

and ψ(φ) = Φ(φ)− Φ′(0)φ ≡ (ψ±
1 , ψ2, ψ±

3 ) with

ψ+
1 (φ) =P+(c+)−P+(ρ+)−P−(c−) + P−(ρ−)− ρ+λ+ + ρ−λ− − f+,

ψ−
1 (φ) =P−(c−)−P−(ρ−)− ρ−λ− − f−,

ψ2(φ) =ω
∫

S1

|ξ ′|2 dξ
∫ R+

0

0

(ω2

2
|ξ ′|2s2 + λ+

)
s4 ds

+ ω
∫

S1

|ξ ′|2 dξ
∫ R+

0 +r+

R+
0

(ω2

2
|ξ ′|2s2 + c+

)
s4 ds

+ ω
∫

S1

|ξ ′|2 dξ
∫ R−

0

R+
0

(ω2

2
|ξ ′|2s2 + λ−

)
s4 ds

+ ω
∫

S1

|ξ ′|2 dξ
∫ R−

0 +r−

R−
0

(ω2

2
|ξ ′|2s2 + c−

)
s4 ds − β,

ψ+
3 (φ) =

2σ+

R+
0

2

{ 1

ρ+R+
0

2

(ω2

10

∫

S1

R+5
(ξ)|ξ ′|2 dξ + (|F+| − |BR+

0
|)λ+

)
− Q[r+]

}

+
∫

S1

(k+ − ρ+λ+ + ρ−λ− + f+)dξ,

ψ−
3 (φ) =

2σ−

R−
0

2

{
1

ρ−R−
0

2

{ω2

10

∫

S1

(R−5 − R+5
)|ξ ′|2 dξ +

ρ−

ρ+

(ω2

10

∫

S1

R+5
(ξ)|ξ ′|2 dξ

+ (|F+| − |BR+
0
|)λ+

)
+ (|F−| − |BR−

0
|+ |BR+

0
|)λ−

}
− Q[r−]

}

+
∫

S1

(k− − ρ−λ− + f−)dξ.

Let X = C̃2+α × C̃2+α ×R×R×R and Y = C̃α × C̃α ×R×R×R. Using fixed point
theorem, we will show that Equation (23) is solvable in X .

In [19] (see the corollary to Theorem 2.1), it was proved that for any f ∈ C̃α(S1)
the equation

∆S1 r + 2r = f (25)
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has the unique solution r ∈ C̃2+α(S1) and

|r|C2+α(S1)
⩽ c1| f |Cα(S1)

.

Moreover, due to the assumptions of the theorem, the determinant of the matrix in the
left-hand sides of two equations Φ±

3
′
(0)φ = −ψ±

3 (φ) is not equal to zero:

( 2σ+

3ρ+R+
0
− ρ+

)(2σ−(R−
0

3 − R+
0

3
)

3ρ−R−
0

4 − ρ−
)
− 2σ−ρ−R+

0
3

3ρ+R−
0

4 ̸= 0. (26)

(Here we have taken into account relations (8)). Hence, this matrix is invertible. Thus, the
whole operator Φ′(0) : X → Y is also invertible and

∥φ∥X ⩽ c2∥Φ′(0)φ∥Y , (27)

where ∥φ∥X = |r+|C2+α(S1)
+ |r−|C2+α(S1)

+ |ω|+ |λ+|+ |λ−| and ∥Φ′(0)φ∥Y = |Φ+
1
′
(0)φ|

Cα(S1)
+ |Φ−

1
′
(0)φ|Cα(S1)

+ |Φ2
′(0)φ|R + |Φ+

3
′
(0)φ|R + |Φ−

3
′
(0)φ|R.

Therefore, Equation (24) can be written in the form:

φ+Aψ(φ) = 0, A = Φ′(0)−1. (28)

Let us now estimate the non-linear operator ψ. The term f− given by (17) can be
written as

f− = −σ−
∫ 1

0
(1 − s)

d2

ds2 H
−[sr]ds −P−′

(c−)
ω2

2
R+2

(ξ)|ξ ′|2, (29)

where H−[sr] is twice the mean curvature of the surface G−
s ; G±

s = {x = R±
0 ξ + sr±(ξ)N,

ξ ∈ S1}, N ≡ ξ
|ξ| ; and c− is some point of the interval [c−, ω2

2 R+2
(ξ)|ξ ′|2 + c−]. One can

write a similar formula for f+. The terms f± have the second order of smallness with
respect to φ. After simple calculations for two values of the arguments φ = (r±, ω, λ±) and
φ′ = (r±′, ω′, λ±′

) ∈ X such that

∥φ∥X , ∥φ′∥X ⩽ η, η ⩽ min{1, R+
0 /2, (R−

0 − R+
0 )/2}, (30)

it can be shown that the estimates

∥ψ(φ)∥Y ⩽ c∥φ∥1+α
X + |β| ⩽ c3η∥φ∥α

X + |β|,
∥ψ(φ)− ψ(φ′)∥Y ⩽ c4ηα∥φ−φ′∥X (31)

hold. This implies that Aψ(φ) maps the ball {φ ∈ X : ∥φ∥X ⩽ η} into itself and it is a
contraction operator if

c2(c3η1+α + |β|) ⩽ η, c2c4ηα < 1.

These inequalities are satisfied for η such that

2c2|β| ⩽ η ⩽ min{(2c2c3)
−1/α, (c2c4)

−1/α}. (32)

So if
|β| ⩽ 1

2c2
min{(2c2c3)

−1/α, (c2c4)
−1/α}, (33)

then, by fixed point theorem, Equation (28) has a unique solution in the ball {∥φ∥X ⩽
η} with η satisfying (32). Thus, Equation (23) is also uniquely solvable for β, obeying
inequality (33), which gives the estimate of ε in condition (14).
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We now prove estimate (15). Since

∥φ∥X ⩽ ∥A∥∥ψ(φ)∥Y ⩽ c2
(
c3ηα∥φ∥X + |β|

)
, (34)

then, for c2c3ηα ⩽ 1
2 ,

∥φ∥X ⩽ 2c2|β|,
which coincides with inequality (15).

Thus, we have shown that, for certain data of the problem, there are equilibrium

figures for a two-layer compressible fluid, the pressure function being P± = ρ2(x)
2 + p±

and the density ρ being determined by Formula (10).

3. General Case

Now, we study the general case of pressure function. We assume only that P ′(ρ) is
positive and may have a jump across G+.

The velocity vector field remains the same as above:

V(x) = ω(−x2, x1, 0).

It satisfies (4), together with the pressure function gradient ∇P(ρ) = ρ ω2

2 ∇|x′|2.
We introduce Q(ρ), such that

∇Q(ρ) ≡ P ′(ρ)∇ρ

ρ
= ∇

(ω2

2
|x′|2

)
. (35)

The function Q(ρ) =
∫ ρ

ρ1

P ′(s)
s ds, ρ1 ⩾ 0. Since Q′(ρ) = P ′(ρ)

ρ > 0, there is an inverse

function Q−1. And (35) implies

ρ = Q−1
(ω2

2
|x′|2 + C±

)
in F± (36)

with arbitrary constants C±. Substituting ρ into Equation (9), we have

σ−H−(x) + P−
(
Q−1(ω2

2
|x′|2 + C−)) = 0, x ∈ G−,

σ+H+(x) + P+
(
Q−1(ω2

2
|x′|2 + C+

))
−P−

(
Q−1(ω2

2
|x′|2 + C−)) = 0, x∈G+.

(37)

We prescribe the masses of fluids and apply (36):

m± =
∫

F±
ρ(x)dx ≡

∫

F±
Q−1

(ω2

2
|x′|2 + C±

)
dx. (38)

Then, one has the equations for determining the constants C±.
Similarly, a given angular momentum β defines the angular velocity ω:

β ≡
∫

F+∪F−
ρ(x)V · η3 dx = ω

∫

∪F±
Q−1

(ω2

2
|x′|2 + C±

)
|x′|2 dx. (39)

Let us state the main theorem.

Theorem 2. Let α > 0, α /∈ N, and let P±(ρ) ∈ Cα(R+) be positive increasing functions, such
that equalities (2) are satisfied for it. Here, R+ ≡ {x ∈ R|x > 0}. We assume also that the data of
problem (4), (5) are subjected to condition (50). Then, for an arbitrary β satisfying the estimate

|β| < ε (40)
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with ε small enough, there exists a unique solution (R±, ω, C±) ∈ C̃2+α(S1)× C̃2+α(S1)×R×
R×R to system (37)–(39), and the inequality

∑
±

{
|R± − R±

0 |C2+α(S1)
+ |Q−1(C±)− ρ±|

}
+ |ω| < c|β| (41)

holds.

Proof. After linearisation, system (37) takes the form of (16) with

k− =
2σ−

R−
0

−P−(Q−1(C−)) ≡ P−(ρ−)−P−(Q−1(C−)),

k+ =
2σ+

R+
0

−P+(Q−1(C+)) + P−(Q−1(C−)) (42)

≡ P+(ρ+)−P+(Q−1(C+)) + P−(Q−1(C−))−P−(ρ−)

due to (2) and

f− = σ−
(

δ0
(
H−(x) +

2
R−

0

)
−

(
H−(x) +

2
R−

0

))
−P−

(
Q−1(ω2

2
|x′|2 + C−))

+ P−(Q−1(C−)
)
,

f+ = σ+
(

δ0
(
H+(x) +

2
R+

0

)
−

(
H+(x) +

2
R+

0

))
−P+

(
Q−1(ω2

2
|x′|2 + C+

))

+ P−
(
Q−1(ω2

2
|x′|2 + C−))+ P+

(
Q−1(C+)

)
−P−(Q−1(C−)

)
.

(43)

Following Section 2, we obtain (18) by integrating Equation (16) by parts but now with
new k± (42) and f± (43). We substitute (19) in equalities (18):

2σ+

R+
0

2

( 1

R+
0

2

(
|F+| − |BR+

0
|
)
+ Q̃[r+]

)
=

∫

S1

(k+ + f+)dξ,

2σ−

R−
0

2

( 1

R−
0

2

(
|F+|+ |F−| − |BR−

0
| ± |BR+

0
|
)
+ Q̃[r−]

)
=

∫

S1

(k− + f−)dξ,
(44)

where Q̃[r±] ≡ − 1
R±

0

∫
S1

r±2 dξ − 1
3R±

0
2

∫
S1

r±3 dξ.

We can write (38) as follows

m+ =
∫

S1

dξ
∫ R+(ξ)

0

(
Q−1(ω2

2
|ξ ′|2s2 + C+

)
−Q−1(C+)

)
s2 ds +Q−1(C+)|F+|,

m− =
∫

S1

dξ
∫ R−(ξ)

R+(ξ)

(
Q−1(ω2

2
|ξ ′|2s2 + C−)−Q−1(C−)

)
s2 ds +Q−1(C−)|F−|.

In view of (3), we have

0 =
∫

S1

dξ
∫ R+(ξ)

0

(
Q−1(ω2

2
|ξ ′|2s2 + C+

)
−Q−1(C+)

)
s2 ds

+ ρ+
(
|F+| − |BR+

0
|
)
+ |F+|

(
Q−1(C+)− ρ+

)
,

0 =
∫

S1

dξ
∫ R−(ξ)

R+(ξ)

(
Q−1(ω2

2
|ξ ′|2s2 + C−)−Q−1(C−)

)
s2 ds

+ ρ−
(
|F−| − |BR−

0
|+ |BR+

0
|
)
+ |F−|

(
Q−1(C−)− ρ−

)
.

(45)
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By expressing the differences |F+| − |BR+
0
| and |F−| − |BR−

0
| + |BR+

0
| from equali-

ties (45), and substituting them in (44), we arrive at

2σ+

R+
0

2

{ −1

ρ+R+
0

2

( ∫

S1

dξ
∫ R+(ξ)

0

(
Q−1(ω2

2
|ξ ′|2s2 + C+

)
−Q−1(C+)

)
s2 ds

+ |F+|
(
Q−1(C+)− ρ+

))
+ Q̃[r+]

}
=
∫

S1

(k+ + f+)dξ (46)

and

2σ−

R−
0

2

{
−1

ρ−R−
0

2

{ ∫

S1

dξ
∫ R−(ξ)

R+(ξ)

(
Q−1(ω2

2
|ξ ′|2s2 + C−)−Q−1(C−)

)
s2 ds

+ |F−|
(
Q−1(C−)− ρ−

)

+
ρ−

ρ+

( ∫

S1

dξ
∫ R+(ξ)

0

(
Q−1(ω2

2
|ξ ′|2s2 + C+

)
−Q−1(C+)

)
s2 ds

+ |F+|
(
Q−1(C+)− ρ+

))}
+ Q̃[r−]

}
=

∫

S1

(k− + f−)dξ. (47)

Next, we represent system, (16), (39), (46), and (47) in the form of vector Equation (23)
with Φ(φ) = (Φ±

1 , Φ2, Φ±
3 ), φ ≡ (r±, ω, λ±), λ± ≡ Q−1(C±)− ρ±,

Φ±
1 (φ) =

σ±

R±2

0

(
∆S1 r± + 2r±

)
− k± − f±,

Φ2(φ) = ω
∫

S1

|ξ ′|2 dξ

R+
0 +r+∫

0

Q−1
(ω2

2
|ξ ′|2s2 + C+

)
s4 ds

+ ω
∫

S1

|ξ ′|2 dξ

R−
0 +r−∫

R+
0 +r+

Q−1
(ω2

2
|ξ ′|2s2 + C−

)
s4 ds − β, (48)

Φ+
3 (φ) =

2σ+

R+
0

2

{
1

ρ+R+
0

2

( ∫

S1

dξ

R+
0 +r+∫

0

(
Q−1(ω2

2
|ξ ′|2s2 + C+

)
−Q−1(C+)

)
s2 ds

+ |F+|λ+

)
− Q̃[r+]

}
+

∫

S1

(k+ + f+)dξ,

Φ−
3 (φ) =

2σ−

R−
0

2

{
1

ρ−R−
0

2

{∫

S1

dξ

R−
0 +r−∫

R+
0 +r+

(
Q−1(ω2

2
|ξ ′|2s2 + C−)−Q−1(C−)

)
s2 ds + |F−|λ−

+
ρ−

ρ+

( ∫

S1

dξ

R+
0 +r+∫

0

(
Q−1(ω2

2
|ξ ′|2s2 + C+

)
−Q−1(C+)

)
s2 ds

+ |F+|λ+

)}
− Q̃[r−]

}
+

∫

S1

(k− + f−)dξ.
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Then, we apply again implicit function theorem to (23). To this end, we calculate the
Fréchet derivative of Φ at zero and linearize (23) at this point. As a result, one has (24) with
Φ′(0) = (Φ±

1
′, Φ′

2, Φ±
3
′
)(0),

Φ+
1
′
(0)φ =

σ+

R+2

0

(
∆S1 r+ + 2r+

)
+ P+′

(ρ+)λ+ −P−′
(ρ−)λ−,

Φ−
1
′
(0)φ =

σ−

R−2

0

(
∆S1 r− + 2r−

)
+ P−′

(ρ−)λ−,

Φ′
2(0)φ = ωρ+

∫

S1

|ξ ′|2 dξ
∫ R+

0

0
s4 ds + ωρ−

∫

S1

|ξ ′|2 dξ
∫ R−

0

R+
0

s4 ds

=
8π

15
ω
{

ρ+R+
0

5
+ ρ−

(
R−

0
5 − R+

0
5)},

Φ+
3
′
(0)φ =

2σ+

R+
0

2

|BR+
0
|λ+

ρ+R+
0

2 − 4πP+′
(ρ+)λ+ + 4πP−′

(ρ−)λ− (49)

= 4π
{( 2σ+

3ρ+R+
0
−P+′

(ρ+)
)

λ+ + P−′
(ρ−)λ−

}
,

Φ−
3
′
(0)φ =

2σ−

R−
0

2
1

ρ−R−
0

2

{(
|BR−

0
| − |BR+

0
|
)
λ− +

ρ−

ρ+
|BR+

0
|λ+

}
− 4πP−′

(ρ−)λ−

= 4π
{2σ−R+

0
3

3ρ+R−
0

4 λ+ +
(2σ−(R−

0
3 − R+

0
3
)

3ρ−R−
0

4 −P−′
(ρ−)

)
λ−

}
,

and ψ(φ) = Φ(φ)− Φ′(0)φ ≡
(
ψ±

1 (φ), ψ2(φ), ψ±
3 (φ)

)
, where

ψ+
1 (φ) =P+(Q−1(C+))−P+(ρ+)−P−(Q−1(C−)) + P−(ρ−)−P+′

(ρ+)λ+

+ P−′
(ρ−)λ− − f+,

ψ−
1 (φ) =P−(Q−1(C−))−P−(ρ−)−P−′

(ρ−)λ− − f−,

ψ2(φ) =ω
∫

S1

|ξ ′|2 dξ
∫ R+

0

0

{
Q−1

(ω2

2
|ξ ′|2s2 +Q(ρ+ + λ+)

)
− ρ+

}
s4 ds

+ ω
∫

S1

|ξ ′|2 dξ
∫ R+

0 +r+

R+
0

Q−1
(ω2

2
|ξ ′|2s2 +Q(ρ+ + λ+)

)
s4 ds

+ ω
∫

S1

|ξ ′|2 dξ
∫ R−

0

R+
0

{
Q−1

(ω2

2
|ξ ′|2s2 +Q(ρ− + λ−)

)
− ρ−

}
s4 ds

+ ω
∫

S1

|ξ ′|2 dξ
∫ R−

0 +r−

R−
0

Q−1
(ω2

2
|ξ ′|2s2 +Q(ρ− + λ−)

)
s4 ds − β,

ψ+
3 (φ) =

2σ+

R+
0

2

{
1

ρ+R+
0

2

( ∫

S1

dξ

R+
0 +r+∫

0

(
Q−1(ω2

2
|ξ ′|2s2 + C+

)
−Q−1(C+)

)
s2 ds

+ (|F+| − |BR+
0
|)λ+

)
− Q̃[r+]

}

+
∫

S1

(
k+ −P+′

(ρ+)λ+ + P−′
(ρ−)λ− + f+

)
dξ,
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ψ−
3 (φ) =

2σ−

R−
0

2

{
1

ρ−R−
0

2

{∫

S1

dξ

R−
0 +r−∫

R+
0 +r+

(
Q−1(ω2

2
|ξ ′|2s2 + C−)−Q−1(C−)

)
s2 ds

+
ρ−

ρ+

( ∫

S1

dξ

R+
0 +r+∫

0

(
Q−1(ω2

2
|ξ ′|2s2 + C+

)
−Q−1(C+)

)
s2 ds

+ (|F+| − |BR+
0
|)λ+

)
+

(
|F−| − |BR−

0
|+ |BR+

0
|
)
λ−

}
− Q̃[r−]

}

+
∫

S1

(
k− −P−′

(ρ−)λ− + f−
)

dξ.

We recall the notation: X = C̃2+α × C̃2+α ×R×R×R and Y = C̃α × C̃α ×R×R×R.
By means of fixed point theorem, we are going to prove the solvability of system (23)
with (48) in X .

The existence of a unique solution r ∈ C̃2+α(S1) to (25) and the estimate for it are
discussed in Section 2. The operator Φ′

2(0) is invertible. In addition, we have assumed
that the determinant of two equations Φ±

3
′
(0)φ = −ψ±

3 (φ) with relations (49) is not equal
to zero:

( 2σ+

3ρ+R+
0
−P+′

(ρ+)
)(2σ−(R−

0
3 − R+

0
3
)

3ρ−R−
0

4 −P−′
(ρ−)

)
− 2σ−P−′

(ρ−)R+
0

3

3ρ+R−
0

4 ̸= 0. (50)

Therefore, the vector value operator Φ′(0) : X → Y is invertible too, and the solution
obeys inequality (27). Hence, one can write Equation (24) in the form (28).

We estimate the operator ψ in the same way as in Section 2. Using formulas similar
to (29) for the new functions f±, we deduce inequalities similar to (31) for two values of
the arguments φ = (r±, ω, λ±) and φ′ = (r±′, ω′, λ±′

) ∈ X , which satisfy estimates (30).
By repeating the arguments of Section 2, we conclude that Aψ(φ) is a contraction

operator if inequality (33) holds. Hence, fixed point theorem guarantees the existence of
a unique solution to Equation (28) in the ball {∥φ∥X ⩽ η}, with η satisfying (32). There-
fore, (23) with Φ(φ) given by (48) is also uniquely solvable for β such that condition (33)
holds. This inequality implies an estimate for ε in (40).

Estimate (41) follows from (34) if c2c3ηα ⩽ 1
2 .

4. Conclusions

Thus, we have studied the stationary Navier–Stokes equations with interface condi-
tions that follow from the continuity of the velocity vector field and momentum conserva-
tion when passing across the interface between the media. Similar conditions are posed
on the free boundary. We have shown that, if the pressure is given by a smooth increasing
function of fluid densities, and problem data are small and satisfy a certain condition, then
for a two-layer compressible fluid under low angular momentum there exist axisymmetric
equilibrium figures close to embedded balls (Theorem 2).

The next stage of investigation of the problem will consist in proving the existence of
a global solution to the nonstationary problem for small initial data and their tendency to
the stationary solution (V , ρ), as well as in studying the stability of equilibrium figures
obtained. We hope that new our papers will deal with these investigations.

In addition, we note that our analysis has been carried out for the case of neglecting
the gravity of liquids. This situation is realized in space, and our two-layer gas cloud can
be considered, for example, as a gaseous planet or another cosmic rotating body.
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