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Abstract: Disassembling discarded electrical products plays a crucial role in product recycling,
contributing to resource conservation and environmental protection. While disassembly lines are
progressively transitioning to automation, manual or human–robot collaborative approaches still
involve numerous workers dealing with hazardous disassembly tasks. In such scenarios, achieving
a balance between low risk and high revenue becomes pivotal in decision making for disassembly
line balancing, determining the optimal assignment of tasks to workstations. This paper tackles a
new disassembly line balancing problem under the limitations of quantified penalties for hazardous
component disassembly and the switching time between adjacent tasks. The objective function is
to maximize the overall profit, which is equal to the disassembly revenue minus the total cost. A
mixed-integer linear program is formulated to precisely describe and optimally solve the problem.
Recognizing its NP-hard nature, a metaheuristic algorithm, inspired by human idea generation and
population evolution processes, is devised to achieve near-optimal solutions. The exceptional perfor-
mance of the proposed algorithm on practical test cases is demonstrated through a comprehensive
comparison involving its solutions, exact solutions obtained using CPLEX to solve the proposed
mixed-integer linear program, and those of competitive peer algorithms. It significantly outperforms
its competitors and thus implies its great potential to be used in practice. As computing power
increases, the effectiveness of the proposed methods is expected to increase further.

Keywords: brain-storm optimization; clustering; disassembly line balancing problem; genetic operators;
hazardous disassembly penalty; switching time

MSC: 90-08

1. Introduction

In the last few years, electronic and electrical products have been updated faster and
faster, resulting in a dramatic accumulation of discarded products (also called e-waste).
E-waste has reached a staggering amount, but the recycling rate is relatively low, which
causes some serious social problems such as resource shortage and environmental pollution.
E-waste contains many valuable parts that can be recycled. Recycling is meaningful to not
only save resources and materials but also reduce potential environmental pollution. Thus,
researching e-waste recycling has become a hot issue in current society. Disassembly is an
important step in product recycling. Removing valuable parts from an end-of-life product

Mathematics 2024, 12, 9. https://doi.org/10.3390/math12010009 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12010009
https://doi.org/10.3390/math12010009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5858-4489
https://orcid.org/0000-0003-4176-3947
https://orcid.org/0000-0002-4578-2726
https://doi.org/10.3390/math12010009
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12010009?type=check_update&version=2


Mathematics 2024, 12, 9 2 of 19

through a series of disassembly actions is performed on a disassembly line, which consists
of a set of disassembly workstations. How to assign disassembly tasks to workstations of
a disassembly line to optimize an/multiple objective function(s) under the condition of
satisfying specific constraints is a disassembly line balancing problem (DLBP), which has
been widely studied in recent years [1,2].

Some disassembly tasks are risky because the e-waste may have hazardous compo-
nents, which involve the presence of toxic substances, radioactive materials, or high-voltage
components. Since many human workers are employed in manual or human–robot col-
laborative disassembly lines for dealing with tasks with hazardous parts, the safety of
the disassembly process must be considered to avoid accident occurrences that would
produce serious social impacts. A low-risk and high-profit disassembly process is the most
desired by decision makers [3]. Motivated by this aim, this paper studies a novel linear
disassembly line balancing problem, additionally considering the hazardous disassembly
penalties and switching time (LDPHS), which has never been studied in previous work.
It aims to disassemble parts with high recycling value [4–7] and reduce disassembly risk
due to hazardous components. Although some existing studies have dealt with hazardous
parts in disassembly line balancing problems [8,9], they usually consider removing them
earlier but not their specific penalties. In LDPHS, specific disassembly penalties are given
to hazardous parts. It allows decision makers to have a quantitative representation of the
hazard degree of different parts. Moreover, the switching time between adjacent tasks is
considered in this work, which imposes additional idle time and thus has an important
impact on decision making.

DLBPs can be classified into linear [10], parallel [11], bilateral [12], and U-shaped [13]
ones according to different disassembly line layouts. Although the last three layouts are the
new variants of a linear one, they are rarely used in practice due to two main limitations.
One is that they have complicated labor divisions and thus high requirements on the skills
of workers and robots. The other is that they bring high pressure on the capital input since
each disassembly station requires a complete set of disassembly equipment and tools. Thus,
at present, a linear disassembly line is commonly used in practice. It has the advantages
of batch disassembly, high disassembly efficiency, clear labor division, and low capital
input. Hence, it is necessary and meaningful to study DLBPs on a linear disassembly line
to promote their development and progress. The LDPHS considered in this work focuses
on a linear layout of the disassembly line.

The methods for solving DLBPs mainly include heuristic algorithms [14], mathe-
matical programming methods [15], and intelligent optimization algorithms [16]. The
principles of heuristic algorithms are simple and easy to operate, but the accuracy is limited.
Mathematical programming methods can obtain exact solutions for small-scale combi-
natorial optimization problems [17]. However, due to the NP-hardness of DLBPs [18],
large-scale DLBPs cannot be handled effectively by using mathematical programming
methods. Intelligent optimization algorithms, such as genetic algorithms [19–22], memetic
algorithms [23–26], iterated greedy algorithms [27–30], the teaching-learning-based opti-
mization algorithm [31,32], and some multi-objective ones [33,34], are widely used for
solving DLBPs and challenging optimization problems. Brain-storm optimization (BO) is a
high-performing intelligent optimization algorithm that was first proposed in [35]. It has
been widely applied to solve industrial problems [36,37] in recent research and shows great
performance. Its principle mimics the processes of social contact and the idea generation of
people, where better ideas are constantly stimulated through the interaction of ideas among
people. b Motivated by this, to solve the considered LDPHS, this work designs an improved
BO (IBO) by introducing similarity-based clustering and incorporating genetic operators.
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The specific contributions of this work are as follows:

(1) It studies a new linear disassembly line balancing problem, which arises from a
practical e-waste disassembly process and considers the switching time between tasks
and the hazardous disassembly penalty. The new problem is formulated into a mixed-
integer linear program that can mathematically describe the concerned problem and
exactly solve some limited-scale instances;

(2) It designs an improved brain-storm optimization algorithm to solve large-scale prob-
lems where genetic operators and similarity-based clustering are embedded into
the framework of a basic brain-storm optimization algorithm. Although the pro-
posed mixed-integer linear program can accurately solve small-scale problems, its
performance in solving large-scale problems is very limited. In order to solve large-
scale problems in practical industrial applications, it is necessary to design such
high-performing approximation algorithms;

(3) It conducts computational experiments to show the high performance of the proposed
algorithm. The test cases used in this work are all disassembly cases in practical indus-
trial problems, and their scale ranges from 6 to 46 disassembly tasks. Experimental
results show that the proposed algorithm can obtain exact solutions of small-scale
cases and high-accuracy solutions of large-scale cases. It significantly outperforms its
competitive peers.

The rest of this paper is organized as follows. Section 2 introduces the concerned
LDPHS and formulates it into a mixed-integer linear program. Section 3 designs an IBO
algorithm. Section 4 reports the experimental results of the proposed model and algorithm
to show their effectiveness and great performance in solving the considered problem.
Section 5 summarizes this work and discusses future research directions.

2. Problem Description and Modeling
2.1. Problem Description

A disassembly line consists of a set of workstations. A disassembly line balancing
problem aims to assign tasks to workstations according to certain criteria. During the
disassembly process of e-waste, some disassembly tasks may be hazardous. Hazardous
disassembly tasks refer to the process of dismantling components that may pose risks or
hazards to the environment, human health, or safety. The hazardous nature of disassembly
can arise from the presence of toxic substances, radioactive materials, or high-voltage
components. These situations are real in the industrial disassembly of e-waste. We consider
the penalties of such hazardous disassembly tasks in the LDPHS, which are called the
“hazardous disassembly penalty”. The LDPHS aims to assign disassembly tasks to work-
stations on a linear disassembly line to maximize the total profit. By referring to an actual
disassembly process, the total profit is calculated by taking into account the switching cost
of adjacent disassembly tasks, the station start-up cost, the hazardous disassembly penalty,
and the disassembly cost. Note that the LDPHS deals with an incomplete disassembly
process due to the high disassembly risk of some hazardous parts and the high cost of
some disassembly operations. There is a fixed cost for turning on a workstation and a
sequence-dependent switching time is considered between two adjacent tasks executed on
a workstation.

Figure 1 illustrates an example of a discarded electrical product that is to be disas-
sembled on a linear disassembly line, where five tasks are assigned to three workstations
that are located linearly. An AND/OR diagram can be used to describe the precedence
of disassembly and the conflict relationship in disassembly line balancing problems as
shown in Figure 1. It can describe all possible disassembly tasks, subcomponents, and
their relationships. It is an effective method to model the priority and conflict relationship
among EOL product disassembly tasks. An AND/OR diagram is made up of a series of
arrows and super arcs, where arrows indicate the sequence of tasks and super arcs represent
the tasks to be executed. Angle brackets in an AND/OR diagram indicate component
numbers. Multiple components can be obtained by executing disassembly tasks. By using
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an AND/OR diagram, the conflict relation set and priority relation set can be described
easily. In an AND/OR diagram, each task is represented by a super arc labeled by integers
1, 2, ..., J, where J is the number of disassembly tasks. The nodes in the figure represent
the subcomponents of the product. Each node corresponds to a subcomponent indexed
from ⟨1⟩ to ⟨I⟩, where I is the number of all subcomponents. If we obtain a subcomponent
q by disassembling subcomponent p, then we define p as the parent subcomponent of q
and q as the child subcomponent of p. For example, subcomponent ⟨2⟩ in the AND/OR
graph shown in Figure 1 is disassembled by task 10 to obtain subcomponents ⟨5⟩ and ⟨18⟩,
and thus, subcomponent ⟨2⟩ is the parent one, and subcomponents ⟨5⟩ and ⟨18⟩ are the
subcomponent ones. The super arcs caused by disassembling multiple tasks of the same
component are mutually exclusive (i.e., conflict). For example, tasks 10 and 11 conflict
with each other. A disassembly incidence matrix D = [dij] is constructed to define the
relationships between subcomponents and tasks:

dij =


1, If subcomponent i can be obtained after task j;
−1, If subcomponent i is disassembled via task j;
0, Otherwise.

A disassembly incidence matrix of the example given in Figure 1 is shown as follows.

D =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 −1
0 0 0 1 0 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0


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Figure 1. Illustration of a disassembly line balancing problem.

Given an AND/OR graph of a product to be disassembled, a feasible disassembly
sequence can be easily obtained. Then, the tasks in the disassembly sequence are assigned
to given workstations to maximize the total profit.

2.2. Mathematical Model

To provide a rigorous mathematical description, we formulate LDPHS into a mixed-
integer linear program. The related symbols and decision variables used in the model are
defined as follows:
Sets:

J : Set of tasks.

I : Set of components.

W : Set of workstations.

K : Set of candidate tasks on each workstation.

JC
j : Set of tasks conflicting with task j.

JP
j : Set of the preceding tasks of task j.

Indexes:

j : Disassembly task index, j = 1, 2, . . . , J, where J is the number of tasks.

i : Subcomponent index, i = 1, 2, . . . , I, where I is the number of subcomponents.

k : Candidate position index to arrange tasks, k = 1, 2, . . . , K, where K is the number

of candidate tasks on each machine.

w : Workstation index, w = 1, 2, . . . , W, where W is the number of workstations.
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Parameters:

T : Work cycle of each workstation.

K : The number of tasks.

W : The number of workstations.

CS : Task switching cost per unit time.

Tj,w : Disassembly time of task j at workstation w.

Cj,w : Disassembly cost of task j at workstation w.

CW
w : Fixed cost when workstation w is turned on.

Hj,w : Hazardous penalty for task j on workstation w.

Sj,j′ ,w : Switching time when tasks j and j′ are executed

consecutively on workstation w.

Pi : Revenue of component i.

Decision variables:

xj,w,k =

{
1, If task j is the k-th task on workstation w;
0, Otherwise.

yw =

{
1, If workstation w is used;
0, Otherwise.

zw,k: The required switching time before performing the k-th task on workstation w.

Based on these symbols and decision variables, a mixed-integer linear program is given
as follows:

max ∑
j∈J

∑
w∈W

∑
i∈I

∑
k∈K

Pidijxj,w,k − ∑
j∈J

∑
w∈W

∑
k∈K

Cjxj,w,k

− ∑
w∈W

∑
k∈K

CSzw,k − ∑
w∈W

CW
w yw − ∑

j∈J
∑

w∈W
∑

k∈K
Hj,wxj,w,k

(1)

subject to: ∑
w∈W

∑
k∈K

xj,w,k ≤ 1, ∀j ∈ J (2)

∑
j∈J

xj,w,k ≤ 1, ∀w ∈ W, k ∈ K (3)

∑
j∈J

xj,w,k ≥ ∑
j∈J

K−1

∑
k′=1

xj,w,k+1, ∀w ∈ W (4)

∑
w∈W

∑
k∈K

xj,w,k + ∑
j′∈JC

i

∑
w∈W

∑
k∈J

xj′ ,w,k ≤ 1, ∀j ∈ J (5)

xj,w,k ≤ ∑
j′∈JP

j

W−1

∑
w′=1

∑
k′∈K

xj′ ,w′ ,k′ + ∑
j′∈JP

j

K−1

∑
k′=1

xj′ ,w,k′ , ∀w ∈ W, ∀j ∈ J (6)

zw,k ≥ Sj,j′ ,w

(
xj,w,k−1 + xj′ ,w,k − 1

)
, ∀w ∈ W, ∀j, j′ ∈ J, ∀k ∈ K (7)
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∑
j∈J

∑
k∈K

xj,w,k ≤ Myw, ∀w ∈ W (8)

∑
j∈J

∑
k∈K

Tjxj,w,k + ∑
k∈K

Zw,k ≤ T, ∀w ∈ W (9)

xj,w,k ∈ {0, 1}, ∀j ∈ J, ∀w ∈ W, ∀k ∈ K (10)

yw ∈ {0, 1}, ∀w ∈ W (11)

Objective Function (1) is to maximize the profit of disassembly, which is equal to the
disassembly revenue minus the total cost. The total cost includes the disassembly cost,
adjacent task-switching cost, workstation start-up cost, and hazardous disassembly penalty.
Constraint (2) ensures that a task can only be executed once at most. Namely, a task can
only be executed on at most a position of a workstation. Constraint (3) ensures that, at
most, only one task can be executed in a position. Constraint (4) guarantees that when there
is a task on a disassembly position, i.e., ∑j∈J ∑K−1

k′=1 xj,w,k+1 = 1, there must be a task on
its previous position, i.e., ∑j∈J xj,w,k = 1. Constraints (2)–(4) determine the assignment of
disassembly tasks to workstations, which needs to further satisfy the conflict constraints (i.e.,
Constraint (5)) and priority task constraints (i.e., Constraint (6)). Constraint (5) guarantees
that conflict tasks cannot be executed at the same time. In other words, if task j is executed,
none of the tasks in JC

j can be executed. Constraint (6) ensures that a task can be executed
only if its preceding task has been executed earlier than it. Constraint (7) calculates the
switching time between two immediately adjacent tasks j and j′. Constraint (8) determines
whether a workstation is turned on according to the relationships of decision variables xj,w,k
and yw. If any task is assigned to workstation w, i.e., ∑j∈J ∑k∈K xj,w,k = 1, the workstation
has to be turned on, i.e., yw = 1. Constraint (9) limits the work cycle of each workstation to
no longer than T. Constraints (10) and (11) are the ranges of the decision variables.

3. Proposed Algorithm

Recently, many bionics algorithms [38,39] have been designed to solve disassembly line
balancing problems. In this paper, an improved brain-storm optimization (IBO) algorithm
is designed to solve the concerned LDPHS. A brain-storm optimization algorithm is derived
from Smith’s simulation of the process of human brainstorming meetings [35], including
three iterated stages, i.e., clustering, new individual generation, and selection. Brain-storm
optimization algorithms have been widely used in solving industrial optimization problems
because of their simplicity and easy implementation [40]. However, to the authors’ best
knowledge, they have rarely been attempted as a means to solve DLBPs [41]. Motivated
by their success in other optimization problems, we adopt and adapt one for solving the
LDPHS. In addition to the basic framework of a brain-storm optimization algorithm, the
presented IBO integrates genetic operators, i.e., crossover and mutation operators, to assist
the process of new idea generation of a basic brain-storm optimization algorithm.

3.1. The Procedure of IBO

The presented IBO has an easy framework as illustrated in Figure 2, which includes
four main steps:

(a) Initial population generation: Monte Carlo random simulation is conducted to gen-
erate a disassembly task set. The conflict tasks are not allowed to be included in the
set for feasibility. Then, the tasks in the set are sorted according to their precedence
relationship to form a feasible solution. This step imitates different ideas from people
in different fields.
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(b) K-means-based clustering: The individuals are clustered according to similarity de-
grees. Their average similarity degree is set to a cluster center. Specifically, a K-means
clustering algorithm [42] is used to cluster the individuals. The center is the local
optimal solution of each cluster. The best solution obtained in each iteration can be
determined by comparing each cluster center. This step mimics a process of gathering
people with similar ideas.

(c) New individual generation: Genetic-based individual generation operators, including
crossover and mutation, are used to generate new individuals. This step mimics
different people coming together to brainstorm new ideas.

(d) Selection and updating: The local optimal solution obtained in the generation is
selected and used to update the global optimal solution in all generations.

Repeat steps (b)∼(d) until the maximum number of iterations is reached. During the
iteration, the incident matrix introduced in Section 2 is used to judge the feasibility of the
solutions. For a feasible solution, objective Function (1) is used to calculate its fitness, i.e.,
total profit, since the values of all decision variables can be known for a specific individual.

Figure 2. Procedure of IBO.

3.2. Clustering Phase

A K-means clustering algorithm [43] is used in IBO, which can cluster individuals with
similar characteristics in the short term. In it, the similarity of two individuals is related
to the length of their identical segments and the total lengths of their coding. Specifically,
for two individuals with lengths m and n, respectively, who share an identical sequence
of length I, their similarity can be quantified as I/max(n, m). The distance (denoted
as d) between the two individuals is calculated as d = 1 − I/max(n, m). For example,
for two individuals, 1→3→5→7 and 1→3→13, m = 4, n = 3, the same part of the two
individuals is 1→3, thus I = 2, the similarity of the two individuals is 2/max(4, 3) = 0.5,
and d = 1 − 0.5 = 0.5. Having the distances between any two of the individuals, K
individuals are randomly selected from the population whose fitness values are used
as cluster centers, where K is a parameter to be set. Other individuals are divided into
different clusters according to the distance from the cluster centers. Then, the average
fitness value of all individuals in a cluster is calculated and used as a new cluster center.
This clustering procedure continues until cluster centers are not changed anymore. The
specific operation is shown in Algorithm 1, in which A and B are two solutions, Ai and
Ai+1 are two sequential tasks in A, and Bi and Bi+1 are two sequential tasks in B.
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Algorithm 1: Clustering
Input: Initial population, cluster count K.
Output: Clusters

Begin
Take out two individuals I1 and I2 each time and set I = 0.
Compare the elements at each position of I1 and I2.
while (I1 !=NULL and I2 !=NULL) do

if (I1
i ,I1

i+1)==(I2
j ,I2

j+1) then

I1 and I2 contains the same disassembly task.
Record the occurrence times of this situation by I = I + 1.

end if
Calculate the distance d between I1 and I2.

end while
Randomly assign K individuals as cluster centers.
for i = 0 to N do

// N is the individual count
if The center of a cluster L is closest to i then

Arrange i in cluster L.
Calculate all individual fitness in each cluster.
The average of individual fitness is defined as a new cluster center.

end if
end for
End

3.3. Clustering-Based Brainstorm

New individual generation relies on a clustering-based brainstorm procedure, which
includes five operators: random thinking, cluster center independent thinking, ordinary
individual fusion thinking, cluster center fusion thinking, and ordinary individual inde-
pendent thinking.

• Random thinking refers to the random generation of an individual. If the individual
is better than a cluster center, then replace it.

• Cluster center independent thinking refers to a mutation operation conducted on a
randomly selected cluster center, to jump out of a local optimal solution.

• Ordinary individual independent thinking refers to a mutation operation conducted
on a randomly selected individual. If the new individual is better than the original
one, then replace it.

• Cluster center fusion thinking refers to a crossover operation conducted on two
randomly selected cluster centers to achieve fusion.

• General individual fusion thinking refers to a crossover operation conducted on two
randomly selected individuals.

The specific execution process of the clustering-based brainstorm procedure is shown
in Algorithm 2. In it, p1 is a probability for determining that a new individual is generated
from one or two ordinary individuals, p2 is a probability for determining that a new
individual is generated from one cluster center or an ordinary individual, and p3 is a
probability to determine that a new individual is generated from two cluster centers or two
ordinary individuals.
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Algorithm 2: Clustering-based brainstorm procedure
Input: Population and clusters, p1, p2, p3.
Output: New individuals.

Begin
for i = 0 to population size do

Randomly generate a real number rg ∈ [0, 1) .
if rg < p1 then

Select a cluster randomly along with generating a random value ro ∈ [0, 1).

if ro < p2 then
Randomly select a cluster center and then generate a new individual via
mutation.

else
Randomly select an individual and then generate a new one via mutation.

end if
else

Randomly generate a value rt ∈ [0, 1).
if rt < p3 then

Randomly select two cluster centers and then get two new individuals by
adopting crossover.

else
Randomly select two individuals and then get two new ones by adopting
crossover.

end if
end if
Gain the newly formed individuals

end for
End

3.4. Genetic Operators

Crossover and mutation operators in genetic algorithms are adopted to generate new
individuals in the aforementioned clustering-based brainstorm. A crossover operator
is used to simulate the strategy of generating new individuals based on two previous
individuals by crossing their genes. A mutation operator is used to simulate the strategy of
generating new individuals by changing one or more genes based on a previous individual.

(a) Crossover operator: To increase the diversity of solutions, a problem-specific crossover
operator is designed in IBO. Multiple intersection points of two paternal chromo-
somes are randomly selected and the intersection points of the two chromosomes are
exchanged to generate new chromosomes. Figure 3 shows an example of a crossover
process. In it, the selected intersection points are 2, 3, and 6. The tasks of intersection
points in the two individuals are 10, 5, 14 and 3, 4, 14, respectively. According to them,
each original disassembly sequence is split into two subsequences. Then the obtained
subsequences are crossed over and merged to obtain the new individuals.

(b) Mutation operator: In order to further enhance the diversity of the population, a
new mutation operator is designed under the premise of ensuring its feasibility. A
mutation position is randomly selected on a chromosome. Genes from this position
are inserted randomly anywhere on the chromosome. Figure 4 shows an example of a
mutation process. In it, the fourth gene in a parent individual is selected and inserted
into the next position.
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Figure 3. An example of crossover operator.

Figure 4. An example of mutation operator.

4. Computational Experiments
4.1. Benchmark Data

Five actual and benchmark disassembly instances with different scales are used for our
experiments including a lamp [41], a washing machine [44], a car battery, a radio [45], and
a hammer drill [46]. The parameters of the objective function such as the revenue, cost, and
penalty are collected and adapted from practical industrial settings. The desensitized data
are available on request. The number of disassembly tasks J and the number of components
I determine the scale of an instance. The specific scales of the test cases are shown in Table 1.
For the largest-scale case, i.e., case 5, it contains 46 disassembly tasks and 62 components.

Table 1. Scales of the test cases.

Case Product Number of
Disassembly Tasks

Number of
Components

1 Lamp 6 7
2 Washing machine 13 15
3 Car battery 20 24
4 Radio 30 29
5 Hammer drill 46 62

4.2. Compared Methods

Numerous experiments were conducted to test the performance of the proposed al-
gorithm. Its solutions were compared with the optimal solutions and those obtained by
four newly proposed competitive metaheuristic algorithms including the Grey Wolf Opti-
mizer (GWO) [47], the Whale Optimization Algorithm (WOA) [48], the Dingoes-hunting
Optimization Algorithm (DOA) [49], and the Carnivorous Plant Algorithm (CPA) [50]. The
optimal solutions were obtained by solving the proposed mathematical model with CPLEX
v.12.6.3 under default parameters and configurations. The algorithms were coded in Java
and implemented on a computer with the configuration: Intel(R) Core(TM) i7-11800H @
2.30 and Windows 10 operation system.

When using CPLEX to solve an instance, we limited its running time to 3600 s. The
parameter settings of IBO refer to the reference [3]. Specially, the population size was 10,
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the number of clusters was 5, p1 = 0.8, p2 = 0.4, p3 = 0.5, and the maximum number of
iterations was 500. The compared algorithms used the same population size and iteration
times for a fair comparison. Their specific parameter calibrations and settings refer to the
existing literature, which can be found in [47,49–51].

4.3. Ablation Study

Genetic operators and a similarity-based clustering mechanism were specifically de-
signed for the problem in the proposed IBO. Before comparing the IBO with its competitors,
we first conducted an ablation study to verify the effectiveness of them. In it, we removed
the crossover operator, mutation operator, and similarity-based clustering mechanism
from IBO, respectively, resulting in three variants of IBO named IBO-C, IBO-M, and IBO-S.
We compared the performance of IBO and the three variants by comparing the results
obtained after each of the four comparison algorithms independently ran 20 times to solve
the largest-scale case, i.e., case 5. The comparison is shown in Figure 5. It can be seen
that IBO significantly outperforms its variants both in accuracy and stability. Hence, we
conclude that the genetic operators and similarity-based clustering mechanism all play a
key role in IBO. It is their combined effect that makes IBO show excellent performance.

Figure 5. Ablation study.

4.4. Performance Metrics

When comparing IBO with its competitive peers, their accuracy and efficiency are
compared by using four performance metrics:

(1) The objective function value, i.e., the total profit of a solution, obtained by a solution method.
(2) The gap to the solution obtained by CPLEX. This is used to evaluate the accuracy of

an algorithm. CPLEX can optimally solve the proposed mixed-integer linear program
for some cases in our experiments. The exact solutions obtained by it are marked in
bold in the experimental results (to be introduced later). Let ObjAlg and ObjCPLEX mean
the objective function values of two solutions obtained by an algorithm and CPLEX,
respectively. This metric is calculated by using (ObjAlg −ObjCPLEX)/ObjCPLEX ∗ 100%.

(3) The gap to the solution obtained by IBO. This is used to validate the superiority
of the proposed algorithm to its competitors. It compares the solution obtained by
an algorithm with the one obtained by our algorithm. Let ObjAlg and ObjIBO mean
the objective function values of two solutions obtained by a competitor and IBO,
respectively. This metric is calculated by using (ObjIBO − ObjCom)/ObjCom ∗ 100%.

(4) Running time. This is used to evaluate the efficiency of an algorithm. The average
running time of our algorithm for solving a case is reported and compared with those
compared methods.
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4.5. Performance Comparison

The experimental results for the test cases are compared in Tables 2–6. After analyzing
the results from them, we present the following discussions:

(1) Solving the proposed mathematical model directly by using CPLEX can obtain the
optimal solutions for cases 1–4 in limited time, which verifies the effectiveness of the
presented model. However, for a large-scale instance, i.e., case 5 reported in Table 6,
CPLEX struggles to find its optimal solution within the limited time since CPLEX’s
performance can degrade as the scale of an optimization problem increases. As a com-
binatorial optimization problem, the concerned LDPHS is NP-hard, which requires
exponential time to find its optimal solution. Thus, a large-scale case with a large
number of decision variables and constraints becomes computationally expensive
and cannot be optimally solved within the limited time. Note that, for case 5, the total
profit (2564) obtained by CPLEX is the best-found feasible solution (i.e., the lower
bound) and the relaxed solution reported by CPLEX (i.e., the upper bound) is 7661.
Moreover, CPLEX reports that it takes 49 s to find a solution for case 5 but cannot find
the optimal solution within an hour. Typically, a solution time in the order of minutes
is acceptable in industrial scenarios [52]. Numerous existing studies also emphasize
the necessity of making decisions on analogous disassembly line balancing problems
within minutes [18,53,54]. In addition, the cycle time in disassembly line balancing
problems generally resides within the realm of minutes [46,55], which underscores the
need to make timely decisions. Thus, it is considerably time-consuming for practical
industrial application scenarios to solve the mathematical model by CPLEX. In addi-
tion, huge fluctuations in the solution time of CPLEX imply it is not too unreliable to
be directly used in industry, and thus indicate the need to design metaheuristics.

(2) For an instance with a small size such as cases 1 and 2, the presented IBO can obtain
the same solution as that obtained by CPLEX, which means that it can optimally
solve them. For medium-scale instances such as cases 3 and 4, although the presented
IBO cannot obtain the optimal solutions that CPLEX can, it can obtain a competitive
solution with a relatively low gap in a short time that is much faster than CPLEX. For
a large-scale instance, i.e., case 5, which cannot be optimally solved by using CPLEX,
the presented IBO can solve it very quickly and obtain a great solution (with a 44.01%
improvement), showing that it has a great advantage over competitors.

(3) Case 1 is the simplest case, which can be optimally solved by all of the compared
algorithms. Thus the gaps reported in Table 2 are 0% for all the algorithms. When
solving case 2, IBO, CPA, and WOA can still obtain optimal solutions, while GWO
and DOA cannot, with gaps of 2.66% and 5.39% to the optimal solution as reported
in Table 3. For cases 3–5, IBO shows the best performance and obtains much better
solutions than those of its peers. These indicate its great advantages in accuracy.

(4) The running time of the compared metaheuristics algorithms increases with the
scale of the cases. When solving the same case, the time consumption of different
algorithms is very close. To clearly compare their time complexity, we draw their
time consumption curves in Figure 6. It shows that IBO and its competitors have
similar time complexities. When solving the same case, no algorithm has a clear
advantage in running time. As the problem size increases, the running time of IBO
and its competitors gently increases. The largest case, i.e., case 5, takes only a few
seconds to solve, implying that IBO is fast enough to solve large-scale problems.

(5) All the test cases can be solved by using IBO in 7 s. Its high performance and low
running-time consumption imply its great potential to be used in practice.
In addition, a statistical comparison [56] of the algorithm was performed to illustrate
the advantage of IBO over its competitors. The solutions obtained by 20 independent
runs of each algorithm for solving the test cases were used to draw the box plots in
Figure 7. Since the exact solutions of small-scale cases can be easily obtained, we only
draw the box plots of the results for cases 3–5 in Figure 7. It can clearly be seen that
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IBO shows statistical advantages in the accuracy and stability, which further indicates
its high performance.

Table 2. Results comparison of disassembling a lamp (Case 1).

Total Profit Gap to the Solution
Obtained by CPLEX

Gap to the Solution
Obtained by IBO Running Time (s)

CPLEX 516 −− 0% 0.14
GWO 516 0% 0% 0.17
DOA 516 0% 0% 0.23
CPA 516 0% 0% 1.03

WOA 516 0% 0% 0.33
IBO 516 0% −− 0.19

Note: Bold indicates that the maximum total profit among the compared algorithms.

Table 3. Results comparison of disassembling a washing machine (Case 2).

Total Profit Gap to the Solution
Obtained by CPLEX

Gap to the Solution
Obtained by IBO Running Time (s)

CPLEX 1349 −− 0.00% 1.57
GWO 1314 2.66% 2.66% 0.52
DOA 1280 5.39% 5.39% 0.72
CPA 1349 0.00% 0.00% 1.32

WOA 1349 0.00% 0.00% 0.65
IBO 1349 0.00% −− 0.50

Note: Bold indicates that the maximum total profit among the compared algorithms.

Table 4. Results comparison of disassembling a car battery (Case 3).

Total Profit Gap to the Solution
Obtained by CPLEX

Gap to the Solution
Obtained by IBO Running Time (s)

CPLEX 1849 −− −16.44% 277.45
GWO 1351 36.86% 14.92% 0.84
DOA 1356 36.36% 14.61% 1.36
CPA 1376 34.38% 13.35% 2.30

WOA 1361 35.86% 14.29% 1.36
IBO 1588 16.44% −− 0.99

Note: Bold indicates that the maximum total profit among the compared algorithms.

Table 5. Results comparison of disassembling a radio (Case 4).

Total Profit Gap to the Solution
Obtained by CPLEX

Gap to the Solution
Obtained by IBO Running Time (s)

CPLEX 3420 −− −2.03% 310.77
GWO 2952 15.85% 11.93% 2.38
DOA 3050 12.13% 9.01% 2.65
CPA 3062 11.69% 8.65% 2.63

WOA 3314 3.20% 1.13% 3.24
IBO 3352 2.03% −− 2.53

Note: Bold indicates that the maximum total profit among the compared algorithms.
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Table 6. Results comparison of disassembling a hammer drill (Case 5).

Total Profit Gap to the Solution
Obtained by CPLEX

Gap to the Solution
Obtained by IBO Running Time (s)

CPLEX 2564 −− 44.01% 3600.00
GWO 4484 −42.82% 2.07% 7.44
DOA 4332 −40.81% 5.39% 4.55
CPA 4486 −42.84% 2.03% 5.63

WOA 4349 −41.04% 5.02% 6.60
IBO 4579 −44.01% −− 6.84

Figure 6. Running time comparison.

Figure 7. Statistical comparison of the algorithms.

In addition, to clearly show the convergence of the compared metaheuristic algorithms,
their convergence curves for solving cases 2 and 5 are given in Figures 8 and 9. They
show that IBO shows great performance in the early stage of its iteration and achieves
convergence relatively early compared with the other algorithms. These further indicate
the superiority of IBO compared with its competitors in solving the concerned problem.

According to the above analyses, we can draw the conclusion that the proposed
mixed-integer linear program is an effective mathematical model and IBO outperforms its
competitive peers in solving the concerned problem, which has great application potential.
These results justify the contributions of this work.
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Figure 8. Comparison of IBO algorithm with other solution methods on case 2.

Figure 9. Comparison of IBO algorithm with other solution methods on case 5.

5. Conclusions

This work studies a new linear disassembly line balancing problem arising from
manual and human–robot collaborative disassembly lines for e-waste. The focal points
encompass hazardous disassembly penalties and switching time, with the overarching
objective of maximizing total profit by striking a balance between the recycling revenue,
disassembly cost, and hazardous disassembly penalty. A mixed-integer linear program is
formulated to model this challenging problem. For small- and medium-scale cases, optimal
solutions are efficiently obtained by directly solving the model with CPLEX. However,
acknowledging the NP-hard nature of the concerned problem, we design an enhanced
brain-storm optimization algorithm. It incorporates problem-specific genetic operators
and similarity-based clustering to provide an approximate solution. Experimental results
underscore the remarkable performance of the proposed algorithm by comparing it with
both competitive peers and solving the proposed mathematical model with CPLEX. The
demonstrated high performance of this algorithm suggests its considerable potential for
practical industrial applications.

As future research directions, other formal modeling approaches, intelligent optimiza-
tion algorithms, and data-driven and learning approaches can be explored to solve the
proposed problem or further enhance the performance of the presented algorithm. More-
over, exploring the model-solving performance under different configurations of CPLEX,
such as inputting an initial feasible solution and selecting different solution strategies,
would be meaningful future work.
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