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Abstract: The equation G(x, x) = ỹ, where G : X × X → Y, and X, Y are vector metric spaces
(meaning that the values of a distance between the points in these spaces belong to some cones E+, M+

of a Banach space E and a linear space M, respectively), is considered. This operator equation is
compared with a “model” equation, namely, g(t, t) = 0, where a continuous map g : E+ × E+ → M+

is orderly covering in the first argument and antitone in the second one. The idea to study equations
comparing them with “simpler” ones goes back to the Kantorovich fixed-point theorem for an
operator acting in a Banach space. In this paper, the conditions under which the solvability of the
“model” equation guarantees the existence of solutions to the operator equation are obtained. The
statement proved extends the recent results about fixed points and coincidence points to more general
equations in more general vector metric spaces. The results obtained for the operator equation are
then applied to the study of the solvability, as well as to finding solution estimates, of the Cauchy
problem for a functional differential equation.

Keywords: operator equation in vector metric space; existence and estimates of solutions; functional
differential equation

MSC: 47J05; 54H25; 34K05; 34K32

1. Introduction

In the theory of differential equations, an important role belongs to the methods and
results based on the comparison of the equations under consideration with “model” ones.
They allow for judging the properties of solutions of the studied equations by the proper-
ties (quite easily determined) of the solutions to the “model” equations. For example, to
obtain estimates and approximate solutions, the Chaplygin comparison theorem and its
generalizations establishing a connection between solutions of the equations ẋ = f1(t, x)
and ẋ = f2(t, x), where f1(t, x) < f2(t, x) for all t, x, are widely used. Another example
is the study of quasi-linear differential equations of the form Lx = f (t, x) with a linear
differential operator L. The corresponding results explicitly or implicitly use a comparison
of this equation with the “model” linear differential equation Lx = y(t). A great contri-
bution to the development of the comparison method for ordinary differential equations
and to its extension to various classes of functional differential equations (FDEs) was
made by N.V. Azbelev and the members of his mathematical school (see the articles [1–3],
monographs [4] (Ch. 9,10) and [5] (Ch. VII)). In the contemporary research of L.M. Berezan-
sky, E.Ya. Braverman, E.I. Bravyi, A.I. Bulgakov, A. Domoshnitsky, V.P. Maksimov, V.V. Ma-
lygina, A.V. Ponossov, P.M. Simonov, and A.I. Shindyapin on various issues of the theory
of FDEs, the idea of comparing equations is effectively used and, in particular, approaches
based on distinguishing families of equations and defining in them a “model” equation by
which it is possible to judge the properties of all the equations in the family.

In this article, a method for determining a “model” FDE is proposed. The idea of the
method goes back to Kantorovich’s fixed-point theorem. Kantorovich’s theorem (see [6]
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or [7] (Ch. XVIII, §1.2, Theorem 1)) uses a comparison of a continuously differentiable map
S of a Banach space X with a “model” nondecreasing differentiable function φ having a
fixed point t∗ in some interval [0, R), R > 0. It is assumed that this function majorizes the
map S, i.e., the following relations take place:

∥S(x0)− x0∥ ≤ φ(0) and ∀t ∈ [0, R) ∀x ∈ X ∥x − x0∥ ≤ t =⇒ ∥S′(x)∥ ≤ φ′(t).

Under these conditions, S has a fixed point x∗ satisfying the estimate ∥x∗ − x0∥ ≤ t∗.
In recent studies [8–11] by A.V. Arutyunov, O.E. Zubelevich, S.E. Zhukovsky, and the

authors of this work, analogs of Kantorovich’s theorem for fixed points and coincidence
points are obtained, as well as those for solutions of general operator equations not only
in normed but also in metric spaces. In [8], Kantorovich’s theorem is extended to the
coincidence points of maps acting in Banach spaces. In [9], Kantorovich’s theorem is
generalized for coincidence points of multi-valued (and hence single-valued) maps acting
in metric spaces and in [10] for those acting in vector metric spaces. In [11], based on a
comparison with a majorizing equation in R+, conditions for the existence and estimates of
the solutions of general equations in metric space are obtained. In the present paper, we
study an operator equation in a space with a vector metric taking values in some cone E+ of
a Banach space E. The equation under discussion is compared with a majorizing equation,
which is defined in the cone E+. We also demonstrate the application of the statement
obtained to the study of a nonlinear implicit (not resolved with respect to the derivative)
first-order FDE.

2. Space with a Vector Metric

Let M be a linear space (over the field R of real numbers), in which there is defined
an acute cone M+, i.e., a set containing 0, and such that for any element ν ∈ M+, ν ̸= 0,
the relation c ν ∈ M+ holds for any c ≥ 0, and c ν /∈ M+ for any c < 0. We also let M+ be
convex. In the space M, we define a “natural” order assuming that ν ≤ µ (or µ ≥ ν, which
is the same) for ν, µ ∈ M if µ − ν ∈ M+. We write ν < µ (or µ > ν, which is the same) when
ν ≤ µ and ν ̸= µ.

Let µ, µ ∈ M, µ ≤ µ. In a standard way, we denote the intervals

[µ, µ]M :=
{

ν ∈ M : µ ≤ ν ≤ µ
}

, (µ, µ)M :=
{

ν ∈ M : µ < ν < µ
}

,

(µ, µ]M :=
{

ν ∈ M : µ < ν ≤ µ
}

, [µ, µ)M :=
{

ν ∈ M : µ ≤ ν < µ
}

(in the case of µ := µ = µ, we set [µ, µ]M = {µ}, (µ, µ)M = [µ, µ)M = (µ, µ]M = ∅).
Let us be given a nonempty set Y and a map PM

Y : Y × Y → M+ such that for any
y, z, w ∈ Y, the relations

PM
Y (y, z) = 0 ⇔ y = z; PM

Y (y, z) = PM
Y (z, y); PM

Y (y, w) ≤ PM
Y (y, z) + PM

Y (z, w)

hold. Then, the map PM
Y is called a vector metric or, for shortness, a v-metric, and a pair

(Y,PM
Y ) is a vector metric (v-metric) space. For similar definitions of vector metric spaces, as

well as for theorems on fixed points of maps acting in such spaces, see, e.g., [12–14].
The concept of the v-metric is a natural generalization of a metric, namely, if M

is the space of real numbers R with the cone R+ = [0, ∞), then a v-metric becomes a
“classical” metric.

By analogy with metric spaces, in the v-metric space (Y,PM
Y ), a ball of radius ν ∈ M+

centered at y0 ∈ Y is defined as

BY(y0, ν) := {y ∈ Y : PM
Y (y, y0) ≤ ν}.

Let us give an example of a v-metric space important for the further discussion.
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Example 1. Given T > 0, we denote by Wn = W([0, T],Rn) the linear space of (Lebesgue)
measurable on [0, T] functions (classes of functions). In the case n = 1, we omit the upper index
(equal to 1) in this notation. In the space W, we define the cone W+ = W([0, T],R+) of the
scalar measurable nonnegative functions and a vector metric PW

Wn : Wn × Wn → W+ on Wn by
the relation

∀y, w ∈ Wn (
PW

Wn(y, w)
)
(t) =

∣∣y(t)− w(t)
∣∣
Rn , t ∈ [0, T].

Obviously, a ball in the space Wn is the set

BWn(y0, ν) = {y ∈ Wn :
∣∣y(t)− y0(t)

∣∣
Rn ≤ ν(t)}, y0 ∈ Wn, ν ∈ W+.

Along with the v-metric space (Y,PM
Y ), we also use a v-metric space (X,PE

X), where
a v-metric PE

X takes values in an acute closed convex cone E+ of a Banach space E. Note
that from the closedness of E+, it follows that for any nonincreasing sequence {ςi} ⊂ E
(meaning ςi+1 ≤ ςi for every i), in the case of its convergence ςi → ς, the inequality
ς ≤ ςi holds for every i. In addition, we assume the cone E+ to be regular. The cone is
called regular (see [15] (p. 257)) if any nonincreasing sequence {ςi} ⊂ E converges if and
only if it is bounded from below. Moreover, as it is shown in [16] (Proposition 6), due
to the regularity of the cone E+, for such a bounded nonincreasing sequence {ςi} ⊂ E,
there exists an infimum and limi→∞ ςi = inf{ςi}. From the regularity of the cone E+, it
also follows that for any chain S ⊂ E bounded from below, there exists a nonincreasing
sequence {ςi} ⊂ S that is coinitial to the chain S, i.e., for any element ς of the chain S, there
exists an element ςi of this sequence such that ςi ≤ ς. So, the chain S has an infimum, and
inf S = inf{ςi} = limi→∞ ςi (see [16] (Proposition 7)).

We also note that the regularity of the cone E+ guarantees that any element of an
arbitrary nonempty closed and bounded one from below set U ⊂ E is subordinate to some
minimal element of this set, i.e., for any ς ∈ U, there exists a minimal (probably nonunique)
element τ ∈ U such that τ ≤ ς (for the proof of this property, see [10] (pp. 399, 400)).

It is obvious that in the considered Banach space E ordered by the closed regular
cone E+, the sets bounded from above, chains, and nondecreasing sequences have similar
properties to those listed above.

The regularity of a cone leads to its normality (see [15] (p. 257)), meaning

∃C ≥ 0 ∀ς, τ ∈ E+ ς ≤ τ ⇒ ∥ς∥E ≤ C∥τ∥E. (1)

Let us give one more example of a v-metric space that will be used further on.

Example 2. Given T > 0, denote by Ln = L([0, T],Rn) the set of (Lebesgue) summable on [0, T]
functions (classes of functions). In the case n = 1, we omit the upper index in this notation and
write L. In L, we consider the norm ∥ς∥L =

∫ T
0 |ς(s)|, ds, ς ∈ L. Then, L is a Banach space,

and the cone L+ = L([0, T],R+) of the nonnegative functions in this space is closed and regular
(see [15] (p. 257)). In Ln, we define a vector metric P L

Ln : Ln × Ln → L+ by the relation

∀u, v ∈ Ln (
P L

Ln(u, v)
)
(t) =

∣∣u(t)− v(t)
∣∣
Rn , t ∈ [0, T].

In connection with the considered example, we recall that, unlike the cone L+, the
cone C+ of the nonnegative functions in the space C of the continuous functions (with the
“standard” norm) is not regular (see [15] (p. 257)). But, at the same time, the cone C+, as
well as the cone L+, are normal; moreover, relation (1) is valid with the constant C = 1.

Let us denote by C the smallest of the constants C satisfying (1). For C = 1, we have

∀ς, τ ∈ E+ ς ≤ τ ⇒ ∥ς∥E ≤ ∥τ∥E,

and the norm in E is called monotone. It is easy to see that if the norm in E is mono-
tone, then a v-metric PE

X defines a “classical” metric via ∥PE
X∥E. However, as it is noted

in [13] (Remark 1), using a v-metric instead of the corresponding “classical” one allows for,
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for example, obtaining less burdensome conditions of the existence of solutions and more
accurate estimates for them. Moreover, in the case of C > 1, the map defined as ∥PE

X∥E
cannot be considered a metric (it does not satisfy the triangle inequality).

The simplest example of a nonmonotone norm gives the Euclidean norm | · |R2 on
the plane R2 with respect to the order ⪯ generated by the cone A(R2

+), where A is a 2 × 2
nonsingular matrix. Indeed, in this case, for elements ς, τ ∈ A(R2

+), the relation ς ⪯ τ is
equivalent to the “usual” inequalities 0 ≤ A−1ς ≤ A−1τ, so for the Euclidean norm of the
elements ς, τ, we have∣∣ς∣∣R2 =

∣∣AA−1ς
∣∣
R2 ≤ ∥A∥

∣∣A−1ς
∣∣
R2 | ≤ ∥A∥

∣∣A−1τ
∣∣
R2 ≤ ∥A∥∥A−1∥

∣∣τ∣∣R2 .

It is obvious that for any nonsingular matrix A, the inequality ∥A∥∥A−1∥ ≥ 1 holds, and it
is quite easy to present a matrix A such that C > 1.

Example 3. Set A =
( 2 −2

1 1

)
, A−1 = 4−1

( 1 2
−1 2

)
. Suppose that the order on R2 is

generated by the cone

A(R2
+) =

{
ς = (ς1, ς2) : ς1 + 2ς2 ≥ 0, −ς1 + 2ς2 ≥ 0

}
.

With respect to this order, for the elements ς = (−2, 1), τ = (0, 2), we have ς ⪯ τ, but∣∣ς∣∣R2 =
√

5 > 2 =
∣∣τ∣∣R2 . So, C ≥

√
5/2 > 1, and for the given cone A(R2

+) in R2, the
Euclidean norm is not monotone. Now, consider the product X = X1 × X2, where Xi are metric
spaces with metrics ρi : Xi → R+, i = 1, 2. Define on X a v-metric PR2

X : X × X → A(R2
+) by

using the formula

∀u = (u1, u2), v = (v1, v2) ∈ X PR2

X (u, v) = A
(
ρ1(u1, v1), ρ2(u2, v2)

)
.

Then, the corresponding map
∣∣PR2

X
∣∣
R2 is not a metric.

Concluding the discussion on the metrizability of v-metric spaces, note that the v-
metric considered in Example 1 takes values in the cone of the linear space of measurable
functions not equipped with a norm, so it is basically impossible to define a ”classical”
metric here using the given v-metric.

By analogy with “classical” metric spaces, in the v-metric space (X,PE
X), the following

concepts related to convergence are defined.
A sequence {xi} ⊂ X converges (as i → ∞) to x in the space X, if PE

X(xi, x) → 0 in the
Banach space E, which basically means the convergence ∥PE

X(xi, x)∥E → 0. The limit x, if it
exists, is obviously unique. We also note that the map PE

X : X × X → E+ is continuous, i.e.,
if xi → x and ui → u, then PE

X(xi, ui) → PE
X(x, u). Indeed,

±
(
PE

X(xi, ui)−PE
X(x, u)

)
≤ PE

X(xi, x) + PE
X(ui, u),

and from this inequality, according to (1), it follows that∥∥PE
X(xi, ui)−PE

X(x, u)
∥∥

E ≤ C
∥∥PE

X(xi, x) + PE
X(ui, u)

∥∥
E.

A sequence {xi} ⊂ X is called fundamental if for any ε > 0, there exists a number I
such that for every i, j > I, the inequality ∥P(xi, xj)∥E < ε holds. A v-metric space X is
complete if any fundamental sequence in X converges.

A set U ⊂ X is closed if for any convergent sequence {xi} ⊂ U, xi → x, the relation
x ∈ U holds.

Example 4. Let us show that the set U := BX(x0, e) := {x ∈ X : PE
X(x, x0) ≤ e}, a ball of radius

e ∈ E+ centered at x0 ∈ X, is closed in the space
(
X,PE

X
)
. Take an arbitrary sequence {xi} ⊂ U
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convergent to some x ∈ X. We have PE
X(x, x0) ≤ e. From the continuity of PE

X , it follows that the
sequence

{
PE

X(xi, x0)
}

converges to PE
X(x, x0), and ∥PE

X(xi, x)∥E → 0. But for any i ∈ N, the
inequality PE

X(xi, x0) ≤ e holds; hence, e −PE
X(xi, x0) ∈ E+. From this and the closedness of the

cone E+, we obtain e −PE
X(x, x0) ∈ E+. Thus, PE

X(x, x0) ≤ e, and the ball BX(x0, e) is closed.

3. Existence of Solutions to Equations in Vector Metric Spaces

Let (X,PE
X), (Y,PM

Y ) be the v-metric spaces defined above (where E is a Banach space
with closed regular convex and acute cone E+, and M is a linear space with convex and
acute cone M+). We assume that the space (X,PE

X) is complete. Let there be given maps
G : X × X → Y, g : E+ × E+ → M, and an element ỹ ∈ Y. We consider the equation

G(x, x) = ỹ (2)

with respect to x ∈ X and the corresponding “model” equation

g(ς, ς) = 0 (3)

with the unknown ς ∈ E+. We are interested in the conditions under which the existence of
a solution to “model” Equation (3) guarantees the existence of a solution to Equation (2).

We start by formulating the solvability conditions for “model” Equation (3).

Definition 1. Given a nonempty closed set I ⊂ E+, we say that the map g is closed with respect
to the sets I and {0} ⊂ M, if for any two sequences {ei}, {e′i} ⊂ I convergent to the same limit
e = limi→∞ ei = limi→∞ e′i , and such that g(e′i , ei) = 0 ∀i ∈ N, the limit e satisfies the equality
g(e, e) = 0.

Note that, in Definition 1, e ∈ I, because the set I is closed in E. We also point out the
following properties of the map g satisfying this definition.

Property (i): For any closed set I∗ ⊂ I, the closedness of the map g with respect to the sets
I ⊂ E+ and {0} ⊂ M implies its closedness with respect to the sets I∗ and {0}. The validity of
this statement is quite obvious.

Property (ii): If the map g is closed with respect to the sets I and {0}, then

∀{ei} ⊂ I lim
i→∞

ei = e and ∀i ∈ N g(ei+1, ei) = 0 =⇒ g(e, e) = 0. (4)

In fact, let g satisfy Definition 1. Given a sequence {ei} ⊂ I, we denote a sequence {e′i} ⊂ I

by the relation e′i = ei+1. Then, by virtue of Definition 1, relation (4) is satisfied.
Now, denote by SolI(g) the set of solutions to Equation (3) belonging to a closed set

I ⊂ E+. The set SolI(g) is closed in E. Indeed, for any convergent sequence {ςi} ⊂ SolI(g),
limi→∞ ςi = ς, assuming ei = e′i = ςi in the definition of the closedness of g with respect to
the sets I ⊂ E and {0} ⊂ M, we obtain

g(ei, e′i) = g(ςi, ςi) = 0 =⇒ g(ς, ς) = 0 =⇒ ς ∈ SolI(g).

Let SolI(g) ̸= ∅. Then, from the regularity of the cone E+, it follows that each element
ς of the closed nonempty set SolI(g) is subordinate to some minimal element ς∗ ∈ SolI(g),
i.e., ς∗ ≤ ς.

Recall that a map f : E+ → M is called antitone on a set I ⊂ E+, if for any e, e′ ∈ I, the
relation e ≤ e′ implies f (e) ≥ f (e′). We also recall the definition (given in [16] (Definition 1))
of an orderly covering map in relation to the sets that appear in the statements below.

Definition 2. We say that a map f : E+ → M orderly covers the one-point set {0} ⊂ M on a set
I ⊂ E+ if

∀e ∈ I f (e) ≤ 0 =⇒ ∃e′ ∈ I e′ ≥ e and f (e′) = 0.
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Lemma 1. Let the set SolE+(g) of solutions to Equation (3) be nonempty and ς∗ ∈ E+ be a minimal
element in this set. Suppose that the following conditions hold: g(0, 0) ≤ 0; the map g is closed with
respect to the sets I∗ := [0, ς∗]E and {0} ⊂ M; and for any ν ∈ I∗, the map g(·, ν) : E+ → M
orderly covers the set {0} ⊂ M on the interval I∗ and the map g(ν, ·) : E+ → M is antitone on I∗.
Then, there exists a nondecreasing sequence {ςi} ⊂ I∗ with the initial element ς0 = 0 such that

g(ςi, ςi−1) = 0, i ∈ N, (5)

and ςi → ς∗.

Proof. In view of the assumptions made, ς0 = 0 satisfies the inequality g(ς0, ς0) ≤ 0.
Because the map g(·, ς0) orderly covers {0} ⊂ M on the interval I∗, there exists a ς1 ∈
[ς0, ς∗]E such that g(ς1, ς0) = 0. Next, for the found element ς1, the map g(ς1, ·) is antitone,
so the inequality g(ς1, ς1) ≤ g(ς1, ς0) = 0 takes place. And again, from the orderly
covering property of the map g(·, ς1), it follows that there exists a ς2 ∈ [ς1, ς∗]E such that
g(ς2, ς2) = 0. Continuing such reasoning, we obtain a nondecreasing sequence satisfying
recurrent relation (5).

Due to the regularity of the cone E+, the constructed nondecreasing sequence con-
verges. Let ς = limi→∞ ςi, and then ς ≤ ς∗. Moreover, because the map g is closed with
respect to the sets [0, ς∗]E ⊂ I and {0} ⊂ M, from relation (5), according to the property
(ii), it follows that ς is a solution to Equation (3). But ς∗ is a minimal point in the set SolI(g)
of solutions to (3); hence, from the inequality ς ≤ ς∗, we obtain ς = ς∗.

We obtain now the conditions for the existence of a solution to Equation (2) in the
form of a comparison theorem with “model” Equation (3).

Definition 3. Given a nonempty closed set B ⊂ X, we say that the map G is closed with respect
to the sets B and {ỹ} ⊂ Y if for any two sequences {xi}, {x′i} ⊂ B convergent to the same limit
x = limi→∞ xi = limi→∞ x′i , and such that G(xi, x′i) = ỹ ∀i ∈ N, the limit x satisfies the equality
G(x, x) = ỹ.

The next definition extends [11] (Definition 2) to maps acting in v-metric spaces.

Definition 4. Let x0 ∈ X, e ∈ E+. We say that the map g majorizes the map G on the ball
B := BX(x0, e), if G, g, as the maps of the first argument, satisfy the relation

∀e ∈ I := [0, e]E ∀x ∈ BX(x0, e) ∀∆ ∈ [0, e − e]E
PM

Y
(
ỹ, G(x, x)

)
≤ g(e + ∆, e)− g(e, e) =⇒ ∃ u ∈ B G(u, x) = ỹ, PE

X(u, x) ≤ ∆, (6)

and, as the maps of the second argument, the relation

∀e ∈ I ∀ς ∈ [0, e]E ∀x ∈ BX(x0, e) ∀u ∈ BX(x0, ς)

PE
X(u, x) ≤ e − ς =⇒ PM

Y
(
G(x, u), G(x, x)

)
≤ g(e, ς)− g(e, e). (7)

It is easy to see that the property of the maps g and G described in Definition 4 remains
valid when the interval I is “reduced”. More precisely, the following statement takes place.

Property (iii): If the map g majorizes the map G on the ball B := BX(x0, e), then for every
e′ ∈ [0, e]E, the map g majorizes the map G on the ball B∗ := BX(x0, e′) as well.

Theorem 1. Let the set SolE+(g) of the solutions to Equation (3) be nonempty, ς∗ ∈ E+ be a
minimal element in this set, and all the assumptions of Lemma 1 be satisfied. Suppose that the map
g majorizes the map G on the ball B∗ := BX(x0, ς∗), the map G is closed with respect to the sets
B∗ and {ỹ}, and the inequality

PM
Y
(
ỹ, G(x0, x0)

)
≤ −g(0, 0) (8)
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is valid. Then, there exists a solution x∗ ∈ B∗ to Equation (2).

Proof. According to Lemma 1, there exists a nondecreasing sequence {ςi} ⊂ I∗, ς0 = 0,
satisfying relation (5) and convergent to ς∗.

Let us show that there exists a sequence {xi} ⊂ B∗ satisfying for every i ∈ N the
relations

G(xi, xi−1) = ỹ, PM
Y
(
ỹ, G(xi, xi)

)
≤ −g(ςi, ςi),

PE
X(x0, xi) ≤ ςi, PE

X(xi−1, xi) ≤ ςi − ςi−1.
(9)

From assumption (8) and equality (5), we obtain

PM
Y
(
ỹ, G(x0, x0)

)
≤ −g(ς0, ς0) = g(ς1, ς0)− g(ς0, ς0).

Hence, by virtue of condition (6), in which we set x := x0, e := ς0, ∆ := ς1 − ς0, there exists
an x1 ∈ B such that

G(x1, x0) = ỹ, PE
X(x1, x0) ≤ ς1 − ς0 = ς1.

The map g majorizes the map G, so from condition (7), in which we set e := ς1, ς := ς0,
x := x1, u := x0, and from relation (5), it follows that

PM
Y
(
y, G(x1, x1)

)
= PM

Y
(
G(x1, x0), G(x1, x1)

)
≤ g(ς1, ς0)− g(ς1, ς1) = g(ς2, ς1)− g(ς1, ς1).

Because ς1 ≥ PE
X(x0, x1), we have x1 ∈ BX(x0, ς1). From condition (6), with x := x1, e := ς1,

∆ := ς2 − ς1, it follows that there exists an x2 ∈ B such that

G(x2, x1) = ỹ, PE
X(x2, x1) ≤ ς2 − ς1, PE

X(x2, x0) ≤ ς2 − ς1 + ς1 − ς0 = ς2.

Thus, we define the first two members of a sequence {xi} ⊂ B∗ satisfying relation (9).
Using the similar reasoning, we construct by induction all the other members of this
sequence.

From the last inequality in (9), we obtain

∀i, n ∈ N PE
X(xi, xi+n) ≤

n−1

∑
l=0

PE
X(xi+l , xi+l+1) ≤

n−1

∑
l=0

(
ςi+l+1 − ςi+l

)
= ςi+n − ςi. (10)

The sequence {ςi} ⊂ I∗ is fundamental; then, according to (10), the sequence {xi} ⊂ B∗

is also fundamental and hence converges in the complete space (X,PE
X) to some element

x∗ ∈ X. Because the ball B∗ is a closed set (see Example 4), we obtain x∗ ∈ B∗. And due
to the closedness of the map G with respect to the sets B∗ and {ỹ}, from the first relation
in (9), we obtain that G(x∗, x∗) = ỹ.

4. Applications to Functional Differential Equations

Let mes denote the Lebesgue measure on [0, T], T > 0, and let
(
Wm,PW

Wm
)
,
(

Ln,P L
Ln
)

be the v-metric spaces of the measurable and, respectively, integrable (in the sense of
Lebesgue) functions defined in Examples 1 and 2. The v-metrics of these spaces take values
in the cone W+ of the linear space W of measurable scalar functions and in the cone L+ of
the Banach space L of summable scalar functions, respectively.

For a wide class of FDEs, the Cauchy problem, as well as the boundary value problems,
can be reduced to an integral equation of the form

Φ
(
t, (Ku)(t), (Shu)(t), u(t)

)
= 0, t ∈ [0, T], (11)

where (Ku)(t) :=
∫ T

0
K(t, s)u(s)ds, (Shu)(t) :=

{
u(h(t)), if h(t) ∈ [0, T],

0, if h(t) /∈ [0, T],
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with respect to the derivative u = ẋ ∈ Ln of the required absolutely continuous function x.
The function Φ : [0, T]×Rk ×Rn ×Rn → Rm here satisfies the Caratheodory conditions,
i.e., it is measurable in the first argument and continuous in the totality of the remaining
arguments; the function K : [0, T]× [0, T] → Rk×n is measurable and with respect to the
second argument, as the function K(t, ·), is essentially bounded for a.e. t ∈ [0, T]; and the
function h : [0, T] → R is measurable, and the condition

∀V ⊂ [0, T] mesV = 0 =⇒ mes h−1(V) = 0 (12)

is valid.
In the literature, the FDEs reducible to Equation (11) are studied in detail in the

case of solvability with respect to the derivative, that is, if n = m and the function Φ :
[0, T]×Rk ×Rn → Rn is of the form Φ(t, u, v) = v− F(t, u) (see [4] (§§1.1, 7.1–10.2), [5] (Ch.
VII), the bibliographic lists in these books, as well as later articles by L.M. Berezansky, E.Ya.
Braverman, E.I. Bravyi, A.I. Bulgakov, A. Domoshnitsky, V.P. Maksimov, V.V. Malygina,
A.V. Ponossov, P.M. Simonov, and A.I. Shindyapin). However, in the general case, “implicit”
FDEs remain practically unexamined because many classical methods of analysis, fixed-
point theorems in particular, cannot be applied here. It is possible that statements about the
existence of solutions and their estimates and dependence on parameters can be obtained
with the use of contemporary results on covering maps (see [17–20]), which have recently
been successfully applied to ordinary differential equations unsolved with respect to the
derivative (see, e.g., articles [21–25] and other works by the same authors). But until now,
such studies of “implicit” FDEs were fragmentary; we note only the works [26–28]. Here,
it is proposed to apply the above Theorem 1 on equations in vector metric spaces to the
study of Equation (11). Note that the use of vector metrics allows for obtaining more
accurate conditions for the existence and evaluation of solutions than that of a “classical”
scalar metric. And Theorem 1, with a proper choice of a majorizing equation, allows for
investigating, for example, equations with maps that are not covering.

As a majorizing equation, we will use the equation

φ
(
t, (K̂ς)(t), (Shς)(t), ς(t)

)
= 0, t ∈ [0, T], (13)

with respect to the function ς ∈ L+, where the function φ : [0, T]×R+ ×R+ ×R+ → R
satisfies the Caratheodory conditions, the integral operator K̂ is defined by the formula

(K̂ς)(t) :=
∫ T

0
κ(t, s)ς(s)ds,

and the function κ : [0, T] × [0, T] → R is measurable and as a function of the second
argument κ(t, ·) is essentially bounded for a.e. t ∈ [0, T], and also satisfies the inequality

κ(t, s) ≤
∣∣K(t, s)

∣∣
Rn×Rn , (t, s) ∈ [0, T]× [0, T]

(in particular, it can be assumed that κ(t, s) =
∣∣K(t, s)

∣∣
Rn×Rn ).

The following statement gives the conditions under which Equation (13) is solvable,
and in the set of solutions, there exists not even a minimal but the smallest element.
Note that similar results in the theory of differential equations are called the statements
of Chaplygin’s theorem on the differential inequality type. For implicit (i.e., unsolved
with respect to the highest derivative) ordinary differential equations, similar results were
obtained in [29,30].

Lemma 2. Let the function φ(t, ·, ·, ς) : R+ → R be nonincreasing for a.e. t ∈ [0, T] and any
ς ∈ R+ (meaning σ1 > σ2, ν1 > ν2 =⇒ φ(t, σ1, ν1, ς) ≤ φ(t, σ2, ν2, ς)). Suppose that the
inequality φ(t, 0, 0, 0) ≤ 0 is valid almost everywhere on [0, T], and there exists a function ς ∈ L+

such that
φ
(
t, (K̂ς)(t), (Shς)(t), ς(t)

)
≥ 0, t ∈ [0, T]. (14)
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Then, Equation (13) has a solution ς ∈ L+ such that ς ≤ ς, and in the solution set, there exists the
smallest element.

Proof. First, we show that there exists a nondecreasing sequence {ςi} ⊂ [0, ς]L (i.e., ∀i ∈ N
ςi ≥ ςi−1) satisfying the relation

ς0(t) = 0, ∀i ∈ N φ
(
t, (K̂ςi−1)(t), (Shςi−1)(t), ςi(t)

)
= 0, t ∈ [0, T]. (15)

Set ς0(t) ≡ 0. According to the assumptions made, we have

φ
(
t, (K̂ς0)(t), (Shς0)(t), ς0(t)

)
≤ 0, t ∈ [0, T],

and moreover, because the function φ(t, ·, ·, ς(t)) is nonincreasing, the inequalities

φ
(
t, (K̂ς0)(t), (Shς0)(t), ς(t)

)
≥ φ

(
t, (K̂ς)(t), (Shς)(t), ς(t)

)
≥ 0

take place. From the continuity of the function φ
(
t, (K̂ς0)(t), (Shς0)(t), ·

)
and from the

obtained inequalities, it follows that for a.e. t ∈ [0, T], the inclusion

0 ∈ φ
(
t, (K̂ς0)(t), (Shς0)(t),

[
ς(t), ς(t)

])
holds. And due to this inclusion, according to the Filippov measurable selection lemma
(see, e.g., [31] (Theorem 1.5.15)), there exists a measurable function ς1 ∈ [ς0, ς]L such that

φ
(
t, (K̂ς0)(t), (Shς0)(t), ς1(t)

)
= 0, t ∈ [0, T]. (16)

So, for i = 1, relation (15) is proved.
Because the function φ(t, ·, ·, ς1(t)) is nonincreasing, in (16), we obtain

φ
(
t, (K̂ς1)(t), (Shς1)(t), ς1(t)

)
≤ 0, t ∈ [0, T].

Hence, ς1 satisfies the same inequality as ς0 does. Repeating the above reasoning, which
defined the function ς1 by the function ς0, we find, by the function ς1, a function ς2 so that
inequality (15) is valid for i = 2, etc. As a result, we obtain by induction a nondecreasing
sequence {ςi} ⊂ [ςi−1, ς]L ⊂ [ς0, ς]L such that relation (15) holds for all i ∈ N.

Due to the regularity of the cone L+, the nondecreasing and bounded sequence {ςi}
converges in the Banach space L to some function ς ∈ [ς0, ς]L. In view of the monotonicity
of this sequence, ςi(t) converges to ς(t) for a.e. t ∈ [0, T]. By the Lebesgue theorem on
the passage to the limit under the integration sign, the convergence

∫ T
0 κ(t, s)ςi(s)ds →∫ T

0 κ(t, s)ς(s)ds takes place for a.e. t ∈ [0, T]. And because φ satisfies the Caratheodory
conditions, we finally obtain

0 = φ
(
t, (K̂ςi−1)(t), (Shςi−1)(t), ςi(t)

)
→ φ

(
t, (K̂ς)(t), (Shς)(t), ς(t)

)
, t ∈ [0, T].

So, it is established that there exists a solution η ∈ [0, ς]L to Equation (13).
Next, let us show that the set of solutions to Equation (13) belonging to [0, ς]L is

closed. Consider a sequence {ηi} of solutions to this equation that converges in L to some
function η. There exists a subsequence {ηij} ⊂ [0, ς]L convergent to η almost everywhere
on [0, T]. Then, for a.e. t ∈ [0, T], according to the Lebesgue theorem, the convergence∫ T

0 κ(t, s)ηi(s)ds →
∫ T

0 κ(t, s)η(s)ds takes place. Because φ satisfies the Caratheodory
conditions, we obtain

0 = φ
(
t,
∫ T

0
κ(t, s)ηi(s)ds, ηi(t)

)
→ φ

(
t,
∫ T

0
κ(t, s)η(s)ds, η(t)

)
, t ∈ [0, T].

So, η ∈ [0, ς]L is a solution to Equation (13), and the closedness of the solution set is proved.
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Due to the regularity of the cone L+, in the set of solutions to Equation (13) belonging
to the interval [0, ς]L, there exists a minimal element; denote this element by ς∗ and prove
that it is the smallest element in the set of all solutions to Equation (13). Suppose the
assertion is not true and there exists a solution ς ∈ L+ such that ς∗ ≰ ς. Define the sets
T :=

{
t ∈ [0, T] : ς∗(t) ≥ ς(t)

}
, T∗ :=

{
t ∈ [0, T] : ς∗(t) ≤ ς(t)

}
, and the function

η ∈ [0, ς]L, η(t) = inf
{

ς∗(t), ς(t)
}
=

{
ς(t), t ∈ T,

ς∗(t), t ∈ T∗.

For this function, the inequalities η < ς∗, η ≤ ς are valid. For t ∈ T, from the fact that the
function φ is nonincreasing with respect to the second argument, we obtain

φ
(
t, (K̂η)(t), (Shη)(t), η(t)

)
= φ

(
t, (K̂η)(t), (Shη)(t), ς(t)

)
≥ φ

(
t, (K̂ς)(t), (Shς)(t), ς(t)

)
= 0.

By analogy, for t ∈ T∗, we obtain

φ
(
t, (K̂η)(t), (Shη)(t), η(t)

)
= φ

(
t, (K̂η)(t), (Shη)(t), ς∗(t)

)
≥ φ

(
t, (K̂ς∗)(t), (Shς∗)(t), ς∗(t)

)
= 0.

So, for the function η, the inequality

φ
(
t, (K̂η)(t), (Shη)(t), η(t)

)
≥ 0

holds on the entire interval [0, T]. But according to the proof above, there should exist a
solution ν ∈ [0, η]L to Equation (13) for which the inequalities ν ≤ η < ς∗ should hold.
And this contradicts the fact that ς∗ is a minimal element in the solution set.

Let us demonstrate how the statement proved can be applied to the study of FDEs.

Example 5. Consider the Cauchy problem with the initial condition x(0) = 0 for the following
FDE:

3
√

ẋ(t)− ẋ( 3
√

t)− t−1x3(t/16) = y(t), t ∈ [0, 1]. (17)

Note that this equation contains a nonsummable on [0, 1] coefficient, namely the function t−1, and,
moreover, the divergent argument in the unknown function x is delayed, and the one in its derivative
ẋ is advanced. Show that for any measurable function y : [0, 1] → R such that

0 ≤ y(t) ≤ 4 3
√

2 − 3
8 4
√

t
, t ∈ [0, 1], (18)

the problem has an absolutely continuous on [0, 1] solution x with derivative ẋ ∈ L+ := L([0, 1],R+)
satisfying the inequality

0 ≤ ẋ(t) ≤ 1

4 4√t3
, t ∈ [0, 1],

and in the set of derivatives, there exists the smallest element.
An integral equation equivalent to this Cauchy problem with respect to the unknown ς = ẋ ∈

L+ has the form

3
√

ς(t)− ς( 3
√

t)− 1
t

( ∫ t/16

0
ς(s)ds

)3
− y(t) = 0, t ∈ [0, 1]. (19)

In the equation under consideration, the function κ is defined by the formula

κ(t, s) :=

{
1, 0 ≤ s ≤ t/16 ≤ 1,
0, 0 ≤ t/16 < s ≤ 1,

(20)
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and hence, it is measurable, nonnegative, and essentially bounded. The function

φ(t, σ, ν, ς) = 3
√

ς − ν − t−1σ3 − y(t) (21)

generated by Equation (19) is measurable in t, continuous in the other arguments, decreases with
respect to ν and σ, and satisfies the relation

φ(t, 0, 0, 0) = −y(t) ≤ 0.

We complete the verification of the assumptions of Lemma 2 by proving the validity of inequality (14).
Set

ς(t) :=
1

4 4√t3
, t ∈ [0, 1].

For this function, in view of assumption (18) for t ∈ [0, 1], we have

3
√

ς(t)− ς( 3
√

t)− 1
t

( ∫ t/16

0
ς(s)ds

)3
− y(t) =

1
3
√

4 4
√

t
− 1

4 4
√

t
− 1

8 4
√

t
− y(t)

=
4 3
√

2 − 3
8

4
√

t − y(t) ≥ 0.

So, all the conditions of Lemma 2 are fulfilled. According to this lemma, integral Equation (19)
has a solution ς ∈ [0, ς]L, and among the solutions, there is the smallest one. Therefore, the Cauchy
problem under consideration has an absolutely continuous on [0, 1] solution x with derivative
ẋ ∈ [0, ς]L, and in the set of derivatives to the solutions, there is the smallest element.

Let us now get back to the study of the general form of integral Equation (13). This
equation can be written as operator Equation (3) with the map g : L+ × L+ → W defined
by relation

∀ς, ν ∈ L+
(

g(ς, ν)
)
(t) := φ(t, (K̂ν)(t), (Shν)(t), ς(t)

)
, t ∈ [0, T]. (22)

As it is shown in the statements below, the conditions of the proven here Lemma 2 guarantee,
along with the solvability of Equation (13), the fulfillment of the assumptions of Lemma 1.

Lemma 3. Let the function φ(t, ·, ·, ς) : R+ → R be nonincreasing for a.e. t ∈ [0, T] and any
ς ∈ R+, and let ς∗ ∈ L+ be the smallest solution of Equation (13). Then, the map g : L+ × L+ →
W defined by Formula (22) is closed with respect to the sets I∗ := [0, ς∗]L and {0} ⊂ W, for
any ν ∈ I∗, this map, as the map of the first argument, g(·, ν) : L+ → W orderly covers the set
{0} ⊂ W on the set I∗, and as the map of the second argument, g(ν, ·) : L+ → W is antitone
on I∗.

Proof. Show that the map g is closed with respect to the sets I∗ := [0, ς∗]L and {0} ⊂ W.
Take any two sequences {ηi}, {η′

i} ⊂ I∗ ⊂ L+ convergent in L to some function η and
such that g(η′

i , ηi) = 0. There exists a subsequence {ηij} ⊂ {ηi} convergent to η almost
everywhere on [0, T]. And from the sequence {η′

ij
} convergent to η in L, we can choose

a subsequence {η′
ijp
} convergent to η almost everywhere on [0, T]. The corresponding

sequence {ηijp
} ⊂ {ηij} also converges to η almost everywhere on [0, T]. For simplicity, we

denote the subsequences constructed in this way by {ηp} and {η′
p}.

In view of condition (12), from the convergence ηp(t) → η(t), t ∈ [0, T], it follows that
(Shηp)(t) → (Shη)(t), t ∈ [0, T]. Next, according to the Lebesgue theorem, the convergence

∫ T

0
κ(t, s)ηp(s)ds →

∫ T

0
κ(t, s)η(s)ds
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takes place for a.e. t ∈ [0, T], and, because φ satisfies the Caratheodory conditions, the
convergence

0 = g(η′
p, ηp)(t) = φ

(
t, (K̂ηp)(t), (Shηp)(t), η′

p(t)
)
→

→ φ
(
t, (K̂η)(t), (Shη)(t), η(t)

)
= g(η, η)(t)

as well. Thus, it is established that the map g is closed with respect to the sets I∗ and {0}.
Next, we prove that for any ν ∈ I∗, the map g(·, ν) : L+ → W orderly covers the set

{0} ⊂ W on the set I∗. Let the inequality g(ς, ν) ≤ 0 hold for some ς ∈ I∗. Then, for a.e.
t ∈ [0, T], the relations

φ
(
t, (K̂ν)(t), (Shν)(t), ς(t)

)
≤ 0,

φ
(
t, (K̂ν)(t), (Shν)(t), ς∗(t)

)
≥ φ

(
t, (K̂ς∗)(t), (Shς∗)(t), ς∗(t)

)
= 0

take place, from which it follows that the inclusion

0 ∈ φ
(
t, (K̂ν)(t), (Shν)(t),

[
ς(t), ς∗(t)

])
is valid for a.e. t ∈ [0, T]. Due to this inclusion, according to the Filippov measurable
selection lemma, there exists a measurable function ς′ ∈ [ς, ς∗]L such that

φ
(
t, (K̂ν)(t), (Shν)(t), ς′(t)

)
= 0, t ∈ [0, T] ⇐⇒ g(ς′, ν) = 0.

So, the map g(·, ν) orderly covers the set {0} ⊂ W on [0, ς]L.
In conclusion of the proof, we note that from the fact that the function φ is nonincreas-

ing in the second and third arguments it follows directly that, for every ν ∈ I∗, the map
g(ν, ·) : L+ → W is antitone on I∗.

We consider now Equation (11). This equation can be written in the form of operator
Equation (2), where ỹ ∈ Wm, and the map G : Ln × Ln × Ln → Wm is defined by relation

∀u, v ∈ Ln (
G(u, v)

)
(t) := Φ

(
t, (Kv)(t)(Shv)(t), u(t)

)
, t ∈ [0, T]. (23)

Suppose the given functions u0 ∈ Ln, e ∈ L+. Let us formulate the sufficient conditions
on the functions φ, Φ, under which map (22) majorizes map (23) on the ball BLn(u0, e).

Define functions z0 ∈ Wk, w0 ∈ Wn, and r, ϱ ∈ W+ as follows

z0(t) := (Ku0)(t), w0(t) := (Shu0)(t), r(t) := (K̂e)(t), ϱ(t) := (She)(t) t ∈ [0, T]. (24)

Definition 5. We say that the functions φ, Φ satisfy the condition M1[u0, e], if for a.e. t ∈ [0, T],
the relation

∀ς ∈ [0, r(t)] ∀z ∈ BRk
(
z0(t), ς

)
∀σ ∈ [0, ϱ(t)] ∀w ∈ BRn

(
w0(t), σ

)
∀e ∈ [0, e(t)] ∀u ∈ BRn

(
u0(t), e

)
∀∆ ∈

[
0, e(t)− e

]∣∣Φ(t, z, w, u)
∣∣
Rm ≤φ(t, ς, σ, e + ∆)− φ(t, ς, σ, e)

=⇒ ∃v ∈ BRn
(
u0(t), e(t)

)
Φ(t, z, w, v) = 0, |u − v|Rn ≤ ∆,
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holds, and the condition M2[u0, e], if for a.e. t ∈ [0, T], the relation

∀e ∈ [0, e(t)] ∀u ∈ BRn
(
u0(t), e

)
∀ς ∈ [0, r(t)] ∀z ∈ BRk

(
z0(t), ς

)
∀ς′ ∈ [0, ς] ∀z′ ∈ BRk

(
z0(t), ς′

)
∀σ ∈ [0, ϱ(t)] ∀w ∈ BRn

(
w0(t), σ

)
∀σ′ ∈ [0, σ] ∀w′ ∈ BRn

(
w0(t), σ′)

|z − z′|Rk ≤ ς − ς′, |w − w′|Rk ≤ σ − σ′

=⇒
∣∣Φ(t, z, w, u)− Φ(t, z′, w′, u)

∣∣
Rm ≤ φ(t, r′, σ′, e)− φ(t, r, σ, e)

is valid.

Lemma 4. Let the functions u0 ∈ Ln, e ∈ L+ be given. If the functions φ, Φ satisfy the condition
M1[u0, e], then for the maps (22) and (23), relation (6) holds. If the functions φ, Φ satisfy the
condition M2[u0, e], then for the maps (22) and (23), relation (7) takes place. And if both conditions
M1[u0, e] and M2[u0, e] are fulfilled, then map (22) majorizes map (23) on the ball BLn(u0, e).

Proof. Let φ, Φ satisfy the condition M1[u0, e]. We verify relation (6) for the maps g, G
defined by Formulas (22) and (23), respectively.

Take arbitrary e ∈ [0, e]L+ , u ∈ BLn(u0, e), ∆ ∈ [0, e − e]L+ . Let the inequality

PW
Wm

(
ỹ, G(u, u)

)
≤ g(e + ∆, e)− g(e, e)

hold; for Equation (11) in question, it takes the form∣∣Φ(
t, z(t), w(t), u(t)

)∣∣
Rm ≤ φ

(
t, ς(t), σ(t), e(t) + ∆(t)

)
− φ

(
t, ς(t), σ(t), e(t)

)
,

where z(t) := (Ku)(t), ς(t) := (K̂e)(t), w(t) := (Shu)(t), σ(t) := (She)(t). Note that

∣∣z(t)− z0(t)
∣∣
Rm =

∣∣ ∫ T

0
K(t, s)

(
u(s)− u0(s)

)
ds
∣∣
Rm ≤

∫ T

0
κ(t, s)

∣∣u(s)− u0(s)
∣∣
Rn ds

≤
∫ T

0
κ(t, s)e(s)ds = r(t), ς(t) =

∫ T

0
κ(t, s)e(s)ds ≤

∫ T

0
κ(t, s)e(s)ds = r(t),∣∣w(t)− w0(t)

∣∣
Rn =

∣∣(Shu)(t)− (Shu0)(t)
∣∣
Rn ≤ (She)(t) = ϱ(t), σ(t) ≤ (She)(t) = ϱ(t).

Due to the condition M1[u0, e], for a.e. t ∈ [0, T], there exists a v ∈ BRn
(
u0(t), e(t)

)
such

that Φ(t, z(t), w(t), v) = 0 and |v − u(t)|Rn ≤ ∆(t). This implies the inclusion

0 ∈ Φ
(
t, (Ku)(t)ds, (Shu)(t), BRn

(
u(t), ∆(t)

))
, t ∈ [0, T],

from which, according to the Filippov measurable selection lemma, it follows that for some
measurable function v ∈ BLn(u, ∆), the relation(

G(v, u)
)
(t) = Φ

(
t, (Ku)(t)ds, (Shu)(t), v(t)

)
= 0, t ∈ [0, T],

holds. So, (6) holds for the maps g, G defined by Formulas (22) and (23).
The second assertion of the lemma is straightforward: from condition M2[u0, e] it

follows directly that, for the maps g, G under consideration, (7) is valid. And meeting both
conditions (6) and (7) means that the map g majorizes G.

Lemmas 3 and 4 allow for applying Theorem 1 to Equations (11) and (13). Thus, we
obtain the following statement.
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Theorem 2. Given u0 ∈ Ln and e ∈ L+, let the functions φ, Φ satisfy the conditions M1[u0, e],
M2[u0, e], let the function φ(t, ·, ς) : R+ → R be nonincreasing for a.e. t ∈ [0, T] and any ς ∈ R+,
and let the inequality ∣∣Φ(

t, (Ku0)(t), (Shu0)(t), u0(t)
)∣∣ ≤ −φ(t, 0, 0, 0) (25)

hold. Then, if the set of solutions to Equation (13) is not empty, and ς∗ ∈ E+ is its smallest element,
then there exists a solution u∗ ∈ BLn(u0, ς∗) to Equation (11).

Let us give an example of applying Theorem 2 to the study of FDEs.

Example 6. Consider the Cauchy problem with respect to the unknown function x = (x1, x2) for a
system of two equations of the form

3
√

ẋi(t)− ∑
j=1,2

pij(t)ẋj(
3
√

t)− t−1 ∑
j=1,2

qij(t)xj(gij(t)) = ỹi(t), t ∈ [0, 1], i = 1, 2,

xi(s) = 0, s /∈ [0, 1], i = 1, 2,
(26)

with the homogeneous initial condition

x1(0) = x2(0) = 0. (27)

Show that for any measurable functions ỹi, pij, qij, gij : [0, 1] → R, i, j = 1, 2 satisfying for a.e.
t ∈ [0, 1] the inequalities

|ỹi(t)| ≤
4 3
√

2 − 3
8 4
√

t
, |pi1(t) + pi2(t)| ≤ 1, |qi1(t) + qi2(t)| ≤ 1, gij(t) ≤

t
16

,

the problem under consideration has an absolutely continuous on [0, 1] solution x with derivative
ẋ ∈ L2 whose components ẋ1, ẋ2 satisfy the inequality

|ẋi(t)| ≤ ẋ∗i (t) ≤
1

4 4√t3
, t ∈ [0, 1], i = 1, 2,

where ẋ∗ ∈ L+ is the smallest element in the set of derivatives of the solutions of the Cauchy problem
in Example 5 for Equation (17) in the case of

y(t) =
4 3
√

2 − 3
8 4
√

t
, t ∈ [0, 1]. (28)

The integral equation (with respect to the unknown u = ẋ, u = (u1, u2)) equivalent to the
problems (26) and (27) has the form

3
√

u(t)− P(t)u(t3)− 1
t

( ∫ 1

0
K(t, s)u(s)ds

)3
− ỹ(t) = 0, t ∈ [0, 1], (29)

where

K(t, s) =
(
Kij(t, s)

)
2×2,Kij(t, s) =

{
qij(t) if 0 ≤ s ≤ g+ij (t),

0 if g+ij (t) < s ≤ 1,
g+ij (t) = max

{
gij(t), 0

}
;

P(t) =
(

pij(t)
)

2×2.

We compare this equation with “model” integral Equation (19) (see Example 5), the right-hand side
of which is defined by relation (28).
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In R2, we define a norm of an element, a vector v = (v1, v2), by the formula |v|R2 =
max

{
|v1|, |v2|

}
. Due to the assumptions made, we have∣∣P(t)∣∣R2×R2 ≤ 1 and

∣∣K(t, s)
∣∣
R2×R2 ≤ κ(t, s),

where the function κ is given by (20). The function Φ : [0, 1]×R2 ×R2 ×R2 → R2 generated by
Equation (29) is defined as

Φ(t, z, w, u) = 3
√

u − P(t)w − t−1z3 − ỹ(t).

Let us show that this function and the function φ given in Example 5 by (21) satisfy the conditions
M1[u0, e] and M2[u0, e] for u0 = 0 ∈ L2 and any function e ∈ L+.

For arbitrary t ∈ [0, 1], e ∈ [0, e(t)], and u ∈ BR2(0, e), let the inequality∣∣Φ(t, z, w, u)
∣∣
R2 ≤ φ(t, ς, σ, e + ∆)− φ(t, ς, σ, e)

be valid. Then, according to the definition of the norm in R2, the relation

| 3
√

ui − Ai| ≤ 3
√

e + ∆ − 3
√

e

holds for i = 1, 2, where Ai is the i-th component (i = 1, 2) of the vector A := P(t)w+ t−1z3 + ỹ(t).
Obviously, there exists a unique vector v = (v1, v2) ∈ R2 such that 3

√
vi = Ai, and therefore

the latter inequality can be written as | 3
√

ui − 3
√

vi| ≤ 3
√

e + ∆ − 3
√

e. Because |ui| ≤ e, due
to the upward convexity of the function R+ ∋ e → 3

√
e ∈ R+, we obtain |ui − vi| ≤ ∆. So,

|u − v|R2 ≤ ∆, and condition M1[u0, e] is fulfilled for the functions φ, Φ.
Now, let us verify the validity of condition M2[u0, e]. According to (24), define

z0(t) = 0, w0(t) = 0, r(t) =
∫ t/16

0
e(s)ds, ϱ(t) = e( 3

√
t), t ∈ [0, 1].

Let for arbitrary 0 ≤ ς′ ≤ ς ≤ r(t), z ∈ BR2
(
0, ς

)
, z′ ∈ BR2

(
0, ς′

)
and arbitrary 0 ≤ σ′ ≤ σ ≤

ϱ(t), w ∈ BR2
(
0, σ

)
, w′ ∈ BR2

(
0, σ′), the inequalities

|z − z′|R2 ≤ ς − ς′, |w − w′|R2 ≤ σ − σ′

hold. We have∣∣Φ(t, z, w, u)− Φ(t, z′, w′, u)
∣∣
R2 =

∣∣P(t)(w − w′) + t−1(z3 − z′ 3)
∣∣
R2

≤ |w − w′|R2 + t−1|z3 − z′ 3|R2 ≤ σ − σ′ + max
i=1,2

|z3
i − z′ 3

i |

≤ σ − σ′ + max
i=1,2

(∣∣zi − z′i
∣∣(|zi|2 + |zi||z′i + |z′i|2

))
≤ σ − σ′ + (ς − ς′)(ς2 + ςς′ + ς′ 2).

Hence,∣∣Φ(t, z, w, u)− Φ(t, z′, w′, u)
∣∣
R2 ≤ σ − σ′ + ς3 − ς′ 3 = φ(t, r′, σ′, e)− φ(t, r, σ, e),

and therefore condition M2[u0, e] is satisfied for the functions φ, Φ.
Concluding the verification of the assumptions of Theorem 2, note that inequality (25) is valid.

Indeed,

∣∣Φ(
t, (Ku0)(t), (Shu0)(t), u0(t)

)∣∣ = ∣∣ỹ(t)∣∣ ≤ 4 3
√

2 − 3
8 4
√

t
= −φ(t, 0, 0, 0).
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