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Abstract: We consider an inverse spectral problem that consists in the recovery of the differential
expression coefficients for higher-order operators with separate boundary conditions from the spectral
data (eigenvalues and weight numbers). This paper is focused on the principal issue of inverse
spectral theory, namely, on the necessary and sufficient conditions for the solvability of the inverse
problem. In the framework of the method of the spectral mappings, we consider the linear main
equation of the inverse problem and prove the unique solvability of this equation in the self-adjoint
case. The main result is obtained for the first-order system of the general form, which can be applied
to higher-order differential operators with regular and distribution coefficients. From the theorem on
the main equation’s solvability, we deduce the necessary and sufficient conditions for the spectral
data for a class of arbitrary order differential operators with distribution coefficients. As a corollary of
our general results, we obtain the characterization of the spectral data for the fourth-order differential
equation in terms of asymptotics and simple structural properties.
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1. Introduction

This paper is concerned with inverse spectral problems for differential equations of
the form

ℓn(y) :=y(n) +
⌊n/2⌋−1

∑
k=0

(τ2k(x)y(k))(k)

+
⌊(n−1)/2⌋−1

∑
k=0

(
(τ2k+1(x)y(k))(k+1) + (τ2k+1(x)y(k+1))(k)

)
= λy, x ∈ (0, 1), (1)

where n ≥ 2, the notation ⌊a⌋ means rounding a real number a down, the coefficients
{τν}n−2

ν=0 in general can be generalized functions (distributions), the functions in+ντν are
assumed to be real-valued, and λ is the spectral parameter.

We investigate the recovery of the coefficients {τν}n−2
ν=0 from the eigenvalues {λl,k}l≥1

and the weight numbers {βl,k}l≥1 of the boundary value problems Lk, k = 1, . . . , n − 1,
for Equation (1) with the separated boundary conditions

y[j−1](0) = 0, j = 1, . . . , k, y[s−1](1) = 0, s = 1, . . . , n − k. (2)
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Thus , the problem Lk has k boundary conditions at x = 0 and (n − k) boundary
conditions at x = 1. The quasi-derivatives y[j] and weight numbers βl,k are rigorously
defined in Section 2.

Our spectral data {λl,k, βl,k}l≥1, k=1,...,n−1 generalize the spectral data {λl , βl}l≥1 of the
classical Sturm–Liouville problem

−y′′ + q(x)y = λy, x ∈ (0, 1), (3)

y(0) = y(1) = 0. (4)

Here, {λl}l≥1 are the eigenvalues of the boundary value problem (3) and (4) and

βl :=
(∫ 1

0 y2
l (x) dx

)−1
, where {yl(x)}l≥1 are the eigenfunctions normalized by the condi-

tion y′l(0) = 1. The inverse problems for the second-order Sturm–Liouville Equation (3)
have been studied fairly completely (see the monographs [1–5] and references therein).
In particular, it is well known that the potential q(x) can be uniquely reconstructed from
the spectral data {λl , βl}l≥1 following the method of Gelfand and Levitan [6]. Nevertheless,
this method appears to be ineffective for higher-order differential equations

y(n) +
n−2

∑
s=0

ps(x)y(s) = λy, x ∈ (0, 1). (5)

The inverse problem by the spectral data {λl,k, βl,k}l≥1, k=1,...,n−1 for Equation (5) with
the coefficients ps ∈ Cs[0, 1], s = 0, . . . , n− 2, was introduced by Leibenzon [7], who proved
the uniqueness of its solution. In [8,9], Leibenzon developed a constructive method for
finding the solution and obtained the necessary and sufficient conditions for the solvabil-
ity of the inverse problem. However, Yurko [10] showed that Leibenzon’s spectral data
uniquely specify the coefficients {ps}n−2

s=0 only under the so-called separation condition: the
eigenvalues of any two neighboring problems Lk and Lk+1 must be distinct. Furthermore,
Yurko introduced another spectral characteristic, which is now called the Weyl–Yurko matrix.
It generalizes the spectral data {λl,k, βl,k}l≥1, k=1,...,n−1 of Leibenzon and uniquely deter-
mines the higher-order differential operators in the general case, without any restrictions
on their spectra. As a result, Yurko created the inverse problem theory for Equation (5),
with ps ∈ Ws+ν

2 , s = 0, . . . , n − 2, ν ≥ 0, on a finite interval and on the half-line [10–12].
The inverse scattering problem on the line requires a different approach (see [13,14]). In-
verse spectral problems for higher-order differential operators in other statements have
been considered in [15–24] and other studies.

Generalizations of the inverse spectral problems using the Weyl–Yurko matrix and
the spectral data {λl,k, βl,k}l≥1, k=1,...,n−1 to the higher-order differential operators with
distribution coefficients have been investigated by Bondarenko (see [25–29] and other
studies by the author). In particular, two papers [25,27] mostly focused on uniqueness
theorems. In [26], nonlinear inverse problems were reduced to the linear equation

(I − R̃(x))ψ(x) = ψ̃(x), (6)

in the Banach space m of bounded infinite sequences. Equation (6) is considered for
each fixed x ∈ [0, 1]. Here, ψ(x), ψ̃(x) ∈ m, R̃(x) is a compact operator, and I is the
identity operator in m. The vector ψ̃(x) and the operator R̃(x) are constructed by using
the given spectral data, while the unknown vector ψ(x) is related to the coefficients in
Equation (1). Further details regarding the main Equation (6) can be found in Section 3.

For existence of the inverse problem solution, the solvability of Equation (6) is cru-
cial. However, this issue is very difficult to investigate. Leibenzon [9] and Yurko [10,12]
imposed the requirement of the existence of a bounded inverse operator (I − R̃(x))−1. But,
in general, it is difficult to verify this requirement. The only relatively simple situation
is the case of small ∥R(x)∥. This case of local solvability was considered in [10,12] for
regular coefficients and in [28] for distributions. For n = 2, the unique solvability of
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the main Equation (6) can be proved in the self-adjoint case. Recently, it was proved for
n = 3 (see [29]). Nevertheless, to the best of our knowledge, there are no such results for
n > 3 even in the case of regular coefficients. This paper aims to study the solvability of
the main Equation (1) in the self-adjoint case for arbitrary even and odd orders n and to
obtain necessary and sufficient conditions on the spectral data {λl,k, βl,k}l≥1 k=1,...,n−1 for
Equation (1) with distribution coefficients.

It is worth mentioning that boundary value problems for linear differential equations
of form (1) and their inverse spectral problems appear in various applications. The ma-
jority of applications deal with n = 2. Direct and inverse Sturm–Liouville problems arise
in classical and quantum mechanics, geophysics, material science, acoustics, and other
branches of science and engineering (see, e.g., the references in [4,5]). Third-order dif-
ferential equations have been applied to describing elastic beam vibrations [30] and thin
membrane flow of viscous liquid [31]. Linear differential operators of orders n = 4 and
n = 6 arise in geophysics [15] and vibration theory [21,32]. Although the author has not
found specific physical models leading to Equation (1) for n > 4 in the literature, the char-
acterization of its spectral data in the general case is of fundamental significance from the
mathematical viewpoint.

In order to deal with Equation (1), we apply the regularization approach, which was
developed in [33] and a number of subsequent studies. Namely, we reduce Equation (1) to
the first-order system

Y′(x) = (F(x) + Λ)Y(x), x ∈ (0, 1), (7)

where Y(x) is a column-vector function related to y(x), Λ is the (n × n) matrix whose entry
at position (n, 1) equals λ and all the other entries equal zero, and the matrix function
F(x) = [ fk,j(x)]nk,j=1 with integrable entries is the so-called associated matrix, which is

constructed by the coefficients {τν}n−2
ν=0 of the differential expression ℓn(y) in a special way.

Constructions of associated matrices for various classes of differential operators were
obtained in [33–39] and other studies. As an example, consider Equation (1) for n = 2:

y′′ + τ0y = λy. (8)

Suppose that τ0 ∈ W−1
2 [0, 1], that is, τ0 = σ′, where σ is some function of L2[0, 1]. Then,

Equation (8) can be reduced to the (2 × 2) system (7) with the following associated matrix
(see [40]):

F(x) =
[
−σ(x) 1
−σ2(x) σ(x)

]
. (9)

In this paper, we consider the main Equation (6) constructed for the first-order sys-
tem (7) in the general form. Namely, we suppose that F(x) = [ fk,j(x)]nk,j=1 belongs to the
class Fn of (n × n) matrix functions satisfying the conditions

fk,j = δk+1,j, k < j, fk,k ∈ L2[0, 1], fk,j ∈ L1[0, 1], k ≥ j, trace(F(x)) = 0.

Here and below, δk,j is the Kronecker delta. Thus, the structure of F ∈ Fn can be
symbolically presented as follows:

L2 1 0 . . . 0 0
L1 L2 1 . . . 0 0
L1 L1 L2 . . . 0 0

. . . . . . . . . . . . .
L1 L1 L1 . . . L2 1
L1 L1 L1 . . . L1 L2

.
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For the spectral data {λl,k, βl,k}l≥1, k=1,...,n−1 of the system (7) with any F ∈ Fn, the fol-
lowing asymptotic relations hold (see [26]):

λl,k = (−1)n−k

(
π

sin πk
n
(l + χk +κl,k)

)n

, {κl,k} ∈ l2, (10)

βl,k = −nλl,k(1 + ηl,k), {ηl,k} ∈ l2, (11)

where {χk}n−1
k=1 are constants that do not depend on the matrix F(x). Hence, {χk}n−1

k=1 can be
determined by the eigenvalues {λ0

l,k}l≥1 of the matrix function F0(x) with the zero entries
f 0
s,j(x) ≡ 0 for s ≥ j:

χk = lim
l→∞

(
1
π sin(πk

n ) n
√
(−1)n−kλ0

l,k − l
)

, k = 1, . . . , n − 1.

Let Fn,simp denote a class of matrix functions F(x) of Fn such that the corresponding
eigenvalues {λl,k}l≥1, k=1,...,n−1 fulfill the following simplifying assumptions:

(A-1) For each fixed k ∈ {1, . . . , n − 1}, the eigenvalues {λl,k}l≥1 are simple.

(A-2) {λl,k}l≥1 ∩ {λl,k+1}l≥1 = ∅ for k = 1, . . . , n − 2.

Note that in view of the asymptotics (10), the conditions (A-1) and (A-2) hold for all
sufficiently large indices l. Assumptions (A-1) and (A-2) have been imposed in a number of
previous studies [7–10,12,28]. Under these assumptions, the coefficients of the differential
expression (1) are typically uniquely specified by the spectral data {λl,k, βl,k}l≥1, k=1,...,n−1.
Uniqueness theorems of this kind have been proven in [7,10,12,28] for various classes of
regular and distributional coefficients.

Let F+
n and F+

n,simp denote the subclasses of matrix functions of Fn and Fn,simp, respec-
tively, satisfying the additional condition

fk,j(x) = (−1)k+j+1 fn−j+1,n−k+1(x), (12)

where the bar denotes the complex conjugate. The condition (12) is a kind of self-adjointness.
In particular, the matrix (9) belongs to F+

2 if σ(x) is real-valued.
The first main result of this study is the following theorem, which provides sufficient

conditions for the unique solvability of the main Equation (6).

Theorem 1. Suppose that F̃ ∈ F+
n,simp and complex numbers {λl,k, βl,k}l≥1, k=1,...,n satisfy as-

sumptions (A-1) and (A-2), the asymptotics (10) and (11), the self-adjointness conditions

λl,k = (−1)nλl,n−k, βl,k = (−1)nβl,n−k, l ≥ 1, k = 1, . . . , n − 1, (13)

the additional requirements

if n = 2p : (−1)p+1βl,p > 0, l ≥ 1,
if n = 2p + 1 : (−1)p+1Re λl,p > 0, l ≥ 1,

(14)

and βl,k ̸= 0 for l ≥ 1, k = 1, . . . , n− 1. Then, the linear operator (I − R̃(x)), which is constructed
according to Section 3, has a bounded inverse operator in the Banach space m for each fixed x ∈ [0, 1].

The proof of Theorem 1 is based on construction and contour integration of some func-
tions, which are meromorphic in the complex plane of the spectral parameter. The obtained
contour integrals, on the one hand, can be estimated as the radii of the contours tend to
infinity. On the other hand, they can be calculated using residue theorem. Although the
idea of the proof arises from the cases n = 2 and n = 3, which were considered in [4,10,41]
and [29], respectively, the solvability of the main equation for n > 3 is a fundamentally
novel result, and the proofs require several new constructions.
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Since Theorem 1 is obtained for system (7) in the general form, it can be applied
to different classes of differential operators with distribution as well as integrable coef-
ficients. Nevertheless, it is important to note that, in general, the matrix function F(x)
cannot be uniquely recovered from the spectral data (see Example 1 in [27]). Therefore,
in the next part of this paper, we consider the system (7) associated with Equation (1),
in which τν ∈ Wν−1

2 [0, 1], in+ντν are real-valued functions for ν = 0, . . . , n − 2, and the
assumptions (A-1) and (A-2) are fulfilled. We denote this class of coefficients {τν}n−2

ν=0
by W+

simp. For the considered class, in [28], the coefficients of the differential expression
ℓn(y) were reconstructed as some series using the solution ψ(x) of the main Equation (6).
Moreover, the convergence of those series were proved in the corresponding functional
spaces, including the space W−1

2 [0, 1] of generalized functions. Theorem 1 together with the
results of [28] imply the following solvability conditions of the inverse spectral problem:

Theorem 2. Let complex numbers {λl,k, βl,k}l≥1, k=1,...,n−1 satisfy (A-1), (A-2), (13), (14), and
βl,k ̸= 0 for all l, k. Suppose that there exists a model problem with coefficients {τ̃ν}n−2

ν=0 ∈ W+
simp

such that {ln−2ξl}l≥1 ∈ l2, where

ξl :=
n−1

∑
k=1

(
l−(n−1)|λl,k − λ̃l,k|+ l−n|βl,k − β̃l,k|

)
, l ≥ 1.

Then, there exist coefficients {τν}n−2
ν=0 with the spectral data {λl,k, βl,k}l≥1, k=1,...,n−1. Moreover,

{τν}n−2
ν=0 ∈ W+

simp.

For even n, the conditions of Theorem 2 are not only necessary but also sufficient.
For odd n, the only “gap” between the necessary and sufficient conditions is the require-
ment (14) (see Remark 2). For n = 2, 3, our conditions coincide with the previously known
results (see [29,42]). For n = 4, we obtain a novel theorem (Theorem 3), which completely
characterizes the corresponding spectral data in terms of the asymptotics recently derived
in [43] and structural properties.

This paper is organized as follows: In Section 2, we define the spectral data
{λl,k, βl,k}l≥1, k=1,...,n−1 for the system (7) and provide other preliminaries. In Section 3, we
construct the main Equation (6) based on the technique in [26] and discuss some useful
properties of the functions that participate in the main equation. Section 4 contains the proof
of Theorem 1. In Section 5, we apply Theorem 1 to the inverse problem for Equation (1)
with τν ∈ Wν−1

2 [0, 1] and so prove Theorem 2. Section 6 contains examples for n = 2, 3, 4.
In Section 7, we summarize our main results and discuss their advantages over those of
previous studies.

Throughout the paper, we use the following notations:

1. In estimates, the same symbol C is used for various positive constants that do not
depend on x, λ, l, etc.

2. F0(x) ≡ [δk+1,j]
n
k,j=1.

3. Along with F(x), we consider matrix functions F̃(x), F⋆(x), F̃⋆(x), abd F0(x). If a
symbol γ denotes an object related to F(x), the notations γ̃, γ⋆, γ̃⋆, and γ0 are used
for similar objects related to F̃(x), F⋆(x), F̃⋆(x), and F0(x), respectively.

4. The notation a⟨k⟩(λ0) is used for the kth coefficient of the Laurent series for a function
a(λ) at a point λ = λ0:

a(λ) =
∞

∑
k=−q

a⟨k⟩(λ0)(λ − λ0)
k.

2. Preliminaries

In this section, we consider system (7) with an arbitrary matrix F ∈ Fn and define the
corresponding spectral data. This section is mainly based on the results of [25,26,28].
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2.1. Eigenvalues

Let F ∈ Fn. Using the entries of F(x), define the quasi-derivatives

y[0] := y, y[k] := (y[k−1])′ −
k

∑
j=1

fk,jy[j−1], k = 1, . . . , n, (15)

and the domain
DF := {y : y[k] ∈ AC[0, 1], k = 0, . . . , n − 1}. (16)

For y ∈ DF, define the column vector function y⃗(x) = [y[j−1](x)]nj=1. Obviously,

if y ∈ DF, then y[n] ∈ L1[0, 1], and the equation

y[n] = λy, x ∈ (0, 1), (17)

is equivalent to system (7) with Y(x) = y⃗(x). Indeed, the first (n− 1) rows of (7) correspond
to the definitions (15) of the quasi-derivatives and the nth row corresponds to Equation (17).
Below, we consider solutions of (17) belonging to domain DF. Note that domain DF is
nonempty. In particular, the first component y(x) := Y1(x) of any solution Y(x) of the
first-order system (7) belongs to DF and satisfies (17).

For k = 1, . . . , n, let Ck(x, λ) denote the solution of Equation (17), satisfying the
initial conditions

C [j−1]
k (0, λ) = δk,j, j = 1, . . . , n. (18)

Clearly, the matrix function C(x, λ) := [C [j−1]
k (x, λ)]nj,k=1 is a fundamental solution of

the first-order system (7). Therefore, the solutions {Ck(x, λ)}n
k=1 exist and are unique. More-

over, their quasi-derivatives C [j−1]
k (x, λ) are entire functions of λ for each fixed x ∈ [0, 1]

and k, j = 1, . . . , n.
For k = 1, . . . , n− 1, Lk denotes the boundary value problem for Equation (17) with the

boundary conditions (2). It can be found in the standard way that, for each k = 1, . . . , n − 1,
the problem Lk has a countable set of eigenvalues {λl,k}l≥1, which coincide with the zeros
of the entire characteristic function

∆k,k(λ) := det
(
[C [n−j]

r (1, λ)]nj,r=k+1

)
.

2.2. Weyl–Yurko Matrix, Weight Matrices, and Weight Numbers

For k = 1, . . . , n, Φk(x, λ) denotes the solution of Equation (17) satisfying the boundary
conditions

Φ[j−1]
k (0, λ) = δk,j, j = 1, . . . , k, Φ[s−1]

k (1, λ) = 0, s = 1, . . . , n − k. (19)

The functions {Φk(x, λ)}n
k=1 are called the Weyl solutions of Equation (17). Let us

summarize the properties of Weyl solutions, which were discussed in [10] for the case of
higher-order differential operators with regular coefficients and in [25,26] for the system (7)
in more detail. For each fixed x ∈ [0, 1] and k = 1, . . . , n, the quasi-derivatives Φ[j]

k (x, λ),
j = 0, . . . , n− 1, are meromorphic in the λ-plane and have poles at the eigenvalues {λl,k}l≥1.
Furthermore, the Weyl solutions are ranked by their growth as |λ| → ∞. In order to estimate
them, λ = ρn, and the ρ plane is divided into sectors

Γs :=
{

ρ ∈ C :
π(s − 1)

n
< arg ρ <

πs
n

}
, s = 1, . . . , 2n.

In each fixed sector Γs, {ωk}n
k=1 denotes the roots of ωn = 1, numbered so that

Re (ρω1) < Re (ρω2) < · · · < Re (ρωn), ρ ∈ Γs. (20)
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Consider the matrix F0(x) = [δk+1,j]
n
k,j=1 and the corresponding eigenvalues {λ0

l,k}l≥1

of the boundary value problems L0
k , k = 1, . . . , n − 1. For a fixed sector Γs, let

ρ0
l,k = n

√
λ0

l,k ∈ Γs. It can be shown that for sufficiently large l, the eigenvalues λ0
l,k

are real (see Lemma 3), so ρ0
l,k lie on the boundary of sector Γs. Introduce the region

Γs,ρ∗ ,δ := {ρ ∈ Γs : |ρ| > ρ∗, |ρ − ρ0
l,k| > δ, l ≥ 1, k = 1, . . . , n − 1}, (21)

for some positive numbers ρ∗ and δ.

Proposition 1 ([25,26]). The following estimate holds:

|Φ[j−1]
k (x, ρn)| ≤ C|ρ|j−k| exp(ρωkx)|, k, j = 1, . . . , n, x ∈ [0, 1], ρ ∈ Γs,ρ∗ ,δ

for each fixed s = 1, . . . , 2n, a sufficiently small δ > 0, and some ρ∗ > 0. The numbers {ωk}n
k=1

are supposed to be numbered in the order (20) associated with sector Γs.

Clearly, the matrix function Φ(x, λ) := [Φ[j−1]
k (x, λ)]nj,k=1 is a solution of system (7).

Therefore, Φ(x, λ) is related to the fundamental solution C(x, λ) as follows:

Φ(x, λ) = C(x, λ)M(λ), (22)

where M(λ) = [Mj,k(λ)]
n
j,k=1 is some matrix function called the Weyl–Yurko matrix. The Weyl–

Yurko matrix for the first time was introduced by Yurko [10–12] for the investigation of
inverse spectral problems for higher-order differential operators with regular coefficients.

It follows from (18), (19), and (22) that M(λ) is a unit lower-triangular matrix:

M(λ) =


1 0 . . . 0

M2,1(λ) 1 . . . 0
. . . . . . . . . . . . . .

Mn,1(λ) Mn,2(λ) . . . 1

.

Furthermore, the entries Mj,k(λ) for j > k are meromorphic in λ with poles at the
eigenvalues {λl,k}l≥1. In other words, the poles of the kth column coincide with the zeros
of the corresponding characteristic function ∆k,k(λ).

Now, suppose that F ∈ Fn,simp; that is, the assumptions (A-1) and (A-2) hold for the
corresponding eigenvalues {λl,k}l≥1, k=1,...,n−1. In terms of the Weyl–Yurko matrix, assump-
tions (A-1) and (A-2) mean that all the poles of M(λ) are simple and neighboring columns
do not have common poles, respectively. Hence, under assumption (A-1), the Laurent
series of M(λ) at each pole λ = λl,k has the form

M(λ) =
M⟨−1⟩(λl,k)

λ − λl,k
+ M⟨0⟩(λl,k) + M⟨1⟩(λl,k)(λ − λl,k) + . . . ,

where M⟨j⟩(λl,k) are (n × n) matrix coefficients. Define the weight matrices

N (λl,k) := (M⟨0⟩(λl,k))
−1M⟨−1⟩(λl,k), N (λl,k) = [Nj,r(λl,k)]

n
j,r=1. (23)

Due to Lemma 4 in [26], under assumption (A-2), the weight matrices have the
following structure:

Nj,r(λl,k) ̸= 0 ⇔ j = r + 1, ∆r,r(λl,k) = 0. (24)



Mathematics 2024, 12, 61 8 of 27

Thus, in this case, the weight matrices {N (λl,k)}l≥1, k=1,...,n−1 are uniquely specified
by the weight numbers

βl,k := Nk+1,k(λl,k) = Res
λ=λl,k

Mk+1,k(λ), l ≥ 1, k = 1, . . . , n − 1. (25)

In particular, (24) implies that βl,k ̸= 0.
Throughout this paper, we use the collection {λl,k, βl,k}l≥1, k=1,...,n−1 as the spectral data

of system (7) or of Equation (1).

2.3. Matrix F⋆(x)

Along with F(x) ∈ Fn, consider the matrix function

F⋆(x) = [ f ⋆k,j(x)]nk,j=1, fk,j(x) = (−1)k+j+1 fn−j+1,n−k+1(x). (26)

F⋆(x) also belongs to Fn. Using the entries of F⋆(x), define the quasi-derivatives

z[0] := z, z[k] := (z[k−1])′ −
k

∑
j=1

f ⋆k,jz
[j−1], k = 1, . . . , n, (27)

the domain
DF⋆ := {z : z[k] ∈ AC[0, 1], k = 0, . . . , n − 1},

and consider the following equation

(−1)nz[n] = µz, x ∈ (0, 1), (28)

analogous to (17). Equation (28) is equivalent to the first-order system

d
dx

z⃗(x) = (F⋆(x) + (−1)nΛ)⃗z(x), x ∈ (0, 1),

where z⃗ = [z[j−1]]nj=1 is a column vector, and the quasi-derivatives are understood in
the sense (27). We agree that for y ∈ DF, the quasi-derivatives are defined by (15) and,
for z ∈ DF⋆ , by (27). The solutions of (17) and (28) are considered in domains DF and DF⋆ ,
respectively.

For y ∈ DF and z ∈ DF⋆ , define the Lagrange bracket:

⟨z, y⟩ =
n−1

∑
k=0

(−1)kz[k]y[n−k−1]. (29)

If y and z satisfy Equations (17) and (28), respectively, then

d
dx

⟨z, y⟩ = (λ − µ)zy, (30)

see Section 2.1 in [26].
Analogous to {Ck(x, λ)}n

k=1 and {Φk(x, λ)}n
k=1, we define solutions {C⋆

k (x, λ)}n
k=1

and {Φ⋆
k (x, λ)}n

k=1 of Equation (28) satisfying the initial conditions (18) and the boundary

conditions (19), respectively. Furthermore, put C⋆(x, λ) := [C⋆[j−1]
k (x, λ)]nj,k=1, Φ⋆(x, λ) :=

[Φ⋆[j−1]
k (x, λ)]nj,k=1, and define the Weyl–Yurko matrix M⋆(λ) = [M⋆

j,k(λ)]
n
j,k=1 by the relation

Φ⋆(x, λ) = C⋆(x, λ)M⋆(λ). (31)
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Proposition 2 ([26]). The Weyl–Yurko matrices M(λ) and M⋆(λ) are related as follows:

(M⋆(λ))T = J(M(λ))−1 J−1, (32)

where J = [(−1)jδj,n−k+1]
n
j,k=1 and T denotes the matrix transpose.

Consider the boundary value problems L⋆
k , k = 1, . . . , n − 1, for Equation (28) with

boundary conditions (2), where the quasi-derivatives are defined by (27). Define the
spectral data {λ⋆

l,k, β⋆
l,k}l≥1, k=1,...,n−1 analogously to {λl,k, βl,k}l≥1, k=1,...,n−1.

Lemma 1. Suppose that F ∈ Fn,simp, then F⋆ ∈ Fn,simp and

λ⋆
l,k = λl,n−k, β⋆

l,k = βl,n−k, l ≥ 1, k = 1, . . . , n − 1.

Proof. Relation (32) implies

M⋆
k+1,k(λ) = Mn−k+1,n−k(λ), k = 1, . . . , n − 1. (33)

Let assumptions (A-1) and (A-2) hold for {λl,k}l≥1, k=1,...,n−1. Taking (25) and βl,k ̸= 0
into account, we conclude that all the poles of M⋆

k+1,k(λ) are simple and coincide with
{λl,n−k}l≥1. On the other hand, the poles of the kth column of M⋆(λ) belong to the set
{λ⋆

l,k}l≥1. The set {λ⋆
l,k}l≥1 \ {λl,n−k}l≥1 is empty because of the asymptotics (10) for λ⋆

l,k
and λl,n−k. Hence, λ⋆

l,k = λl,n−k for l ≥ 1, k = 1, . . . , n − 1. This implies (A-1) and (A-2)
for {λ⋆

l,k}l≥1, k=1,...,n−1. Thus, F⋆ ∈ Fn,simp. The relation β⋆
l,k = βl,n−k follows from (25)

and (33).

2.4. Self-Adjoint Case

In this subsection, we study the properties of the spectral data for F ∈ F+
n,simp.

If F ∈ F+
n , then F⋆(x) = [ fk,j(x)]nk,j=1. Consequently,

C⋆
k (x, λ) = Ck(x, (−1)nλ), Φ⋆

k (x, λ) = Φk(x, (−1)nλ),

M⋆
j,k(λ) = Mj,k((−1)nλ), j, k = 1, . . . , n.

In view of Lemma 1, for F ∈ F+
n,simp, the following relations (13) hold:

λl,k = (−1)nλl,n−k, βl,k = (−1)nβl,n−k, l ≥ 1, k = 1, . . . , n − 1.

In particular, if n = 2p, p ∈ N, then the boundary value problem Lp is self-adjoint and
λl,p, βl,p are real for all l ≥ 1. Moreover, the following lemma holds.

Lemma 2. Suppose that n = 2p, p ∈ N, and F ∈ F+
n,simp. Then, (−1)p+1βl,p > 0 for all l ≥ 1.

Proof. Fix l ∈ N. From Lemma 3 in [26], we have the following relation

Φ⟨−1⟩(x, λl,p) = Φ⟨0⟩(x, λl,p)N (λl,p).

In view of (24) and (25), this implies that

Φp,⟨−1⟩(x, λl,p) = Φp+1(x, λl,p)βl,p. (34)

Note that Φp+1(x, λl,p) is the eigenfunction of problem Lp corresponding to the real
eigenvalue λl,p. The identity (30) implies that

⟨Φ⋆
p+1(x, λl,p), Φp(x, λ)⟩

∣∣∣1
0
= (λ − λl,p)

∫ 1

0
Φ⋆

p+1(x, λl,p)Φp(x, λ) dx. (35)
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Using (29) and (19), we calculate

⟨Φ⋆
p+1(x, λl,p), Φp(x, λ)⟩ =

{
(−1)p, x = 0,
0, x = 1.

Consequently, it follows from (35) that

(−1)p+1 = lim
λ→λl,p

(λ − λl,p)
∫ 1

0
Φ⋆

p+1(x, λl,p)Φp(x, λ) dx =
∫ 1

0
Φ⋆

p+1(x, λl,p)Φp,⟨−1⟩(x, λl,p) dx.

Taking the relations (34), Φ⋆
p+1(x, λl,p) = Φp+1(x, λl,p), and λl,p ∈ R into account, we

conclude that

(−1)p+1 = βl,p

∫ 1

0
|Φp+1(x, λl,p)|2 dx.

Since the integral is positive, this yields the claim.

In addition, we obtain the following lemma for the eigenvalues corresponding to
matrix F0(x) = [δk+1,j]

n
k,j=1.

Lemma 3. The eigenvalues {λ0
l,k}l≥1, k=1,...,n−1 are real for all sufficiently large indices l.

Proof. On the one hand, (F0)⋆ = F0, so λl,k = (−1)nλ⋆
l,k. Using Lemma 1, we conclude

that λl,k = (−1)nλl,n−k. On the other hand, F0 ∈ F+
n , so λl,k = (−1)nλl,n−k. Consequently,

the spectrum {λl,k}l≥1 of each problem Lk is symmetric with respect to the real axis.
Furthermore, according to the asymptotics (10), the eigenvalues {λl,k}l≥1 are simple for all
sufficiently large indices l, so they are real.

3. Main Equation

In this section, we construct the main Equation (6) of the method of spectral mappings
for the system (7) basing on the results of [26]. First, we need some additional notations.

Consider two matrix functions F(x) and F̃(x) of the class Fn,simp. We agree that if a
symbol γ denotes an object related to F(x), the symbol γ̃ with tilde denotes the analogous
object related to F̃(x). In addition, define the matrix F̃⋆(x) similarly to (26). Note that
for solutions related to the matrix functions F̃(x) and F̃⋆(x), the quasi-derivatives are
defined similarly to (15) and (27) with f̃k,j and f̃ ⋆k,j instead of fk,j and f ⋆k,j, respectively. For
technical simplicity, assume that

{λl,k}l≥1, k=1,...,n−1 ∩ {λ̃l,k}l≥1, k=1,...,n−1 = ∅. (36)

The opposite case requires minor changes (see Remark 1).
For convenience, introduce the notations

V := {(l, k, ε) : l ∈ N, k = 1, . . . , n − 1, ε = 0, 1},

λl,k,0 := λl,k, λl,k,1 := λ̃l,k, βl,k,0 := βl,k, βl,k,1 := β̃l,k,

φl,k,ε(x) := Φk+1(x, λl,k,ε), φ̃l,k,ε(x) := Φ̃k+1(x, λl,k,ε), (l, k, ε) ∈ V. (37)

Thus, indices 0 and 1 are used for the values related to F(x) and F̃(x), respectively.
Note that the Weyl solution Φk+1(x, λ) and Φ̃k+1(x, λ) have poles {λl,k+1,0} and {λl,k+1,1},
respectively. Therefore, under assumptions (A-2) and (36), the numbers {λl,k,ε} are regular
points of Φk+1(x, λ) and Φ̃k+1(x, λ), so (37) correctly defines functions φl,k,ε(x) and φ̃l,k,ε(x).

Introduce auxiliary functions

D̃k,k0(x, µ, λ) :=
⟨Φ̃⋆

k (x, µ), Φ̃k0(x, λ)⟩
λ − µ

, k, k0 = 1, . . . , n, (38)
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where the Lagrange bracket is defined in (29), and the quasi-derivatives for Φ̃⋆
k (x, µ) and

Φ̃k0(x, λ) are generated by matrices F̃⋆(x) and F̃(x), respectively.

Lemma 4. The function D̃k,k0(x, µ, λ) has singularities at µ = λl,n−k,1 if k < n, at λ = λl,k0,1
if k0 < n, and at λ = µ if k + k0 = n + 1.

Proof. Using (30) and (38), we obtain

d
dx

D̃k0,k(x, µ, λ) = Φ̃⋆
k (x, µ)Φ̃k0(x, λ).

The boundary conditions (19) for Φ̃⋆
k (x, µ) and Φ̃k0(x, λ), together with (29), imply

⟨Φ̃⋆
k (x, µ), Φ̃k0(x, λ)⟩|x=0 =

{
0, k + k0 > n + 1,
(−1)k+1, k + k0 = n + 1,

,

⟨Φ̃⋆
k (x, µ), Φ̃k0(x, λ)⟩|x=1 = 0, k + k0 < n + 1.

Hence,

D̃k0,k(x, µ, λ) =


∫ x

0 Φ̃⋆
k (t, µ)Φ̃k0(t, λ) dt, k + k0 > n + 1,

(−1)k+1

λ−µ +
∫ x

0 Φ̃⋆
k (t, µ)Φ̃k0(t, λ) dt, k + k0 = n + 1,

−
∫ 1

x Φ̃⋆
k (t, µ)Φ̃k0(t, λ) dt, k + k0 < n + 1.

Consequently, the singularities of D̃k0,k(x, λ) coincide with the poles {λ̃⋆
l,k}l≥1 of

Φ̃⋆
k (t, µ) for k < n and with the poles {λ̃l,k0}l≥1 of Φ̃k0(t, λ) for k0 < n. In addition, λ = µ

is a pole in the case k + k0 = n + 1. From Lemma 1, λ̃⋆
l,k = λ̃l,n−k, which concludes the

proof.

For (l, k, ε), (l0, k0, ε0) ∈ V, denote

G̃(l,k,ε),(l0,k0,ε0)
(x) := (−1)n−kβl,k,εD̃n−k+1,k0+1(x, λl,k,ε, λl0,k0,ε0). (39)

From Lemma 4, (µ, λ) = (λl,k,ε, λl0,k0,ε0) is a regular point of D̃n−k+1,k0+1(x, µ, λ), so
definition (39) is correct.

Proposition 3 ([26]). The following relations hold:

φl0,k0,ε0(x) = φ̃l0,k0,ε0(x) + ∑
(l,k,ε)∈V

(−1)ε φl,k,ε(x)G̃(l,k,ε),(l0,k0,ε0)
(x), (l0, k0, ε0) ∈ V, (40)

Φk0(x, λ) = Φ̃k0(x, λ) + ∑
(l,k,ε)∈V

(−1)ε+n−kβl,k,ε φ̃l,k,ε(x)D̃n−k+1,k0(x, λl,k,ε, λ), k0 = 1, . . . , n. (41)

Relation (40) can be treated as an infinite system of linear equations with respect to
{φl,k,ε(x)}(l,k,ε)∈V for each fixed x ∈ [0, 1]. This system plays an important role in solving
inverse spectral problems (see [26,28]). Relation (41) can be used for finding Weyl solutions
{Φk(x, λ)}n

k=1 from solution {φl,k,ε(x)}(l,k,ε)∈V of system (40).

Remark 1. If the assumption (36) is violated, in other words, if there exist indices (l, k) such that
λl,k,0 = λl,k,1, then the corresponding triples (l, k, 0) and (l, k, 1) have to be excluded from set
V and from the summation in (40) and (41). Thus, the relations of Proposition 3 are simplified.
For example, if λl,k,0 = λl,k,1 for all (l, k) except for a finite set, then (40) becomes a finite linear
system, which can be used for the numerical solution of inverse spectral problems.
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In order to study the solvability of system (40), we reduce it to a linear equation in a
suitable Banach space following the method of [10,26]. Define the numbers

ξl :=
n−1

∑
k=1

(
l−(n−1)|λl,k − λ̃l,k|+ l−n|βl,k − β̃l,k|

)
, l ≥ 1, (42)

and the functions
wl,k(x) := l−k exp(−xl cot(kπ/n)). (43)

The numbers {ξ l}l≥1 characterize the difference among the spectral data
{λl,k, βl,k}l≥1, k=1,...,n−1, and {λ̃l,k, β̃l,k}l≥1, k=1,...,n−1. Functions wl,k(x) are related to the
growth of functions φl,k,ε(x): |φl,k,ε(x)| ≤ Cwl,k(x). The latter estimate can be easily de-
duced from Proposition 1 and the asymptotics (10).

Apply the following transform to the functions in the system (40):[
ψl,k,0(x)
ψl,k,1(x)

]
:= w−1

l,k (x)
[

ξ−1
l −ξ−1

l
0 1

][
φl,k,0(x)
φl,k,1(x)

]
, (44)

[
R̃(l0,k0,0),(l,k,0)(x) R̃(l0,k0,0),(l,k,1)(x)
R̃(l0,k0,1),(l,k,0)(x) R̃(l0,k0,1),(l,k,1)(x)

]
:=

wl,k(x)
wl0,k0(x)

[
ξ−1

l0
−ξ−1

l0
0 1

][
G̃(l,k,0),(l0,k0,0)(x) G̃(l,k,1),(l0,k0,0)(x)
G̃(l,k,0),(l0,k0,1)(x) G̃(l,k,1),(l0,k0,1)(x)

][
ξl 1
0 −1

]
. (45)

Analogously to ψl,k,ε(x), define ψ̃l,k,ε(x).
For brevity, denote v = (l, k, ε), v0 = (l0, k0, ε0), v, v0 ∈ V. Define the vectors ψ(x) :=

[ψv(x)]v∈V and ψ̃(x) = [ψ̃v(x)]v∈V .
Consider the Banach space m of bounded infinite sequences α = [αv]v∈V with norm

∥α∥m = supv∈V |αv|. Define the linear operator R̃(x) = [R̃v0,v(x)]v0,v∈V acting on an
element α = [αv]v∈V of m using the following rule:

(R̃(x)α)v0 = ∑
v∈V

R̃v0,v(x)αv.

Proposition 4 ([26]). For each fixed x ∈ [0, 1], the vectors ψ(x) and ψ̃(x) belong to m, and
R̃(x) is a bounded operator from m to m. Moreover, the operator R̃(x) can be approximated using
finite-dimensional operators with respect to the operator norm ∥.∥m→m, so R̃(x) is compact.

Proposition 5 ([26]). Suppose that F, F̃ ∈ Fn,simp. Let ψ(x), ψ̃(x), and R̃(x) be constructed by
using the matrix functions F(x), F̃(x) and their spectral data as described above. Then, for each
fixed x ∈ [0, 1], the relation (6) is fulfilled in the Banach space m. Furthermore, for each fixed
x ∈ [0, 1], the operator (I − R̃(x)) has a bounded inverse, so Equation (6) is uniquely solvable with
respect to ψ(x).

The relation (6) is called the main equation of the inverse problem. Obviously, (6) is
deduced from system (40) using the notations (44) and (45). It is worth mentioning that
in [26], the results of Propositions 4 and 5 were obtained for the general case without the
separation assumption (A-2). However, this assumption simplifies the form of the functions
G̃(l,k,ε),(l0,k0,ε0)

(x) and R̃v0,v(x), which is used in the proofs. Furthermore, it is important
to note that the unique solvability of the main Equation (6) was proved in [26] under the
assumption that {λl,k, βl,k} are the spectral data of some problems Lk, k = 1, . . . , n − 1.
In this case, the inverse operator (I − R̃(x))−1 can be found explicitly (see [26], Theorem 1).
But, in this paper, we consider the main Equation (6) constructed using numbers {λl,k, βl,k}
that are not necessarily related to some matrix function F(x) and obtain sufficient conditions
for the invertibility of operator (I − R̃(x)).
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4. Main Equation Solvability

This section contains the proof of Theorem 1 on the unique solvability of the main
Equation (6) under some simple conditions on the given data {λl,k, βl,k}l≥1 k=1,...,n−1. We
emphasize that the numbers {λl,k, βl,k}l≥1 k=1,...,n−1 are not assumed to be the spectral data
of system (7). The proof relies on several auxiliary lemmas. The reader can skip their proofs
to obtain the main idea. The central role in the proofs is played by meromorphic functions
Bj(x, λ), j = 1, . . . , n, defined by (72). On the one hand, these functions are estimated as
|λ| → ∞, and it is shown that their integrals over large contours tend to zero. On the other
hand, those integrals are calculated using te residue theorem. This idea arises from the
proofs for n = 2 (see Lemma 1.3.6 in [10] and Lemma 5.2 in [41]) and n = 3 (see Lemma 6.1
in [29]). However, the generalization to the case of arbitrary integer n requires considerable
technical work.

Proof of Theorem 1. Fix x ∈ [0, 1]. Consider the operator (I − R̃(x)) satisfying the hy-
potheses of the theorem. By virtue of Proposition 4, the operator R̃(x) possesses the
approximation property, so the Fredholm theorem can be applied. Therefore, it is sufficient
to prove that the homogeneous equation

(I − R̃(x))ζ(x) = 0, (46)

has the only solution ζ(x) = 0 in m.
Let ζ(x) = [ζv(x)]v∈V ∈ m be a solution of (46). This means that

ζv0(x) = ∑
v∈V

R̃v0,v(x)ζv(x), v0 ∈ V. (47)

Apply the following transform[
zl,k,0(x)
zl,k,1(x)

]
:= wl,k(x)

[
ξl 1
0 1

][
ζl,k,0(x)
ζl,k,1(x)

]
,

which is inverse to the transform in (44). Using (47) and (45), we obtain the infinite system

zl0,k0,ε0(x) = ∑
(l,k,ε)∈V

(−1)εzl,k,ε(x)G̃(l,k,ε),(l0,k0,ε0)
(x), (l0, k0, ε0) ∈ V, (48)

which is the homogeneous analog of (40). Since ζ(x) ∈ m, |ζl,k,ε(x)| ≤ C. So,

|zl,k,ε(x)| ≤ Cwl,k(x), |zl,k,0(x)− zl,k,1(x)| ≤ Cξlwl,k(x), (l, k, ε) ∈ V, (49)

where ξl and wl,k(x) are defined in (42) and (43), respectively.
Introduce the functions

Zk0(x, λ) := ∑
(l,k,ε)∈V

(−1)ε+n−kβl,k,εzl,k,ε(x)D̃n−k+1,k0(x, λl,k,ε, λ), k0 = 1, . . . , n, (50)

analogously to (41). It follows from (48) and (50) that

Zk+1(x, λl,k,ε) = zl,k,ε(x), (l, k, ε) ∈ V. (51)

The following lemma shows that the functions {Zk(x, λ)}n
k=1 have the same growth

for |λ| → ∞ as the corresponding Weyl solutions {Φk(x, λ)}n
k=1 (see Proposition 1).
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Lemma 5. For k0 = 1, . . . , n, the function Zk0(x, λ) satisfies the estimate

|Zk0(x, ρn)| ≤
∞

∑
l=1

n−1

∑
k=1

Cξl |ρ|−(k0−1)| exp(ρωk0 x)|
|ρ − ckl|+ 1

, (52)

≤ C|ρ|−(k0−1)| exp(ρωk0 x)|, x ∈ [0, 1], ρ ∈ Γs,ρ∗ ,δ, (53)

for each fixed s = 1, 2n, a sufficiently small δ > 0, and some ρ∗ > 0, where the region Γs,ρ∗ ,δ
was defined in (21). The roots {ωk}n

k=1 are numbered in the order (20) associated with the sector
Γs, and {ck}n−1

k=1 are constants such that ρ0
l,k ∼ ckl as l → ∞. (In view of the asymptotics (10),

ck =
π

sin πk
n

ϵk, where |ϵk| = 1, and arg ϵk depends on Γs).

Proof. Let us estimate the series in (50), which can be represented as follows:

Zk0(x) =
∞

∑
l=1

n−1

∑
k=1

(−1)n−k((βl,k,0 − βl,k,1)zl,k,0(x)D̃n−k+1,k0(x, λl,k,0, λ)

+ βl,k,1(zl,k,0(x)− zl,k,1(x))D̃n−k+1,k0(x, λl,k,0, λ)

+ βl,k,1zl,k,1(x)(D̃n−k+1,k0(x, λl,k,0, λ)− D̃n−k+1,k0(x, λl,k,1, λ)
)
. (54)

We begin with the functions D̃n−k+1,k0(x, λl,k,ε, λ). Due to (38) and (29), we have

D̃n−k+1,k0(x, λl,k,ε, λ) =
⟨Φ̃⋆

n−k+1(x, λl,k,ε), Φ̃k0(x, λ)⟩
λ − λl,k,ε

=
1

λ − λl,k,ε

n−1

∑
j=0

(−1)jΦ̃⋆[j]
n−k+1(x, λl,k,ε)Φ̃

[n−j−1]
k0

(x, λ). (55)

The estimate of Proposition 1 is valid for Φ̃⋆
n−k+1(x, λ). Taking the asymptotics (10)

for λl,k,ε and the definition (43) into account, we obtain

|Φ̃⋆[j]
n−k+1(x, λl,k,ε)| ≤ C|ρl,k,ε|j−(n−k)| exp(ρl,k,εωn−k+1x)| ≤ Cl j−nw−1

l,k (x), (56)

where ρl,k,ε = n
√

λl,k,ε.
Using (10), (55), (56), and Proposition 1, we have

|D̃n−k+1,k0(x, λl,k,ε, λ)| ≤
C

n−1
∑

j=0
l j−nw−1

l,k (x)|ρ|n−j−k0 | exp(ρωk0 x)|

|ρ − ρl,k,ε|
n−1
∑

j=0
|ρ|n−j−1l j

≤
C|ρ|−(k0−1)l−nw−1

l,k (x)| exp(ρωk0 x)|
|ρ − ρ0

l,k|
, ρ ∈ Γs,ρ∗ ,δ, λ = ρn. (57)

It follows from (42) that |ρl,k,0 − ρl,k,1| ≤ Cξl , where we choose the same branch of the
root n

√
λl,k,ε for ε = 0, 1. Consequently, using the standard approach based on Schwarz’s

Lemma (see [10], Lemmas 1.3.1 and 1.3.2), we estimate the difference as

|D̃n−k+1,k0(x, λl,k,0, λ)− D̃n−k+1,k0(x, λl,k,1, λ)| ≤
C|ρ|−(k0−1)ξl l−nw−1

l,k (x)| exp(ρωk0 x)|
|ρ − ρ0

l,k|
(58)

for ρ ∈ Γs,ρ∗ ,δ. In view of (11) and (42), we have

|βl,k,ε| ≤ Cln, |βl,k,0 − βl,k,1| ≤ Clnξl . (59)
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Using estimates (49), (57), (58), and (59), together with (54), we arrive at (52).
According to the asymptotics (10) and (11) for data {λl,k, βl,k}l≥1, k=1,...,n−1 and

{λ̃l,k, β̃l,k}l≥1, k=1,...,n−1, we have {ξl} ∈ l2. Hence, the Cauchy–Bunyakovsky–Schwartz
inequality implies

∑
l,k

ξl
|ρ − ckl|+ 1

≤
√

∑
l

ξ2
l

√
∑
l,k

1
(|ρ − ckl|+ 1)2 ≤ C,

which proves estimate (53).

Our next goal is to study analytic properties of functions Zk(x, λ), k = 1, . . . , n. For this
purpose, we consider auxiliary functions

Ẽk,k0(x, µ, λ) :=
⟨Φ̃⋆

k (x, µ), C̃k0(x, λ)⟩
λ − µ

, (60)

zk0(x, λ) := ∑
(l,k,ε)∈V

(−1)ε+n−kβl,k,εzl,k,ε(x)Ẽn−k+1,k0(x, λl,k,ε, λ). (61)

Thus, functions zk0(x, λ) are defined analogously to Zk0(x, λ) by replacing Φ̃k0(x, λ)
with C̃k0(x, λ). It is easier to consider the functions zk0(x, λ) than Zk0(x, λ) because the
functions {C̃k(x, λ)}n

k=1 are entire in λ. Without loss of generality, we assume that λl,k,ε ̸=
λl0,k0,ε for l ̸= l0.

Lemma 6. For k0 = 1, . . . , n and each fixed x ∈ [0, 1], function zk0(x, λ) is analytic in the λ-plane
except for the simple poles {λl,k,ε}l≥1, k=k0,n−1. In particular, zn(x, λ) is entire in λ. Moreover,

Res
λ=λl,k,ε

zk0(x, λ) =
s

∑
i=1

(−1)ε+k0−ki βl,ki ,εzl,ki ,ε(x)M̃⋆
n−k0+1,n−ki+1(λl,ki ,ε), (l, k, ε) ∈ V, k ≥ k0, (62)

where, for a fixed triple (l, k, ε) ∈ V and a fixed k0, {ki}s
i=1 is the set of all the indices such that

λl,k,ε = λl,ki ,ε and ki ≥ k0.

Proof. Using (30) and (60), we obtain

Ẽn−k+1,k0(x, λl,k,ε, λ) =
⟨Φ̃⋆

n−k+1(x, λl,k,ε), C̃k0(x, λ)⟩|x=0

λ − λl,k,ε
+
∫ x

0
Φ̃⋆

n−k+1(t, λl,k,ε)C̃k0(t, λ) dt,

where the integral is entire in λ. Using (29) and (18), we deduce

⟨Φ̃⋆
n−k+1(x, λl,k,ε), C̃k0(x, λ)⟩|x=0 =

n−1

∑
j=0

(−1)jΦ̃⋆[j]
n−k+1(0, λl,k,ε)C̃

[n−j−1]
k0

(0, λ)

= (−1)n−k0 Φ̃⋆[n−k0]
n−k+1 (0, λl,k,ε).

The relation (31) in the element-wise form implies that

Φ̃⋆
r (x, λ) = C̃⋆

r (x, λ) +
n

∑
j=r+1

M̃⋆
j,r(λ)C̃⋆

j (x, λ), r = 1, . . . , n.

Taking the initial conditions (18) for C̃⋆
r (x, λ) into account, we conclude that

Φ̃⋆[n−k0]
n−k+1 (0, λl,k,ε) = M̃⋆

n−k0+1,n−k+1(λl,k,ε).
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Note that this value equals zero for k < k0. Consequently, the function
Ẽn−k+1,k0(x, λl,k,ε, λ) is analytic in λ except for the simple pole λl,k,ε if k ≥ k0 and

Res
λ=λl,k,ε

Ẽn−k+1,k0(x, λl,k,ε, λ) = (−1)n−k0 M̃⋆
n−k0+1,n−k+1(λl,k,ε). (63)

Combining (61) and (63), we arrive at (62).

Let us apply Lemma 6 to study the analytic properties of Zk(x, λ).

Lemma 7. For each fixed k ∈ {1, 2, . . . , n − 1} and x ∈ [0, 1], the function Zk(x, λ) is analytic in
λ except for the simple poles {λl,k,0}l≥1. Moreover,

Res
λ=λl,k,0

Zk(x, λ) = βl,k,0zl,k,0(x), l ≥ 1. (64)

The function Zn(x, λ) is entire in λ.

Proof. It follows from Lemma 5 that the series (50) converges absolutely and uniformly for
ρ on compact sets in Γs,ρ∗ ,δ and λ = ρn. Consequently, the functions Zk0(x, λ), k0 = 1, . . . , n,
are analytic for such values of λ. Moreover, these functions can be analytically continued
inside the circles that are cut out in Γs,ρ∗ ,δ with a possible exception for the values of {λl,k,ε}.
Therefore, it remains to compute the residues of Zk0(x, λ) at these points.

Using relation (22) and Proposition 2, we obtain C̃(x, λ) = Φ̃(x, λ)(M̃(λ))−1 and so

C̃k0(x, λ) = Φ̃k0(x, λ) +
n

∑
j=k0+1

(−1)j−k0 M̃⋆
n−k0+1,n−j+1(λ)Φ̃j(x, λ), k0 = 1, . . . , n. (65)

Substituting (65) into (50), we derive

Zk0(x, λ) = zk0(x, λ)−
n

∑
j=k0+1

(−1)j−k0 M̃⋆
n−k0+1,n−j+1(λ)Zj(x, λ), k0 = 1, . . . , n. (66)

Let us prove the assertion of the lemma by induction for k0 = n, n − 1, . . . , 2, 1. For
k0 = n, function Zn(x, λ) ≡ zn(x, λ) is entire in λ by virtue of Lemma 6. Next, suppose that
the assertion is already proved for Zk0+1(x, λ), . . . , Zn(x, λ). Let us prove it for Zk0(x, λ).
Fix (l, k, ε) ∈ V and let {ki}s

i=1 denote the set of all the indices such that λl,k,ε = λl,ki ,ε,
ki ≥ k0, as in the statement in Lemma 6. We consider two cases.

Case 1: ε = 0. In view of (36), λl,k,0 is a regular point of M̃⋆
n−k0+1,n−j+1(λ). Us-

ing (62), (66) and the induction hypothesis, we obtain

Zk0,⟨−1⟩(x, λl,k,0) =
s

∑
i=1

(−1)k0−ki βl,ki ,0zl,ki ,0(x)M̃⋆
n−k0+1,n−ki+1(λl,ki ,0)

−
s

∑
i=1

ki ̸=k0

(−1)ki−k0 M̃⋆
n−k0+1,n−ki+1(λl,ki ,0)Zki ,⟨−1⟩(x, λl,ki ,0).

Thus, we obtain the formula (64) for λl,k,0 = λl,k0,0, and Zk0,⟨−1⟩(x, λl,k,0) = 0 otherwise.
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Case 2: ε = 1. From the induction hypothesis, the functions {Zj(x, λ)}n
j=k0+1 are

analytic at λl,k,1. The functions M̃⋆
n−k0+1,n−j+1(λ) have a pole λl,k,1 if j = ki + 1, i = 1, . . . , s.

Therefore, using (66) and (62), we obtain

Zk0,⟨−1⟩(x, λl,k,1) =
s

∑
i=1

(−1)k0−ki+1βl,ki ,1zl,ki ,1(x)M̃⋆
n−k0+1,n−ki+1(λl,ki ,1)

−
s

∑
i=1

(−1)ki−k0+1M̃⋆
n−k0+1,n−ki ,⟨−1⟩(λl,ki ,1)Zki+1(x, λl,ki ,1). (67)

By Lemma 1
λl,ki ,1 = λ̃⋆

l,n−ki
, βl,ki ,1 = β̃⋆

l,n−ki
. (68)

Substituting (51) and (68) into (67), we arrive at the relation

Zk0,⟨−1⟩(x, λl,k,1) =
s

∑
i=1

(−1)k0−ki+1zl,ki ,1(x)

×
(

β̃⋆
l,n−ki

M̃⋆
n−ki+1,n−ki ,⟨0⟩(λ̃

⋆
l,n−ki

)− M̃⋆
n−k0+1,n−ki

(λ̃⋆
l,n−ki

)
)
. (69)

It follows from (23) that

M̃⋆
⟨0⟩(λ̃

⋆
l,n−ki

)Ñ ⋆(λ̃⋆
l,n−ki

) = M̃⋆
⟨−1⟩(λ̃

⋆
l,n−k). (70)

By virtue of Lemma 1, F̃⋆ ∈ Fn,simp, so matrices Ñ ⋆(λ̃⋆
l,n−ki

) have a special struc-
ture (24). Therefore, the relation (70) implies that the expression in the brackets in (69) van-
ishes. Hence, λl,k,1 is a regular point of Zk0(x, λ). By induction, this concludes the proof.

We need to show that zl,k,ε(x) = 0 for all (l, k, ε) ∈ V. Fio this purpose, we use the
following two lemmas.

Lemma 8. If zl,n−p,0(x) = 0 for all l ≥ 1, then zl,k,ε(x) = 0 for (l, k, ε) ∈ V, k = n− p, . . . , n− 1.

Proof. Suppose that zl,k,0(x) = 0 for some k ≥ n − p and all l ≥ 1. In view of (66) and
Lemma 7, function Zk+1(x, λ) has zeros {λl,k,0}l≥1 and poles {λl,k+1,0}l≥1. Denote

dj(λ) :=
∞

∏
l=1

(
1 − λ

λl,j,0

)
, j = 1, . . . , n − 1, dn(λ) := 1.

For simplicity, we assume that λl,j,0 ̸= 0. The opposite case requires minor changes.
Thus, the function

Gk+1(x, λ) := Zk+1(x, λ)
dk+1(λ)

dk(λ)

is entire in λ.
Since {λl,j,0} satisfies the asymptotics (10), then the asymptotic properties of the

function dj(λ) are analogous to those of ∆j,j(λ), which is the characteristic function of the
boundary value problem Lj with boundary conditions (2). Consequently, one can show that

dj(ρ
n) ≍ ρsj−

n(n−1)
2 exp(ρ(ωj+1 + ωj+2 + · · ·+ ωn)), ρ ∈ Γs,ρ∗ ,δ, (71)

where the notation f (ρ) ≍ g(ρ) means

C1|g(ρ)| ≤ | f (ρ)| ≤ C2|g(ρ)|, C1, C2 > 0,
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and sj is the sum of all the orders in the boundary conditions (2):

sj :=
j(j − 1)

2
+

(n − j)(n − j − 1)
2

.

Using the estimates (53) and (71), we have

|Gk+1(x, λ)| ≤ C|ρ|−(n−k)| exp(ρωk+1(x − 1))|, λ = ρn, ρ ∈ Γs, |ρ| ≥ ρ∗.

Since k ≥ n− p, then exp(ρωk+1(x− 1)) is bounded as |ρ| → ∞. Hence, Gk+1(x, λ) → 0
as |λ| → ∞. From Liouville’s theorem, Gk+1(x, λ) ≡ 0, so Zk+1(x, λ) ≡ 0. Consequently, it
follows from (64), (66), and the assumption βl,k+1 ̸= 0 that

zl,k,1(x) = Zk+1(x, λl,k,1) = 0, k < n,

zl,k+1,0(x) =
1

βl,k+1,0
Zk+1,⟨−1⟩(x, λl,k+1,0) = 0, k < n − 1.

Through induction, this implies the assertion of the lemma.

Lemma 9. If zl,p,0(x) = 0 for all l ≥ 1, then zl,k,ε(x) = 0 for (l, k, ε) ∈ V, k = 1, . . . , p − 1.

Proof. Suppose that zl,k,0(x) = 0 for some k ∈ {2, 3, . . . , p} and all l ≥ 1. Then, it follows
from Lemma 7 that Zk(x, λ) is entire. On the other hand, the estimate (53) implies that
Zk(x, λ) is bounded in the whole λ-plane. Hence, Zk(x, λ) ≡ 0, so the relation (66) implies
that zl,k−1,ε(x) = 0, l ≥ 1, ε ∈ {0, 1}. Induction yields the assertion of the lemma.

Introduce the following auxiliary functions

Bj(x, λ) := Zj(x, λ)Zn−j+1(x, (−1)nλ), j = 1, . . . , n. (72)

Lemma 10. There exists a sequence of circles {λ ∈ C : |λ| = Θv} with radii Θv → ∞ such that

lim
v→∞

∮
|λ|=Θv

Bj(x, λ) dλ = 0, j = 1, . . . , n. (73)

Proof. Fix j ∈ {1, 2, . . . , n}. The estimate (52) implies

|Zj(x, ρn)Zn−j+1(x, (−1)nρn)| ≤ C|ρ|−(n−1)

(
∑
l,k

ξl
|ρ − ckl|+ 1

)2

, ρ ∈ Γs,ρ∗ ,δ. (74)

Choose radii θr → ∞ such that

{ρ ∈ C : |ρ| = θr} ⊂ Γs,ρ∗ ,δ, θr+1 − θr > 1, r ≥ 1,

for s = 1, 2, ρ∗, and δ, for which the estimate (74) holds. Denote by nr,k the closest integer
to θr

|ck |
. Then

|Bj(x, ρn)| ≤ C|ρ|−(n−1)

(
∑
l,k

ξl
|nr,k − l|+ 1

)2

, |ρ| = θr.
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For simplicity, suppose that {ξl} ∈ l1. Then,

|Bj(x, ρn)| ≤ C|ρ|−(n−1) ∑
l
(
√

ξl)
2 ∑

l,k

(
√

ξl)
2

(|nr,k − l|+ 1)2

≤ C|ρ|−(n−1)
n−1

∑
k=1

gr,k, |ρ| = θr,

where

gr,k :=
∞

∑
l=1

ξl
(|nr,k − l|+ 1)2 .

Clearly,

∞

∑
r=1

gr,k ≤
∞

∑
l=1

ξl

∞

∑
r=1

1
(|nr − l|+ 1)2 ≤ C

∞

∑
u=1

1
u2 < ∞, k = 1, . . . , n − 1.

Hence, for each fixed k ∈ {1, 2, . . . , n − 1}, we have {gr,k}r≥1 ∈ l1. Therefore, one
can choose a subsequence {rv}v≥1 such that grv ,k = o(r−1

v ) as v → ∞. This implies that
grv ,k = o(θ−1

rv ), v → ∞. Put Θv := θn
rv . Then, Bj(x, λ) = o(|λ|−1) for |λ| = Θv, v → ∞. This

yields the claim for the case {ξl} ∈ l1.
If {ξl} ̸∈ l1, then one can apply the technique of [41] to show that

{zl,k,ε(x)w−1
l,k (x)} ∈ l2, {(zl,k,0(x)− zl,k,1(x))w−1

l,k (x)} ∈ l1.

Using these relations, one can derive the estimate

|Bj(x, ρn)| ≤ C|ρ|−(n−1)

(
∑
l,k

κl
|nr,k − l|+ 1

)2

, |ρ| = θr,

with some sequence {κl} ∈ l1. Then, the proof of the lemma can be completed analogously
to that for case {ξl} ∈ l1.

Lemma 11. The following relation holds:

Res
λ=λl,j,0

Bj(x, λ) = Res
λ=λl,j,0

Bj+1(x, λ) = βl,j,0zl,j,0(x)zl,n−j,0(x), j = 1, . . . , n − 1.

At all the other points, the functions Bj(x, λ) are analytical in λ for each fixed x ∈ [0, 1].

Proof. The assertion of the lemma immediately follows from (13), (66), (72), and
Lemma 7.

Proceed to the proof of Theorem 1. We consider two cases.

Case n = 2p. Introduce the following function

B(x, λ) :=
p

∑
j=1

(−1)jBj(x, λ).

From Lemma 10,
lim

v→∞

∮
|λ|=Θv

B(x, λ) dλ = 0. (75)
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Lemma 11 implies that B(x, λ) has the only poles {λl,p,0}l≥1 and

Res
λ=λl,p,0

B(x, λ) = (−1)pβl,p,0zl,p,0(x)zl,p,0(x).

Therefore, calculating the integrals in (75) using residue theorem, we obtain

∞

∑
l=1

βl,p,0|zl,p,0(x)|2 = 0.

By the hypothesis in Theorem 1, we have (−1)p+1βl,p,0 > 0. This implies that
zl,p,0(x) = 0 for all l ≥ 1. Applying Lemmas 8 and 9, we conclude that zl,k,ε(x) = 0
for all (l, k, ε) ∈ V.

Case n = 2p + 1. Calculating the integral in (73) using residue theorem and using
Lemma 11, we obtain, via induction for j = 1, . . . , p, that

∞

∑
l=1

Res
λ=λl,j,0

Bj(x, λ) =
∞

∑
l=1

βl,j,0zl,j,0(x)zl,n−j,0(x) = 0. (76)

Consider the radii Θv, v ≥ 1, from Lemma 10. Let Υv denote the boundary of the
half-circle {

λ ∈ C : |λ| < Θv, (−1)p+1Re λ > 0
}

.

By virtue of Lemma 11, function Bp+1(x, λ) has poles {λl,p,0} and {λl,p+1,0}. By the hy-
potheses in Theorem 1, we have λl,p+1,0 = −λl,p,0 and (−1)p+1Reλl,p,0 > 0, so
(−1)p+1Reλl,p+1,0 < 0. Therefore, using residue theorem, Lemma 11, and (76), we obtain

lim
v→∞

1
2πi

∮
Υv

Bp+1(x, λ) dλ = lim
v→∞ ∑

|λl,p,0|<Θv

Res
λ=λl,p,0

Bp+1(x, λ)

=
∞

∑
l=1

βl,p,0zl,p,0(x)zl,p+1,0(x) = 0.

On the other hand, Υv = [−iΘv, iΘv] ∪ Υ+
v , where Υ+

v is the arc {|λ| = Θv, 0 ≤
(−1)p+1 arg λ ≤ π}, and

lim
v→∞

1
2πi

∫
Υ+

v

Bp+1(x, λ) dλ = 0.

Consequently, ∫ i∞

−i∞
Bp+1(x, λ) dλ = 0.

Using (72) and setting λ = iτ, we arrive at the following relation∫ ∞

−∞
|Zp+1(x, iτ)|2 dτ = 0,

which implies Zp+1(x, λ) ≡ 0. The relations (66) and (64) imply that zl,p,ε(x) = 0, ε = 0, 1,
and zl,p+1,0(x) = 0, respectively, for all l ≥ 1. Using Lemmas 8 and 9, we conclude that
zl,k,ε(x) = 0 for all (l, k, ε) ∈ V.

Thus, in both cases n = 2p and n = 2p + 1, we obtain ζ(x) = 0, which finishes the
proof of Theorem 1.
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5. Solution of the Inverse Spectral Problem

In this section, we apply Theorem 1 to obtain necessary and sufficient conditions
for the solvability of an inverse spectral problem for Equation (1) with the coefficients
τν ∈ Wν−1

2 [0, 1], ν = 0, . . . , n − 2. In other words,

• τ0 belongs to the space of generalized functions W−1
2 [0, 1], whose antiderivatives

belong to L2[0, 1].
• τ1 belongs to W0

2 [0, 1] = L2[0, 1].
• For k ≥ 1, τk+1 belongs to the Sobolev space Wk

2 [0, 1] of functions f (x) such that
f (k) ∈ L2[0, 1].

On the one hand, we can reduce Equation (1) to the form (5), where

ps =
min{s,⌊n/2⌋−1}

∑
k=⌈s/2⌉

Cs−k
k

(
τ
(2k−s)
2k + τ

(2k−s+1)
2k+1

)
+

min{s,⌊(n−1)/2⌋}−1

∑
k=⌈(s−1)/2⌉

2Cs−k−1
k τ

(2k+1−s)
2k+1 , (77)

Cj
k := k!

j!(k−j)! are the binomial coefficients; the notations ⌊a⌋ and ⌈a⌉ mean the rounding of

a down and up, respectively; and τn−1 = 0. Clearly, ps ∈ Ws−1
2 [0, 1], s = 0, . . . , n − 2.

On the other hand, Equation (1) can be transformed to the first-order system (7). For
this purpose, we apply the results of [27]. In [27], associated matrices F(x) were constructed
for the differential expression of the following general form with various singularity orders
{iν}n−2

ν=0 :

y(n) +
⌊n/2⌋

∑
k=0

(−1)i2k+k
(

σ
(i2k)
2k (x)y(k)

)(k)
+

⌊(n−1)/2⌋−1

∑
k=0

(−1)i2k+1+k+1
((

σ
(i2k+1)
2k+1 (x)y(k)

)(k+1)
+
(
σ
(i2k+1)
2k+1 (x)y(k+1))(k)), (78)

where {σν(x)}n−2
ν=0 are regular functions on (0, 1). For the differential expression ℓn(y) in (1)

with τν ∈ Wν−1
2 [0, 1], one can set i0 := 1, σ0 := −τ

(−1)
0 , iν := 0, and σν := (−1)⌊ν/2⌋+ντν

for ν ≥ 1. Then, according to the results in [27] (Section 2), the associated matrix F(x) can
be obtained as follows: Define the matrix function Q(x) = [qk,j(x)]pk,j=0, p = ⌊n/2⌋ using
the relations

q0,1 := σ0 + σ1, q1,0 := σ0 − σ1, qk,k := σ2k, k = 1, . . . , p − 1,

qk,k+1 := σ2k+1, qk+1,k := −σ2k+1, k = 1, . . . , n − p − 2.

For n ≥ 3, construct F(x) = [ fk,j(x)]nk,j=1 with the formulas

fk,j := (−1)k+n+1qj−1,n−k, k = p + 1, . . . , n, j = 1, . . . , n − p, fk,k+1 := 1, k = 1, . . . , n − 1. (79)

All the other entries of Q(x) and F(x) are assumed to be zero. For example,

n = 4 : Q(x) =

 0 σ0 + σ1 0
σ0 − σ1 σ2 0

0 0 0

, F(x) =


0 1 0 0
0 0 1 0

−(σ0 + σ1) −σ2 0 1
0 σ0 − σ1 0 0

,

n = 5 : Q(x) =

 0 σ0 + σ1 0
σ0 − σ1 σ2 σ3

0 −σ3 0

, F(x) =


0 1 0 0 0
0 0 1 0 0
0 −σ3 0 1 0

σ0 + σ1 σ2 −σ3 0 1
0 −(σ0 − σ1) 0 0 0

.

The construction for n = 2 is different, see (9).
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σν ∈ L2[0, 1] for ν ≥ 0, so F ∈ Fn. Define the quasi-derivatives y[k] and the domain
DF using (15) and (16), respectively. Then, from Theorem 2.2 in [27], for any y ∈ DF,
the relation ℓn(y) = y[n] holds, which implies the regularization of the differential expression
ℓn(y). Thus, Equation (1) can be represented as (17) or as the first-order system (7). Note
that there are different ways to choose an associated matrix F(x) for the regularization of
the differential expression ℓn(y). In particular, one can use the regularization of Mirzoev
and Shkalikov [33,35] or choose other singularity orders i0 ≥ 1, iν ≥ 0, and ν ≥ 1 to
represent ℓn(y) in the form (78). For definiteness, we use the associated matrix constructed
using formulas (79).

Consider the boundary value problems Lk, k = 1, . . . , n − 1, for Equation (1) with the
boundary conditions (2). We write that {τν}n−2

ν=0 ∈ Wsimp if τν ∈ Wν−1
2 [0, 1], ν = 0, . . . , n − 2,

and the corresponding eigenvalues {λl,k}l≥1, k=1,...,n−1 satisfy (A-1) and (A-2). Consider the
following inverse spectral problem.

Inverse Problem 1. Given the spectral data {λl,k, βl,k}l≥1, k=1,...,n−1, find the coefficients
{τν}n−2

ν=0 ∈ Wsimp.

The results of [26,28] together with the relation (5) lead to the following uniqueness
proposition for inverse problem 1.

Proposition 6. The spectral data {λl,k, βl,k}l≥1, k=1,...,n−1 uniquely determine the coefficients
τν ∈ Wsimp.

Proof. It has been proved in [26,28] that under assumptions (A-1) and (A-2), the spectral
data {λl,k, βl,k}l≥1, k=1,...,n−1 for Equation (5) uniquely specify coefficients
ps ∈ Ws−1

2 [0, 1], s = 0, . . . , n − 2. Furthermore, the relation (77) implies a bijection between
{ps}n−2

s=0 and {τν}n−2
ν=0 in the corresponding functional spaces, which yields the claim.

Moreover, Theorem 2 in [28] implies the following sufficient conditions for the exis-
tence of a solution for inverse problem 1.

Proposition 7. Let complex numbers {λl,k, βl,k}l≥1, k=1,...,n−1 satisfy (A-1), (A-2), and βl,k ̸= 0
for all l, k. Suppose that there exists a model problem with coefficients {τ̃ν}n−2

ν=0 ∈ Wsimp such that:

1. {ln−2ξl}l≥1 ∈ l2, where the numbers ξl were defined in (42).
2. The operator (I − R̃(x)), which is constructed using {λl,k, βl,k}l≥1, k=1,...,n−1 and the model

problem according to Section 3, has a bounded inverse operator for each fixed x ∈ [0, 1].

Then, there exists a unique solution {τν}n−2
ν=0 ∈ Wsimp of inverse problem 1 for data

{λl,k, βl,k}l≥1, k=1,...,n−1.

A disadvantage of Proposition 7 is the requirement for the existence of the bounded
operator (I − R̃(x))−1. In general, it is difficult to verify this condition. However, in the
self-adjoint case, we can apply Theorem 1 for this purpose.

Let W+
simp denote the class of coefficients {τν}n−2

ν=0 ∈ Wsimp such that functions in+ντν

are real-valued for ν = 0, n − 2. Then, the associated matrix F(x), which is constructed
using formulas (79), belongs to F+

n,simp. Therefore, combining Theorem 1 and Proposition 7,
we immediately arrive at Theorem 2.

Remark 2. For even n, the conditions of Theorem 2 are necessary and sufficient. Indeed, by necessity,
condition (14) for even n holds by virtue of Lemma 2, and a model problem can be chosen as τ̃ν := τν,
ν = 0, . . . , n − 2. For odd n, the only “gap” between necessary and sufficient conditions is the
requirement (−1)p+1Re λl,p > 0, which plays an important role in the proof of Theorem 1.

Note that the assumption {ln−2ξl} ∈ l2 implies asymptotics (10) and (11) for
{λl,k, βl,k}l≥1, k=1,...,n−1, because similar asymptotics hold for {λ̃l,k, β̃l,k}l≥1, k=1,...,n−1. How-
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ever, condition {ln−2ξl} ∈ l2 is stronger. In order to achieve it, one has to find a model
problem with coefficients c̃j,k = cj,k and d̃j,k = dj,k in the sharp asymptotics

λl,k = ln
(

c0,k + c1,kl−1 + c2,kl−2 + · · ·+ cn−1,kl−(n−1) + l−(n−1)κl,k

)
,

βl,k = −nλl,k

(
1 + d1,kl−1 + d2,kl−2 + · · ·+ dn−2,kl−(n−2) + l−(n−2)ηl,k

)
,

where {κl,k}, {ηl,k} ∈ l2. This task is explicitly solved for n = 2, 3, 4 in the next section.
But, for higher orders, it becomes very technically complicated.

6. Examples

In this section, we consider inverse problem 1 for n = 2, 3, 4 and {τν}n−2
ν=0 ∈ W+

simp. We
obtain the corollaries of Theorem 2 on the spectral data’s characterization for these cases.
For n = 2 and n = 3, our results coincide with the results of [42] and [29], respectively.
For n = 4, our result (Theorem 3) is novel.

6.1. Second Order

For n = 2, Equation (1) turns into the Sturm–Liouville equation

y′′ + τ0y = λy, x ∈ (0, 1), (80)

where τ0 is a real-valued potential of W−1
2 [0, 1]. Then, we only have problem L1 with the

Dirichlet boundary conditions
y(0) = y(1) = 0. (81)

It is well known (see, e.g., [42]) that the corresponding eigenvalues λl,1 =: λl are

real and simple. Furthermore, βl := βl,1 =
(∫ 1

0 y2
l (x) dx

)−1
, where {yl(x)}l≥1 are the

eigenfunctions of the problem L1, normalized by e condition y[1]l (0) = 1. Asymptotics (10)
and (11) take the form

λl = −(πl +κl)
2, βl = 2(πl)2(1 + ηl), l ≥ 1, {κl}, {ηl} ∈ l2. (82)

Therefore, choosing any real-valued model potential τ̃0 ∈ W−1
2 [0, 1], we obtain {τ̃0} ∈

W+
simp and {ξl} ∈ l2. Hence, Theorem 2 implies the following corollary, which is equivalent

to the spectral data characterization in [42].

Corollary 1. For numbers {λl , βl}l≥1 to be the spectral data of the Sturm–Liouville problem
(80) and (81) with a real-valued potential τ0 ∈ W−1

2 [0, 1], it is necessary and sufficient to satisfy
asymptotics (82) and conditions

λl ∈ R, λl ̸= λl0 (l ̸= l0), βl > 0, l ≥ 1.

6.2. Third Order

For n = 3, Equation (1) takes the form

y′′′ + (τ1y)′ + τ1y′ + τ0y = λy, x ∈ (0, 1),

where functions iτ0(x) and τ1(x) are real-valued, τ0 ∈ W−1
2 [0, 1], and τ1 ∈ L2[0, 1]. Then,

we have two boundary value problems:

L1 : y(0) = 0, y(1) = y′(1) = 0,

L2 : y(0) = y′(0) = 0, y(1) = 0,
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and the corresponding spectral data satisfy the following asymptotics (see [29]):

λl,k = (−1)k+1
(

2π√
3

(
l +

1
6
− θ

2π2n
+

κl,k

l

))3
, βl,k = −3λl,k

(
1 +

ηl,k

l

)
, (83)

where l ≥ 1, k = 1, 2, θ =
1∫

0
τ1(x) dx, {κl,k}, {ηl,k} ∈ l2. The coefficient θ can be found

from the eigenvalue asymptotics. By choosing a model problem {τ̃0, τ̃1} ∈ W+
simp with∫ 1

0 τ̃1(x) dx = θ, we achieve {lξl}l≥1 ∈ l2. Consequently, Theorem 2 implies the following
corollary, which is a special case of Theorem 2.5 in [29].

Corollary 2. Let complex numbers {λl,k, βl,k}l≥1, k=1,2 satisfy the assumptions (A-1), (A-2),
λl,1 = −λl,2, βl,1 = −βl,2, Re λl,1 > 0, βl,1 ̸= 0 for l ≥ 1 and the asymptotics (83) with a real
coefficient θ. Then, there exists a unique solution {τ0, τ1} of inverse problem 1 with the spectral
data {λl,k, βl,k}l≥1, k=1,2.

Note that in [29], the inverse problem was investigated in a more general form, when
assumption (A-2) can be violated.

6.3. Fourth Order

Consider Equation (1) for n = 4:

y(4) + (τ2(x)y′)′ + (τ1(x)y)′ + τ1(x)y′ + τ0(x)y = λy(x), x ∈ (0, 1), (84)

where {τ0, τ1, τ2} ∈ W+
simp. This means τ0 ∈ W−1

2 [0, 1], τ1 ∈ L2[0, 1], and τ2 ∈ W1
2 [0, 1],

and the functions τ0, iτ1, and τ2 are real-valued. The spectral data {λl,k, βl,k}l≥1, k=1,2,3 are
associated with the boundary value problems Lk, k = 1, 2, 3, for Equation (84) with the
following boundary conditions:

L1 : y(0) = 0, y(1) = y′(1) = y′′(1) = 0,

L2 : y(0) = y′(0) = 0, y(1) = y′(1) = 0,

L3 : y(0) = y′(0) = y′′(0) = 0, y(1) = 0.

Theorem 2 and the results of [43] together imply the following theorem on the spectral
data characterization for the fourth-order Equation (84).

Theorem 3. For complex numbers {λl,k, βl,k}l≥1, k=1,2,3 to be the spectral data of {τ0, τ1, τ2} ∈
W+

simp, it is necessary and sufficient to fulfill conditions (A-1), (A-2), (13), βl,2 < 0, and βl,2±1 ̸= 0
for all l ≥ 1, and the asymptotic relations

λl,2±1 = −
((√

2πl +
π

2
√

2

)4
− θ
(√

2πl +
π

2
√

2

)2
− t0 + t1 ∓ 4σ√

2

(√
2πl +

π

2
√

2

)
+ lκl,2±1

)
, (85)

λl,2 =
(

πl +
π

2

)4
− θ
(

πl +
π

2

)2
+ (t0 + t1)

(
πl +

π

2

)
+ lκl,2, (86)

βl,2±1 = −4λl,2±1

(
1 +

t0 + θ

8(πl)2 +
ηl,2±1

l2

)
, βl,2 = −4λl,2

(
1 +

t0 + 2θ

4(πl)2 +
ηl,2

l2

)
, (87)

where {κl,k}, {ηl,k} ∈ l2 and

θ =
∫ 1

0
τ2(x) dx, t0 = τ2(0), t1 = τ2(1), σ =

∫ 1

0
τ1(x) dx.
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Proof. By necessity, the asymptotic relations (85)–(87) were obtained in [43] and the condi-
tions (13), βl,2 < 0, and βl,2±1 ̸= 0 follow from Lemma 1, Lemma 2, and the structure of the
weight matrices (24), respectively.

By sufficiency, asymptotics (85)–(87) allow us to construct a model problem {τ̃0, τ̃1, τ̃2}
such that {l2ξl} ∈ l2. Indeed, one can successively find constants

θ := lim
l→∞

((
πl +

π

2

)2
− λl,2

(
πl +

π

2

)−2
)

,

t0 := lim
l→∞

4(πl)2(βl,2 + 4λl,2)− 2θ,

t1 := lim
l→∞

(
λl,2

(
πl +

π

2

)−1
−
(

πl +
π

2

)3
+ θ
(

πl +
π

2

))
− t0,

σ := lim
l→∞

λl,1 − λl,3

8
(
πl + π

4
) ,

and construct functions {τ̃0, τ̃1, τ̃2} such that θ̃ = θ, t̃0 = t0, t̃1 = t1, and σ̃ = σ. For example,
put

τ̃0(x) ≡ 0, τ̃1(x) ≡ σ, τ̃2(x) = (3t0 + 3t1 − 6θ)x2 + (−4t0 − 2t1 + 6θ)x + t0.

Then, the spectral data {λ̃l,k, β̃l,k}l≥1, k=1,2,3 satisfy the asymptotics with the same
main parts as (85)–(87). Hence, sequences {l−1|λl,k − λ̃l,k|} and {l−2|βl,k − β̃l,k|} belong
to l2. According to (42), this immediately implies that {l2ξl} ∈ l2. If {τ̃0, τ̃1, τ̃2} ̸∈ Wsimp.
Then, one can perturb a finite number of the eigenvalues {λ̃l,k} to achieve (A-1) and
(A-2), and such perturbation does not influence the asymptotics. Thus, for any data
{λl,k, βl,k}l≥1, k=1,2,3 satisfying the conditions in Theorem 3, the hypothesis in Theorem 2 is
valid, so there exist {τ0, τ1, τ2} ∈ W+

simp with spectral data {λl,k, βl,k}l≥1, k=1,2,3.

7. Conclusions

In this paper, we considered spectral data {λl,k, βl,k}l≥1, k=1,...,n−1 of the general first-
order system (7). The corresponding main Equation (6) was constructed in the framework
of the method of spectral mappings. The main result of the study is Theorem 1, on the
unique solvability of the main Equation (6) in the self-adjoint case under some natural
requirements on data {λl,k, βl,k}l≥1, k=1,...,n−1. Furthermore, we applied Theorem 1 to obtain
the necessary and sufficient conditions for the solvability of the inverse spectral problem for
the higher-order differential Equation (1) with coefficients τν ∈ Wν−1

2 [0, 1], ν = 0, . . . , n − 2.
As a corollary, we obtained Theorem 3 on the spectral data characterization for the fourth-
order differential Equation (84).

Our results have the following advantages over those of the previous studies:

1. The majority of the studies on inverse spectral problems have focused on equations of
order n = 2; there are some papers for n = 3 and n = 4, but the results of this paper
are valid for any arbitrary integer n ≥ 2.

2. This paper answers the most principal question of inverse problem theory about the
necessary and sufficient conditions for the solvability of an inverse problem.

3. Theorem 1, on the unique solvability of the main equation, is proved for the general
system (7) and so can be applied to various classes of higher-order differential opera-
tors with regular and distribution coefficients.

4. Theorem 1 is novel even for the case of regular coefficients. The solvability of the main
equation was previously proven for n = 2, 3 only.

5. Theorem 2, on the necessary and sufficient conditions, does not require main equation
solvability.

6. Theorem 3 provides the spectral data characterization for n = 4 in a very simple form.
Only asymptotics and simple structural properties of the spectral data are required.
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In the future, the results and the methods in this paper can be applied for the investiga-
tion of inverse spectral problems for different classes of differential operators. In particular,
differential operators with distribution coefficients of higher singularity orders can be
considered (see, e.g., [27,33,38]), and methods for recovering operators from other types of
spectral data can be developed (see, e.g., [15,18]).
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