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Abstract: This study investigates the worst-case performance guarantee of locally optimal solutions to
minimize the total weighted completion time on uniformly related parallel machines. The investigated
neighborhood structure is Jump, also called insertion or move. This research focused on establishing
the local optimality condition expressed as an inequality and mapping that maps a schedule into an
inner product space so that the norm of the mapping is closely related to the total weighted completion
time of the schedule. We determine two new upper bounds for the performance guarantee, which take
the form of an expression based on parameters that describe the family of instances: the speed of the
fastest machine, the speed of the slowest machine, and the number of machines. These new bounds
outperform the parametric upper bound previously established in the existing literature and enable a
better understanding of the performance of the solutions obtained for the Jump neighborhood in this
scheduling problem, according to parameters that describe the family of instances.

Keywords: parallel machines; total weighted completion time; local search; jump neighborhood;
performance guarantee

MSC: 90B35; 90C59; 68W40; 68M20

1. Introduction

Scheduling problems, which deal with the optimal allocation of limited resources to
tasks to minimize or maximize certain objectives, have been a central research focus in
the combinatorial optimization literature. The significance of these problems is evident,
given their diverse range of practical applications, from job scheduling in manufacturing
systems to resource management in complex projects. As Graham highlighted in their influ-
ential work [1], scheduling problems present intricate challenges, and their computational
complexity makes them essential subjects of study for the optimization community.

Considering the NP-hard complexity of many of these problems, exact solutions fre-
quently become impractical in real-world scenarios. Therefore, the development and analysis
of approximate solution methods become imperative. In recent studies, scheduling problems
in parallel machine environments have been investigated across various industries, including
semiconductor manufacturing [2,3], metalworking [4], textile manufacturing [5], automo-
tive manufacturing [6,7], chemical processes [8], offshore oil and gas extraction [9], as
well as manufacturing scheduling for contingent new requirements [10–15]. Additionally,
scheduling challenges within service-related sectors have been studied, encompassing
healthcare [7,16,17], audit [18], transport and cross-docking [19,20], hospital waste col-
lection [21], emergency response for forest fire extinguishing [22], and drone scheduling
problems [23], among others.
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1.1. Parallel Machine Environments

In problems related to the parallel machine scheduling environment, we are presented
with a set of n jobs to be scheduled on a set of m machines. Typically, jobs are scheduled
without interruption on a single machine, and each machine can process only one job at
a time. Each job has a known weight (relative importance) and a processing requirement
(processing time). Following the standard three-field scheduling notation [1,24], these
problems are represented as α|β|γ, where α describes the machine environment, β describes
the job characteristics and constraints, and γ presents the objective function. The most
straightforward scenario involves identical parallel machines (P), where the processing
time of a job is the same on all machines. When machines have varying processing speeds,
we enter the domain of the uniformly related parallel machine environment (Q). In contrast,
when the processing time of a job depends arbitrarily on the machine where it will be
processed, we have the environment of unrelated parallel machines (R).

A solution to the problems, or schedule, is an assignment and sequence of the jobs
for each machine. Given a schedule, the completion time of job j can be determined,
represented by Cj, with which two of the most studied objective functions can be established:
the Weighted Total Completion Time, the objective of which is to minimize ∑j wjCj, where
wj ≥ 0 is the weight of the job j, and the Makespan, the objective of which is to determine
a schedule that minimizes the maximum completion time of overall jobs, expressed as
Cmax = maxj

{
Cj
}

.
In the context of computational complexity, achieving a solution to the parallel machine

environment problem of minimizing the total completion time (∑ Cj) can be accomplished
in polynomial time. To be more specific, the problems P||∑ Cj and Q||∑ Cj can be efficiently
solved using the Shortest Processing Time (SPT) rule, with complexities of O(n log n)
and O(n log mn), respectively, [25,26]. Moreover, the R||∑ Cj problem can be efficiently
solved using appropriate bipartite matching techniques [27]. Nevertheless, if the goal is to
minimize the total weighted completion time or the makespan, these problems present NP-
hard complexities [28]. This holds true even in scenarios with two identical machines [29,30].
Moreover, if the number of machines is included as part of the input, these problems become
strongly NP-hard [26,31,32]. Given the inherent complexity of these problems, it is usual
to look for approximate solution approaches, such as Polynomial Time Approximation
Schemes (PTASs). For P||∑ wjCj and Q||∑ wjCj problems, PTASs are reported in [33,34].
However, for R||∑ wjCj problems, the best-reported approximation is 3/2 − δ, where δ
is a small non-negative constant [35,36]. Another commonly used approximate solution
approach is Local Search.

1.2. Local Search

According to Williamson and Shmoys [37], the study of approximation algorithms
provides a mathematically rigorous basis for the study of heuristics. Traditionally, heuris-
tics and metaheuristics are empirically studied, demonstrating satisfactory performance.
However, gaining a comprehensive understanding of their efficacy is essential. Thus, the
study of performance guarantees bringing mathematical rigor to heuristics, enabling us to
comprehend the quality of solutions obtained for all instances of the problem or to generate
insights into the families of instances where the heuristic may not perform well.

Local search approaches are commonly employed for addressing scheduling problems,
demonstrating notable empirical performance, but our understanding of their worst-case
theoretical performance still needs to be improved. For a comprehensive review of per-
formance guarantees and other theoretical considerations regarding local search across a
broad spectrum of combinatorial problems, encompassing scheduling problems, readers
are directed to [38,39]. The efficiency of a local algorithm depends on two critical factors:
the size of the neighborhood and the quality of the local optima solution, as outlined by
Ahuja [40]. One approach to assessing the quality of a local optimum is through worst-case
analysis, which can be quantified using the performance guarantee.
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According to [41], the performance guarantee for a minimization criterion is defined as
the maximum achievable ratio between a locally optimal solution and the global optimum.
Specifically, this performance guarantee can be formally expressed as:

pg(P ,N ) = sup
k∈I

sup
σ∈Lk

{
cost(σ)
opt(k)

}
, (1)

where P represents the problem, N represents the neighborhood structure, I represents
the set of all instances of P , Lk represents the set of all locally optimal solutions of instance
k for neighborhood N , and cost(σ) and opt(k) are the values of the objective function for
solution σ and optimal solution of instance k, respectively.

1.3. Aim and Scope

This study delves into analyzing the worst-case performance guarantee of solutions
determined by local search approaches. Specifically, we investigate the Jump neighborhood,
also known as move or insertion, where a job is relocated or reassigned from one machine
to another until a predetermined stopping criterion is met. We focus on the scheduling
problem of minimizing the total weighted completion time in a setting of uniformly related
parallel machines, denoted as Q||∑ wjCj. We aim to establish an improved parametric
upper bound for the performance guarantee.

1.4. Related Works

Regarding the performance guarantee of the studied problem, the literature sets a
lower bound of 1.423 and an upper bound of 2.618. The lower bound is derived from an
instance with three jobs and three machines [41]. In contrast, the upper bound is determined
via the performance guarantee of problems R||∑ wjCj and Q|Mj|∑ wjCj, both problems
being generalizations of the problem studied [42]. Additionally, the literature introduces a
parametric upper bound, which establishes an upper bound for the performance guarantee
based on parameters such as the speed of the fastest machine, the speed of the slowest
machine, and the number of machines [41]. This expression enables the establishment
of upper bounds for the performance guarantees lower than 2.618 for certain families
of instances.

Table 1 displays the performance guarantee of the Jump neighborhood for scheduling
jobs on parallel machine environments to minimize the total weighted completion time. The
performance guarantee is tight for problems where a single value is reported. Specifically,
this represents the worst-case performance guarantee value for a locally optimal solution
within the Jump neighborhood. For problems where a range of values is reported, these
values represent the lower and upper bounds for the worst-case performance guarantee.
These open gaps highlight a research opportunity to establish a tight performance guarantee
for the problem or narrow the gap between the upper and lower bounds. However, the
challenge seems complicated since some gaps have remained open for over fifteen years,
such as the gap of the P||∑ wjCj problem [43].

The performance guarantee of locally optimal solutions for the Jump neighborhood
has also been studied for makespan minimization. Specifically, the problem P||Cmax has
been investigated in [44,45], the problem Q||Cmax in [45,46], and the problem R||Cmax
in [45]. Problems involving machine eligibility restrictions were also studied for the
P and Q environments in [47,48]. The analysis of performance guarantees in parallel
machine environments has also extended to other neighborhood structures, primarily
focusing on minimizing the makespan. These neighborhoods include lexjump [45,47–49],
push [45,47], multi-exchange [45,50], and split [49]. Lexjump and push are polynomial-sized
neighborhoods, while multi-exchange and split are exponential. Moreover, the efficiency of
local search for the Jump neighborhood has also been studied [45,51].
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Table 1. Performance guarantee of the Jump neighborhood for scheduling jobs on parallel machine
environments to minimize the total weighted completion time.

Problem Jump Performance References

R||∑ wjCj 2.618 [42]
Q|Mj|∑ wjCj

1 2.618 [42]
P|Mj|∑ wjCj [1.75, 1.809] [42]

Q||∑ wjCj [1.423, 2.618] [41,42]
Q||∑ wjCj

2,3 ub = 2
(

1 − 2
m+2

)(
sm
s1

+ 1
2m

)
[41]

P||∑ wjCj
[

6
5 , 3

2 − 1
2m

]
[43]

R||∑ Cj 2 [42]
Q|Mj|∑ Cj 2 [42]
P|Mj|∑ Cj [1.525, 1.618] [42]

1 Mj denotes machine eligibility restrictions. 2 sm and s1 represent the speed of the fastest and slowest ma-
chine, respectively, and m represents the number of machines. 3 ub represents the parametric upper bound for
performance guarantee.

1.5. Our Results

Our main result establishes that the performance guarantee for locally optimal so-
lutions under the Jump neighborhood for the Q||∑ wjCj problem does not exceed the
following upper bounds:

2 +
(

sm − 1 − sm

m

)
1sm> m

m−1
, (2)

1
2

(
sm

s1
+ sm + 1 − sm

m

)
, (3)

where sm and s1 represent the speed of the fastest and slowest machine, respectively, m
represents the number of machines, and 1 represents the unit step function. These results
improve upon the parametric upper bounds reported in [41]:

2
(

1 − 2
m + 2

)(
sm

s1
+

1
2m

)
. (4)

Our proof technique is similar to the one employed in [41], as it establishes a local
optimality condition for the solutions obtained using the Jump neighborhood. Subsequently,
we utilize some properties of the solutions to the problem to establish an upper bound
for the performance guarantee of the problem. The main difference in the development
compared to [41] lies in the lower bound of the total weighted completion time for the
optimal schedule. In [41], a lower bound is derived based on the inequality proposed
by Eastman et al. [52]. In contrast, in this study, we define a lower bound based on a
property obtained through a transformation. This transformation maps the set of feasible
schedules of the problem to a specific inner product space, designed such that the norm
closely corresponds with the total weighted completion time of the schedule.

The remainder of this paper is structured as follows. The scheduling problem and
the local search neighborhood are introduced in Section 2. In Section 3, we present the
properties of feasible and optimal solutions to the problem. The performance guarantee of
the Jump neighborhood is studied in Section 4. Section 5 conducts the discussion. Finally,
the main conclusions of this study are summarized in Section 6.

2. Preliminaries

This section offers a comprehensive description of the scheduling problem addressed
in this study and the notation employed for its analysis. Furthermore, we present an
overview of the studied neighborhood structure, which will aid in establishing the local
optimality condition for the solution studies in this work.
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2.1. Problem Statement

The problem addressed in this study consists of minimizing the total weighted com-
pletion time on uniform parallel machines. In scheduling notation [1,24], this problem
is represented by Q||∑ wjCj. Let J represent the set of n jobs and M denote the set of
m ≥ 2 machines. For each job j ∈ J , let pj be the non-negative processing requirement,
while wj represents the non-negative weight of the job j. Each job must be scheduled
without interruption on a single machine. Each machine can only process one job at a
time. Let si denote the processing speed of machine i ∈ M. Hence, if job j is assigned to
machine i, a processing time pj/si is required. Without loss of generality, we assume that
the machines are indexed based on their speed, and we rescale the machine speeds so that:

s1 ≤ s2 ≤ · · · ≤ sm, (5)

∑
i∈M

si = m. (6)

Following the notation in [41,42], a schedule, denoted as v, represents a solution to the
problem and establishes the assignment of jobs to machines. Let vj indicate the machine to
which job j is assigned. More precisely, vj = i indicates that job j is assigned to machine i in
schedule v.

The sequence in which jobs assigned to machine i should be processed is determined
by the Weighted Shortest Processing Time (WSPT) rule [53] (Thm. 3). This rule arranges
jobs in decreasing order of the wj/pj ratio. In the case of ties in the ratio, they are broken
arbitrarily. For clarity and to avoid confusion, we use the ≺, ≻, ⪯, and ⪰ notation for
describing the precedence relationship between jobs and the job itself induced via the
WSPT rule. Then, representing the set of jobs assigned to machine i in schedule v as Ji(v),
for vj = i, we can express the value of the completion time of job j as:

Cj(v) = ∑
k∈Ji(v)

k⪯j

pk
si

= ∑
k∈Jvj (v)

k⪯j

pk
svj

. (7)

The total weighted completion time and the weighted sum of processing times for
schedule v are defined as follows:

C(v) = ∑
j∈J

wjCj(v) = ∑
i∈M

∑
j∈Ji(v)

wjCj(v), (8)

η(v) = ∑
i∈M

∑
j∈Ji(v)

wj pj

si
= ∑

j∈J

wj pj

svj

. (9)

With the previous definitions, we have the following identities:

C(v) = ∑
i∈M

∑
j∈Ji(v)

∑
k∈Ji(v)

k⪯j

wj pk

si
= ∑

j∈J
∑

k∈Jvj (v)
k⪯j

wj pk

svj

= η(v) + ∑
j∈J

∑
k∈Jvj (v)

k≺j

wj pk

svj

, (10)

C(v) = ∑
i∈M

∑
j∈Ji(v)

∑
k∈Ji(v)

k⪰j

wk pj

si
= ∑

j∈J
∑

k∈Jvj (v)
k⪰j

wk pj

svj

= η(v) + ∑
j∈J

∑
k∈Jvj (v)

k≻j

wk pj

svj

. (11)

2.2. Jump Neighborhood

The Jump neighborhood, also called insertion or move, is a polynomial-size neigh-
borhood [49]. A Jump move is characterized by relocating a single job from one machine
to another. The success of a Jump move is determined by the reduction in the objective
function (total weighted completion time). Given a solution, if it is impossible to make Jump
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moves that improve the value of the objective function, this solution is a local optimum.
We call this solution Jump-Opt.

Figure 1 illustrates a Jump move of a schedule denoted as x. In this scheme, job j,
currently assigned to machine i, is moved or reassigned to machine h. The figure also
indicates the sets of jobs scheduled before and after job j on both machines. Consider δj(x)
as the reduction in the total weighted completion time when job j is excluded from machine
xj = i. Furthermore, let δ′j(x, h) denote the increase in the total weighted completion time if
job j is reassigned to machine h. Thus,

δj(x) = wjCj(x) + ∑
k∈Jxj (x)

k≻j

wk pj

sxj

, (12)

δ′j(x, h) =
wj pj

sh
+ ∑

k∈Jh(x)
k≺j

wj pk

sh
+ ∑

k∈Jh(x)
k≻j

wk pj

sh
. (13)

Consequently, the schedule x will be a Jump-Opt solution if, and only if,

δj(x) ≤ δ′j(x, h) for all j ∈ J , h ∈ M. (14)

Schedule of machine i: k ∈ Ji(x) : k ≺ j j k ∈ Ji(x) : k ≻ j

Schedule of machine h: k ∈ Jh(x) : k ≺ j k ∈ Jh(x) : k ≻ j

Jump move

Figure 1. Schematic for a Jump move.

3. Properties of the Optimal Schedules

This section describes some properties of feasible and optimal solutions to the Q||∑ wjCj
problem. Guided by the insights of Cole et al. [54], we develop mapping from the set
of schedules to a specific inner product space. This mapping is designed such that the
norm closely corresponds to the total weighted completion time of the schedule. Let
φ : MJ → L2([0, ∞))M be the function that associates every feasible schedule v with a
vector of functions, with one for each machine. If f = φ(v), then for each machine i ∈ M,
we define:

fi(y) = ∑
j∈Ji(v):

pj
wj

≥y

wj√
si

. (15)

Lemma 1. Let v be a schedule of the Q||∑ wjCj problem, and let f = φ(v). Then,

∥φ(v)∥2 = 2C(v)− η(v). (16)
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Proof. For f = φ(v), the norm is calculated as:

∥φ(v)∥2 = ∑
i∈M

∫ ∞

0
fi(y)2dy = ∑

i∈M

∫ ∞

0
∑

j∈Ji(v):
pj
wj

≥y

wj√
si

∑
k∈Ji(v):

pk
wk

≥y

wk√
si

dy

= ∑
i∈M

∑
j∈Ji(v)

∑
k∈Ji(v)

wjwk

si

∫ ∞

0
1

y≤
pj
wj

1y≤ pk
wk

dy

= ∑
i∈M

∑
j∈Ji(v)

∑
k∈Ji(v)

wj pk

si
1 pk

wk
≤

pj
wj

+
wk pj

si
1 pk

wk
>

pj
wj

.

By utilizing the ≺, ≻, ⪯, and ⪰ notation, as introduced through the application of the
WSPT rule, we obtain

∥φ(v)∥2 = ∑
i∈M

∑
j∈Ji(v)

∑
k∈Ji(v)

k⪯j

wj pk

si
+ ∑

i∈M
∑

j∈Ji(v)
∑

k∈Ji(v)
k≻j

wk pj

si
.

By using Equations (9)–(11), the proof is concluded.

For subsequent analysis, it is necessary to quantify the total weighted completion time
of a schedule in which all jobs are assigned to a single machine that operates at a speed
equal to 1. The total weighted completion time of this schedule is

Z1 = ∑
j∈J

∑
k∈J
k⪯j

wj pk = ∑
j∈J

∑
k∈J
k⪰j

wk pj. (17)

Another solution of particular interest is the one where all jobs are assigned to a single
machine that operates at speed m. Remember that according to assumption (6), the sum
of the speeds of the machines is equal to m. We represent this schedule by z, and its total
weighted completion time is

C(z) =
Z1

m
. (18)

In the following lemma, φ mapping is utilized to establish another property of solu-
tions to the problem Q||∑ wjCj.

Lemma 2. Let v be a schedule for the Q||∑ wjCj problem, where ∑i∈M si = m, and let z denote
a schedule in which all jobs are assigned to a machine operating at speed m (the total number of
machines). For f = φ(v) and f z = φ(z), it holds that

∥φ(z)∥2 ≤ ∥φ(v)∥2. (19)

Before proceeding with the proof of Lemma 2, a graphical concept of its demonstration
is presented. Figure 2 depicts the graph associated with the mapping φ for an instance with
n = 4 jobs and m = 2 machines. For this instance, we have the schedule v = (1, 2, 1, 2),
which indicates that jobs j1 and j3 are assigned to machine 1, while jobs j2 and j4 are
assigned to machine 2. The representation of this schedule is presented in Figure 2b,c.
Here, it can be observed that each job is represented by a rectangle, with its height being
determined by wj/

√
si, and its length being determined by pj/wj. The order in which the

jobs are arranged is defined by the WSPT rule. Specifically, they are ordered in decreasing
order concerning the ratio wj/pj. In Figure 2b,c, the value of the function related to the
mapping φ for each machine is depicted with red lines, denoted as f1(y) and f2(y), for
each machine, respectively. In Figure 2a, the sum value of these functions is depicted with a
dotted red line. The value of the function related to the mapping φ for the schedule where
all jobs are assigned to a single machine operating at speed m is depicted by a blue line.
It is evident from this graph that the value of the function for this schedule is always less
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than or equal to f1(y) + f2(y) for any value of y ≥ 0. This result can be generalized for any
instance. Next, we proceed with the proof of the lemma.

y

y

y

w.√
m

w.√
s1

w.√
s2

(a)

(b)

(c)

j4

j2

j3

j1

j4

j3

j2

j1

w4√
s2

w2√
s2

w3√
s1

w1√
s1

w4√
m

w3√
m

w2√
m

w1√
m f z(y)

f1(y)

f2(y)

p1/w1

p2/w2

p3/w3

p4/w4

f1(y) + f2(y)

Figure 2. A mapping of schedules z and v for an instance involving four jobs and two machines.

Proof of Lemma 2. By applying the mapping φ to schedule z, we have a single vector of
functions, with
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f z(y) = ∑
j∈J :

pj
wj

≥y

wj√
m

.

The norm for f z is,

∥φ(z)∥2 =
∫ ∞

0
f z(y)2dy =

∫ ∞

0

 ∑
j∈J :

pj
wj

≥y

wj√
m


2

dy

=
∫ ∞

0

1
m

 ∑
j∈J :

pj
wj

≥y

wj


2

dy =
∫ ∞

0

1
m

 ∑
i∈M

∑
j∈Ji(v):

pj
wj

≥y

wj


2

dy.

In the last equality, based on the schedule v, the set of all jobs is represented by m
disjoint sets of jobs. Thus, for this final expression, the Cauchy–Bunyakovsky–Schwarz
inequality is utilized to conclude that:

∥φ(z)∥2 ≤
∫ ∞

0
∑

i∈M

 ∑
j∈Ji(v):

pj
wj

≥y

wj


2

dy = ∑
i∈M

∫ ∞

0

 ∑
j∈Ji(v):

pj
wj

≥y

wj


2

dy. (20)

However, the norm for f is:

∥φ(v)∥2 = ∑
i∈M

∫ ∞

0
f (y)2dy = ∑

i∈M

∫ ∞

0

 ∑
j∈Ji(v):

pj
wj

≥y

wj√
si


2

dy

= ∑
i∈M

1
si

∫ ∞

0

 ∑
j∈Ji(v):

pj
wj

≥y

wj


2

dy. (21)

To simplify the notation, we define:

αi =
∫ ∞

0

 ∑
j∈Ji(v):

pj
wj

≥y

wj


2

dy. (22)

Without loss of generality, we assume that the job processing requirements and weights
take values such that:

αi ≤ 1, ∀i ∈ M. (23)

Next, we define the difference between ∥φ(z)∥2 and ∥φ(v)∥2 and utilize Equations
(20)–(23):

L = ∥φ(z)∥2 − ∥φ(v)∥2 ≤ ∑
i∈M

αi

(
1 − 1

si

)
≤ ∑

i∈M

(
1 − 1

si

)
. (24)

To conclude the proof, it is necessary to demonstrate that the right-hand side of
Equation (24) is less than or equal to zero. To achieve this, we formulate the following
problem:

max
s∈Rm

+

{
∑

i∈M

(
1 − 1

si

)
, subject to ∑

i∈M
si = m

}
. (25)
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Note that the objective function of Problem (25) is concave, and the constraint is linear.
Hence, applying the Lagrange method enables the identification of a global optimum for
the problem. The Lagrangian function for Problem (25) is:

L(s, λ) = ∑
i∈M

(
1 − 1

si

)
− λ

(
∑

i∈M
si − m

)
.

By solving the first-order necessary condition, we find the optimal solution: λ = 1 and
si = 1, ∀i ∈ M. This implies that the objective function value in Problem (25) equals zero,
thereby demonstrating that

L = ∥φ(z)∥2 − ∥φ(v)∥2 ≤ 0.

The following theorem is established by applying Lemma 2 to the optimal schedule.

Theorem 1. For an optimal schedule x∗ of the Q||∑ wjCj problem, where ∑i∈M si = m, the
following expression holds:

2Z1

m
− ∑

j∈J

wj pj

m
≤ 2C(x∗)− η(x∗). (26)

Proof. The proof comes from Lemmas 1 and 2 and Equation (18).

Next, we introduce an additional property that will be used to establish the main
result of this study.

Lemma 3. For any schedule v of the Q||∑ wjCj problem, the weighted sum of processing times
satisfies

∑
j∈J

wj pj

sm
≤ η(v) ≤ ∑

j∈J

wj pj

s1
. (27)

Proof. The proof is established from Equation (9) and assumption (5).

4. Performance Guarantee

The following two lemmas provide parametric upper bounds for the performance
guarantee of locally optimal solutions for the Jump neighborhood. Here, x∗ represents the
optimal schedule, and x represents the Jump-Opt schedule.

Lemma 4. Given an instance of the Q||∑ wjCj problem, where ∑i∈M si = m, the performance
guarantee of Jump-Opt solutions is, at most,

2 +
(

sm − 1 − sm

m

)
1sm> m

m−1
. (28)

Proof. From the local optimality condition, Equation (14), we have:

wjCj(x) + ∑
k∈Jxj (x)

k≻j

wk pj

sxj

≤
wj pj

sh
+ ∑

k∈Jh(x)
k≺j

wj pk

sh
+ ∑

k∈Jh(x)
k≻j

wk pj

sh
, ∀j ∈ J , h ∈ M.

Next, we multiply both sides of the inequality by sh/m and sum over all h ∈ M. Note
that, as established in Equation (6), ∑h sh/m = 1. Consequently, we derive the following
valid inequality:
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wjCj(x) + ∑
k∈Jxj (x)

k≻j

wk pj

sxj

≤ wj pj + ∑
h∈M

∑
k∈Jh(x)

k≺j

wj pk

m
+ ∑

h∈M
∑

k∈Jh(x)
k≻j

wk pj

m

= wj pj + ∑
k∈J
k≺j

wj pk

m
+ ∑

k∈J
k≻j

wk pj

m

= wj pj + ∑
k∈J
k⪯j

wj pk

m
+ ∑

k∈J
k⪰j

wk pj

m
−

2wj pj

m
, ∀j ∈ J .

By summing over all j ∈ J and utilizing Equations (11) and (17), while grouping
certain terms, we obtain the following expression:

2C(x) ≤ η(x) +
(

1 − 2
m

)
∑
j∈J

wj pj +
2Z1

m
.

Utilizing Theorem 1, it follows that:

2C(x) ≤ η(x) +
(

1 − 1
m

)
∑
j∈J

wj pj + 2C(x∗)− η(x∗). (29)

Using Equation (10) and Lemma 3, we have η(x) ≤ C(x), and ∑j∈J wj pj ≤ smη(x∗),
respectively. Therefore,

C(x) ≤ 2C(x∗) + η(x∗)
(

sm − sm

m
− 1
)

. (30)

From Equation (30), it can be determined that there are two cases depending on the
sign of the term that multiplies η(x∗). The term is negative for sm ≤ m/(m − 1). In this
case, we have

C(x) ≤ 2C(x).

Conversely, if the term that multiplies η(x∗) is positive, and given that η(x∗) ≤ C(x∗),
we have

C(x) ≤ C(x∗)
(

1 + sm − sm

m

)
.

Finally, the proof is concluded by isolating C(x)/C(x∗).

Lemma 5. Given an instance of the Q||∑ wjCj problem, where ∑i∈M si = m, the performance
guarantee of Jump-Opt solutions is, at most,

1
2

(
sm

s1
+ sm + 1 − sm

m

)
. (31)

Proof. This proof begins with Equation (29):

2C(x) ≤ η(x) +
(

1 − 1
m

)
∑
j∈J

wj pj + 2C(x∗)− η(x∗).

According to Lemma 3, we deduce that η(x) ≤ ∑j∈J
wj pj

s1
. Therefore,

2C(x) ≤
(

1 − 1
m

+
1
s1

)
∑
j∈J

wj pj + 2C(x∗)− η(x∗).
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Furthermore, according to Lemma 3, we have that ∑j∈J wj pj ≤ smη(x∗). Hence,

2C(x) ≤
(

sm − sm

m
+

sm

s1
− 1
)

η(x∗) + 2C(x∗).

Equation (10) makes it evident that η(x∗) ≤ C(x∗). Further, considering the non-
negativity of the term multiplying η(x∗), we have:

2C(x) ≤
(

sm − sm

m
+

sm

s1
+ 1
)

C(x∗).

Finally, the proof is concluded by isolating C(x)/C(x∗).

The subsequent lemma illustrates that the parametric upper bound introduced in
Lemma 5 provides a tighter upper bound compared to the one presented in [41].

Lemma 6. The proposed parametric upper bound for the performance guarantee of Jump-Opt
solutions for the Q||∑ wjCj problem is better than Muñoz and Pinochet parametric upper bound.

Proof. By considering Equation (4) and Theorem 5, we determine the difference between
the performance guarantees. Let D represent this difference:

D = 2
(

1 − 2
m + 2

)(
sm

s1
+

1
2m

)
− 1

2

(
sm

s1
+ sm + 1 − sm

m

)
=

sm

s1

(
3m − 2

2(m + 2)
− m

2(m + 2)
s1

sm
− (m − 1)

2m
s1

)
.

To establish the lemma, it is sufficient to demonstrate that D ≥ 0. Given that s1/sm
and s1 are upper-bounded by 1, we establish the following inequality:

D ≥ sm

s1

(
3m − 2

2(m + 2)
− m

2(m + 2)
− (m − 1)

2m

)
=

sm

s1

(
m2 − 3m + 2
2m(m + 2)

)
=

sm

s1

(m − 1)(m − 2)
2m(m + 2)

.

This final expression shows that D ≥ 0 holds true for all m ≥ 2.

In the following theorem, we present our main result, utilizing the parametric upper
bounds established in Lemmas 4 and 5, in conjunction with the constant performance
guarantee for the Q|Mj|∑ wjCj problem (refer to Table 1). It is important to note that the
Q|Mj|∑ wjCj problem is a generalization of the Q||∑ wjCj problem. In the Q|Mj|∑ wjCj
problem, the presence of machine eligibility restrictions is indicated by Mj, meaning each
job j can be processed by a subset Mj ⊆ M of machines. This problem is considered a
generalization since |Mj| can be equal to m for all jobs. Consequently, the performance
guarantee for Jump-Opt solutions in the Q|Mj|∑ wjCj problem serves as an upper bound
for the performance guarantee of Jump-Opt solutions in the Q||∑ wjCj problem.

Theorem 2. Given an instance of the Q||∑ wjCj problem, where ∑i∈M si = m, the performance
guarantee of Jump-Opt solutions is, at most,

min
{

2.618, 2 +
(

sm − 1 − sm

m

)
1sm> m

m−1
,

1
2

(
sm

s1
+ sm + 1 − sm

m

)}
. (32)

5. Discussion

Based on the results presented in Section 4, it becomes evident that the bound intro-
duced in Muñoz and Pinochet [41] is outperformed by the bound proposed in Lemma 5.
This performance difference demonstrated in Lemma 6, is the key reason why the upper
bound from [41] is not incorporated into Theorem 2.
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Next, we will discuss the complementarity of the three upper bounds presented in
Theorem 2. We will examine this complementarity in the context of two machines and the
scenario where m tends to infinity. We will use ub2 and ub3 to refer to the upper bounds of
Lemmas 4 and 5, respectively.

For environments with m = 2 machines and given that s1 + s2 = 2, we have:

ub2 = 2 +
(

s2 − 1 − s2

2

)
1s2>2 = 2,

ub3 =
1
2

(
s2

s1
+

s2

2
+ 1
)
=

1
s1

+
1
2
− s1

4
.

The first observation for this case is that the fixed upper bound of 2.618 is dominated
by the constant value of 2 provided by ub2. To assess the complementarity of ub2 and ub3,
we introduce the difference R2 = ub3 − ub2. A positive value of R2 implies that the bound
ub2 is tighter than ub3, while a negative value implies the opposite. Thus,

R2 =
1
s1

− s1

4
− 3

2
=

(
√

13 − 3 − s1)(s1 + 3 +
√

13)
4s1

.

Note that R2 ≥ 0 if, and only if, s1 ≤
√

13 − 3 ≈ 0.6056. Then, ub2 is a better bound
than ub3 for s1 ≤ 0.6056, while for s1 > 0.6056, ub3 is a better bound than ub2.

For m → ∞, it should be noted that the condition of ub2, sm > m/(m − 1) → 1, holds
true consistently in a uniform parallel machines environment. Thus,

ub2 = sm + 1,

ub3 =
1
2

(
sm

s1
+ sm + 1

)
.

Analogously to the analysis of the previous case, we use the difference to analyze the
complementarity of the upper bounds. Let Rm = ub3 − ub2 be the difference for this case,

Rm =
1
2

(
sm

s1
− sm − 1

)
.

The sign that Rm takes depends on the values of s1 and sm. Therefore, both of the two
upper bounds must be considered. In other words, none of the upper bounds is dominated
by the other.

To illustrate the complementarity of the three upper bounds included in Theorem 2,
we provide examples. Table 2 presents five intentional parameter combinations for the
Q||∑ wjCj problem, along with the values obtained from the upper bounds ub2 and ub3, in
addition to the upper bound for the generalization of the problem [42], denoted as ub1. The
results presented provide evidence of the usefulness of all the upper bounds, contingent
upon the specific parameter combinations. These examples underscore how the Theorem 2
enables the establishment of better upper bounds than those attainable through each upper
bound individually. Note that in combinations 1 to 3, s5 > m/(m − 1) = 1.25. In contrast,
in combinations 4 and 5, s5 ≤ 1.25. This discrepancy has implications for determining ub2.

Finally, we extend the result of Lemma 5 to a particular case. The problem under study,
Q||∑ wjCj, is a generalization of the problem in an environment with identical parallel
machines, represented by P||∑ wjCj. For this problem, Brueggemann et al. [43] determined
that the performance guarantee for solutions obtained using the Jump neighborhood
lies within the interval [1.2, (3m − 1)/2m]. Regarding this result, it can be observed that
the parametric upper bound for the performance guarantee for the Jump neighborhood
proposed in Lemma 5 coincides with the value reported in [43] when s1 = sm = 1. Note
that these values refer to the scenario of identical machines operating at unitary speed.
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Table 2. Examples of the performance of the upper bounds for different parameter combinations in
5-machine instances.

Machine Speeds s5/s1 Bounds Upper Bound Best Bound

Comb. 1 s1 = 0.050 92 ub1 = 2.618 2.618 ub1
s2 = 0.100 ub2 = 4.680
s3 = 0.100 ub3 = 48.34
s4 = 0.150
s5 = 4.600

Comb. 2 s1 = 0.935 1.348 ub1 = 2.618 1.678 ub3
s2 = 0.935 ub2 = 2.008
s3 = 0.935 ub3 = 1.678
s4 = 0.935
s5 = 1.260

Comb. 3 s1 = 0.050 25.20 ub1 = 2.618 2.008 ub2
s2 = 1.230 ub2 = 2.008
s3 = 1.230 ub3 = 13.60
s4 = 1.230
s5 = 1.260

Comb. 4 s1 = 0.975 1.128 ub1 = 2.618 1.504 ub3
s2 = 0.975 ub2 = 2.000
s3 = 0.975 ub3 = 1.504
s4 = 0.975
s5 = 1.100

Comb. 5 s1 = 0.470 2.660 ub1 = 2.618 2.000 ub2
s2 = 1.000 ub2 = 2.000
s3 = 1.100 ub3 = 2.330
s4 = 1.180
s5 = 1.250

ub1 = 2.618. ub2 = 2 +
(
sm − 1 − sm

m
)
1sm> m

m−1
. ub3 = 1

2

(
sm
s1

+ sm + 1 − sm
m

)
.

6. Conclusions

This study presents two new parametrical upper bounds for the worst-case perfor-
mance guarantee of Jump-Opt solutions for the problem of scheduling jobs in a uniformly
related parallel machine environment to minimize total weight completion time, a recog-
nized NP-hard combinatorial optimization problem.

The research focused on establishing the local optimality condition for the Jump
neighborhood and on developing a mapping to represent a schedule within an inner
product space, where the norm closely corresponds to the total weighted completion time
of the schedule. The determined upper bounds establish the performance guarantee based
on the parameters that describe an instance family, the number of machines, and the speed
of the fastest and slowest machines.

The noteworthy findings of this study include the complementarity of the developed
parametric upper bounds with the fixed performance guarantee of a generalization of the
problem under study. Additionally, the new bounds outperformed the parametric upper
bound previously reported in the literature.
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