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Abstract: The Weibull distribution is a versatile probability distribution widely applied in modeling
the failure times of objects or systems. Its behavior is shaped by two essential parameters: the shape
parameter and the scale parameter. By manipulating these parameters, the Weibull distribution
adeptly captures diverse failure patterns observed in real-world scenarios. This flexibility and
broad applicability make it an indispensable tool in reliability analysis and survival modeling. This
manuscript explores five parameterizations of the Weibull distribution, each based on different
moments, like mean, quantile, and mode. It meticulously characterizes each parameterization,
introducing a novel one based on the model’s mode, along with its hazard and survival functions,
shedding light on their unique properties. Additionally, it delves into the interpretation of regression
coefficients when incorporating regression structures into these parameterizations. It is analytically
established that all five parameterizations define the same log-likelihood function, underlining their
equivalence. Through Monte Carlo simulation studies, the performances of these parameterizations
are evaluated in terms of parameter estimations and residuals. The models are further applied to
real-world data, illustrating their effectiveness in analyzing material fatigue life and survival data.
In summary, this manuscript provides a comprehensive exploration of the Weibull distribution and
its various parameterizations. It offers valuable insights into their applications and implications
in modeling failure times, with potential contributions to diverse fields requiring reliability and
survival analysis.

Keywords: regression models; reparameterization; survival modeling; Weibull distribution

MSC: 62N02; 62J99

1. Background

The Weibull distribution is a popular continuous probability distribution that is com-
monly utilized to model the lifetimes or failure times of objects or systems. It was initially
introduced by Waloddi Weibull in 1951 [1] and has since found applications in various
fields. For instance, in reliability engineering, Keshevan et al. [2] employed the Weibull
distribution to model the Hertzian fracture of Pyrex glass. In another study, Queeshi and
Sheikh [3] used the Weibull distribution to analyze adhesive wear in metals. Similarly,
Durham and Padgett [4] applied the distribution to carbon fibers and small composite
specimens. Almeida [5] investigated the failure of coating using the Weibull distribution,
while Fok et al. [6] focused on its use for brittle material. Additionally, Newell et al. [7]
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employed the distribution to study compressive failure in high-performance polymers and
Li et al. [8] analyzed concrete components using the Weibull distribution.

The distribution mentioned above has been widely applied as a flexible modeling tool
in various fields, addressing a diverse range of issues. It has been successfully utilized
in disciplines such as quality control, weather forecasting, industrial engineering, electric
systems engineering, communications systems engineering, hydrology, and more. For
instance, Bebbington and Lai [9] utilized it for volcanic eruptions, while Durrans [10] and
Heo et al. [11] applied it to regional flood frequency analysis. Fleming [12] used it to
describe the dynamics of foliage biomass on Scots pine. In the field of Economics, Roed
and Zhang [13] employed it to analyze unemployment duration data. In the context of
wireless communications, the Weibull distribution is very flexible. Ikki and Ahmed [14]
analyzed the performance of multi-hop relaying systems over Weibull fading channels
in terms of bit error rate and outage probability. A similar analysis of the bit error rate
and outage probability over multi-hop Weibull fading channels was also conducted by
Wang et al. [15].

The Weibull distribution is defined by two parameters: the shape parameter (ν) and
the scale parameter (λ). The shape parameter determines the shape of the distribution
curve, while the scale parameter determines the characteristic magnitude or scale of the
failure times. Depending on the value of the shape parameter ν, the Weibull distribution
can exhibit different shapes. When ν > 1, the distribution is positively skewed, indicating a
decreasing failure rate over time. This shape is commonly known as the bathtub curve and
is often observed in reliability analysis. In this curve, failures are more likely to occur either
early on, due to manufacturing defects or initial wear, or in the later stages, due to aging or
wear-out effects. When ν = 1, the distribution simplifies to the exponential distribution,
which is the only continuous distribution with a constant hazard function on the positive
axis. For ν < 1, the distribution is negatively skewed, indicating an increasing failure rate
over time (Rinne [16]).

The versatility and importance of this distribution can be seen in its close relation-
ship with several well-known distributions in statistics. It includes other distributions as
special cases, such as the exponential distribution (when the shape parameter ν is equal
to 1) and the Rayleigh distribution (when ν is equal to 2). Furthermore, if T follows a
Weibull distribution, then Y = λ(1 − ν log(T/ν)) follows an extreme-value distribution.
By applying a simple log transformation, the Weibull distribution can also be converted
into the Gumbel distribution. Additionally, it acts as a limit distribution for the Burr distri-
bution, establishing a significant connection between these distributions (Lai and Xie [17]).
These relationships further emphasize the importance and wide-ranging applicability of
the Weibull distribution in statistical modeling and analysis.

The Weibull distribution is widely used in modeling lifetimes because it can effectively
represent different failure patterns observed in real-life situations. Failure data can be
classified into two types: complete data and incomplete (censored) data. Complete data
refer to cases where the actual observed values are known for every observation in the
dataset. On the other hand, censored data occur when the actual observed values are
unknown for some or all of the observations. It is worth noting that there are various types
of censoring; more information can be found in the work by Lawless [18]. Several studies
have examined the application of the Weibull distribution in analyzing censored data.
For example, Ghitany et al. (2005) [19] and Klakattawi (2022) [20] extended the Weibull
model and applied it to bladder cancer data, Joarder (2011) [21] and Jia et al. (2016) [22]
studied leukemia data, and Lee et al. (2007) [23] focused on the head-and-neck-cancer
trial. The Weibull distribution has an intriguing application in models involving a fraction
of cure. This distribution is particularly well-suited for estimating the time it takes for
cancer cells to produce detectable cancer. As a result, it has gained significant popularity
in this field. Several studies, including those by Chen et al. [24], Yin and Ibrahim [25],
Rodrigues et al. [26], Gallardo et al. [27], and Azimi et al. [28], have extensively explored
this topic.
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There are numerous extensions, generalizations, and modifications to the Weibull
distribution. These developments have emerged to address the requirements of empir-
ical datasets that exhibit characteristics beyond what can be effectively captured by a
standard two-parameter Weibull model (Lai and Xie [17]). These extended models can
be broadly classified into three groups: univariate, multivariate, and stochastic process
models. Univariate models focus on enhancing the flexibility of the Weibull distribution
for single variable analysis. Multivariate models extend the Weibull framework to handle
multiple variables and their dependencies. Stochastic process models delve into time-
dependent and dynamic variations of the Weibull distribution. Noteworthy references,
such as Murthy et al. [29,30], provide insights into these diverse extensions and shed light
on the advancements made in modeling techniques beyond the traditional Weibull frame-
work. Silva et al. [31] derived the power-series extended Weibull class of distributions.
Santos-Neto et al. [32] and Nascimento et al. [33] introduced a family of distributions
encompassing well over forty variants. For more details about the generalizations and
modifications of the Weibull distribution, see Murthy [30], Nadarajah and Kotz [34], Pham
and Lai [35], and Almalki and Nadarajah [36], as well as the references therein. The analysis
of the truncated Weibull distribution has been explored in many papers. For example,
Wingo [37] proposed the left-truncated Weibull distribution. The right-truncated Weibull
distribution has been analyzed by Zhang and Xie [38]. The doubly-truncated Weibull
distribution has been studied in work by McEwen and Parresol [39].

In summary, the Weibull distribution is a versatile probability distribution that finds
widespread application in modeling the failure times of objects or systems. The distri-
bution’s characteristics and behaviors are determined by two key parameters: the shape
parameter and the scale parameter. The shape parameter governs the shape of the distribu-
tion, allowing it to range from exponential to highly skewed distributions. On the other
hand, the scale parameter influences the location and spread of the distribution. By manip-
ulating these parameters, the Weibull distribution can effectively capture various failure
patterns observed in real-world scenarios. Its flexibility and wide range of applications
make it a valuable tool in reliability analysis and survival modeling.

The main objectives of this manuscript are as follows:

1. We perform a review of the different parameterizations of the Weibull distribution
documented in the literature, including the interpretation of the regression coefficients,
when incorporating regression structures into these parameterizations.

2. We introduce a novel parameterization of the Weibull model based on the mode of
this distribution.

3. We theoretically explore the equivalence of the five parameterizations of the Weibull
distribution in the context of regression models, since there is no discussion connecting
all the mentioned parameterizations.

The manuscript is organized as follows. In Section 2, five parameterizations of the
Weibull distribution are introduced. Three of these parameterizations are mean-based, one
is quantile-based, and the last one is mode-based. Each parameterization is characterized
by examining the respective hazard and survival functions. Section 3 delves into the
interpretation of regression coefficients when regression structures are incorporated into
the parameters of the five Weibull model parameterizations. In Section 5, we analytically
demonstrate that the five parameterizations of the Weibull model discussed in the previous
section define the same log-likelihood function. Section 6 presents Monte Carlo (MC)
simulation studies for parameter estimation and residuals. In Section 6, the analyzed
models are applied to real data. Specifically, two illustrations are provided to exemplify
their applicability and use in material fatigue life and survival data. should be noted that
all models have been implemented using the R-project code (https://www.r-project.org/,
accessed on 5 December 2023). Finally, Section 7 summarizes the main conclusions of the
manuscript and discusses possible avenues for future work.

https://www.r-project.org/
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2. Weibull Parameterizations

As discussed in Section 1, the Weibull distribution is one of the most used models in
reliability analysis because it is a parsimonious model with a simple expression for the
density, survival, and hazard functions, and with some interesting properties. For instance,
it can assume a decreasing, increasing, or constant hazard rate, depending only on the
shape parameter ν (<1, >1, or =1, respectively). However, the Weibull distribution has
many parameterizations in the literature, depending on the study.

The accelerated failure time (AFT) model, which is employed as the base parameteri-
zation, is used for the Weibull model; it has hazard and survival functions given by

h(t; λ, ν) =
ν

λ

[
t
λ

]ν−1
, t, ν, λ > 0.

and

S(t; λ, ν) = exp
(
−
[

t
λ

]ν)
, t, ν, λ > 0,

respectively, with λ and ν parameters of scale and shape, respectively. This parameteriza-
tion is referred to as WEI(λ, ν). An alternative parameterization of the Weibull model is
associated with the proportional hazards model, in which the hazard and survival functions
are given by

h(t; λ, ν) = νλtν−1, t, ν, λ > 0

and
S(t; λ, ν) = exp(−λtν), t, ν, λ > 0,

respectively. This parameterization is referred to as WEI2(λ, ν), where λ and ν act as
the scale and shape parameters, respectively. A third alternative parameterization of the
Weibull model is related to its mean. Fernandes et al. [40] propose a reparameterization that
expresses the Weibull distribution in terms of the process mean, enabling straightforward
monitoring of the Weibull mean. In this parameterization, the hazard and survival functions
are given by

h(t; λ, ν) =
ν

γ

[
t
γ

]ν−1
, t, ν, λ > 0

where γ = λ/Γ(1 + 1/ν) and

S(t; λ, ν) = exp
(
−
[

t
γ

]ν)
, t, ν, λ > 0,

respectively. This parameterization is referred to as WEI3(λ, ν). In this case, E(T) = λ.
Recently, a fourth parameterization for the Weibull distribution was introduced by

Sánchez et al. [41]. In this parameterization, the hazard and survival functions are given by

h(t; λ, ν) = − log(1 − q)
ν

λ

[
t
λ

]ν−1
, t, ν, λ > 0.

where q ∈ (0, 1) and

S(t; λ, ν) = exp
(

log(1 − q)
[

t
λ

]ν)
, t, ν, λ > 0,

respectively. This parameterization is referred to as WEI4(λ, ν). In this case, λ represents
the q-quantile of the distribution.

Alternatively, a fifth parameterization of the Weibull is proposed, based on its mode.
The main motivation for re-parameterizing the model in terms of this measure is associated
with the robustness of the mode (above the mean, for example) and the fact that it is a
measure that has been used more frequently in the literature in recent years. For instance,
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see Yao and Li [42], Chen [43], and Bourguignon et al. [44]. In this parameterization, the
hazard and survival functions are given by

h(t; λ, ν) =
[ν − 1]

λ

[
t
λ

]ν−1
, t, ν, λ > 0.

and

S(t; λ, ν) = exp
(
−
[

1 − 1
ν

][
t
λ

]ν)
, t, λ > 0, ν > 1.

This parameterization is referred to as WEI5(λ, ν). In this case, λ represents the mode of
the distribution. Table 1 presents the mean, mode, q-quantile, and variance for the five
parameterizations of the Weibull distribution explored in this study.

Table 1. Different measures for the five parameterization of the Weibull distribution. In all parameter-
izations, the parameter space for (λ, ν) is R2

+, except for the WEI5 model, where the parameter space
is R+ × (1, ∞).

Model Mean Mode q-Quantile Variance

WEI λΓ
(

1 + 1
ν

) {
λ
[
(ν−1)

ν

]1/ν
, if ν > 1

0 , if ν ≤ 1
λ[− log(1 − q)]1/ν λ2ω(ν)

WEI2 λ−1/νΓ
(

1 + 1
ν

) { [
(ν−1)

λν

]1/ν
, if ν > 1

0 , if ν ≤ 1

[
− log(1−q)

λ

]1/ν
λ−2/νω(ν)

WEI3 λ

 λ
Γ(1+ 1

ν )

[
(ν−1)

ν

]1/ν
, if ν > 1

0 , if ν ≤ 1
λ

Γ(1+ 1
ν )
[− log(1 − q)]1/ν λ2 ω(ν)

Γ2(1+ 1
ν )

WEI4
λΓ(1+ 1

ν )
[− log(1−q)]1/ν

{
λ
[

(ν−1)
ν[− log(1−q)]

]1/ν
, if ν > 1

0 , if ν ≤ 1
λ λ2

[
log2(1 − q)

]−2/ν
ω(ν)

WEI5 λ
[
1 − 1

ν

]−1/ν
Γ
(

1 + 1
ν

)
λ λ

[
−ν log(1−q)

(ν−1)

]1/ν
λ2
[
1 − 1

ν

]−1/ν
ω(ν)

NOTE: ω(ν) = Γ
(
1 + 2

ν

)
− Γ2

(
1 + 1

ν

)
.

For a set of p covariates observed for each individual and the intercept term, say
x⊤i = (1, x1i, x2i, . . . , xpi), and for the four parameterizations, it is typical to include a
regression structure in λ, as follows

λi = g
(
x⊤i β

)
, i = 1, . . . , n, (1)

where β = (β0, β1, β2, . . . , βp), and g(·) is a twice differentiable function, such as g : R →
R+. The most common choice is g(u) = exp(u), which also facilitates the interpretation
of the regression coefficients. In each model, such interpretation depends on its specific
parameterization (WEI, WEI2, WEI3, WEI4, and WEI5). However, it will be demonstrated
that when a regression structure is incorporated solely into λ, as in Equation (1), without
affecting the shape parameter ν, then all five models share the same probability density
function (PDF) and, consequently, the same log-likelihood function. Furthermore, it will
also be demonstrated that introducing a dual regression structure for both λ and ν in the
WEI, WEI2, WEI3, and WEI4 models results in different PDFs among the models.
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3. Interpretation of the Coefficients

In this section, we explore the varying interpretations of regression coefficients in
the Weibull model across different parameterizations. Let us consider two individuals
with associated covariates, xi = (1, xi1, . . . , xij, . . . , xip) and x∗i = (1, xi1, . . . , xij + 1, . . . , xip),
which is that xi and x∗i are identical, except for an increase of one unit in the j-th covariate.
The scenario where the j-th covariate is quantitative will be focused on. However, in all
cases, a similar interpretation can be applied to xij, assuming two categories (labeled as 0
and 1). Note that x∗⊤i β = x⊤i β + β j.

3.1. WEI Model

For the AFT parameterization, we obtain

S(t; λi, ν) = exp
(
−
[

t
λi

]ν)
= S0(λ

−1
i t; ν), t > 0,

where S0(t) = exp(−tν). In this context, λ−1
i is known as the accelerator factor. More

precisely, as mentioned by Kleinbaum and Klein [45], “the accelerator factor is a ratio of
survival times corresponding to any fixed value of S(t)”. In this case, to facilitate the
interpretation of the coefficients, it is set g(u) = exp(u). Consequently, the interpretations
of covariates are as follows: If exp(β j) = 2, then the median survival time doubles when
the j-th covariate is increased by one unit, compared to the median survival time when the
j-th covariate remains unchanged.

Remark 1. For WEI2, WEI3, and WEI4 parameterizations, the traditional link function is g(u) =
exp(u).

3.2. WEI2 Model

In this case, the quotient between the hazard function related to xi and x∗i is

h(t; xi, ν)

h(t; x∗i , ν)
=

exp(x∗⊤i β)νtν−1

exp(x⊤i β)νtν−1
= exp(β j).

This does not depend on t (hence, the name ‘proportional hazard models’). Therefore,
exp(β j) should be interpreted as the increase (or decrease) in the hazard function when the
j-th covariate increases by one unit.

3.3. WEI3 Model

In this case, the expected value of the distribution is E(Ti; xi) = λi. Therefore, the
quotient between the mean related to xi and x∗i is

E(Ti; x∗i )
E(Ti; xi)

=
exp(x∗⊤i β)

exp(x⊤i β)
= exp(β j).

Therefore, exp(β j) should be interpreted as the percentage increase (or decrease) in the
mean when the j-th covariate is increased by one unit.

3.4. WEI4 Model

In this case, the 100 × q-th quantile of the distribution is τq(xi) = λi. Therefore, the
quotient between the 100 × q-th quantile related to xi and x∗i is given by

τq(x∗i )
τq(xi)

=
exp(x∗⊤i β)

exp(x⊤i β)
= exp(β j).
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Then, exp(β j) represents the percentage increase (or decrease) in the 100 × q-th quantile
when the j-th covariate is increased by one unit.

3.5. WEI5 Model

For this model, the mode of the distribution is Mo(Ti; xi) = λi. Therefore, the model
related to xi and x∗i is

Mo(Ti; x∗i )
Mo(Ti; x∗i )

=
exp(x∗⊤i β)

exp(x⊤i β)
= exp(β j).

In this case, exp(β j) represents the percentage increase (or decrease) in the mode when the
j-th covariate is increased by one unit.

3.6. The Bi-Univocity among the Four Parameterizations When Modeling Only λ

To date, there is no discussion in the literature about the connection between the
different parameterizations of the Weibull distribution when incorporating regression
structures into these parameterizations. The following theorem establishes the biunivocal
relationship between the WEI, WEI2, WEI3, WEI4, and WEI5 models when modeling
only λ.

Theorem 1. Let Y1, . . . , Yn be independent random variables, such as Yi ∼ WEI(λi, ν), where
λi = exp(−x⊤i β), i = 1, . . . , n and a constant shape parameter ν. Consider alternative parameter-
izations for the Weibull model, such as Yi ∼ WEI2(λ⋆

i , τ), Yi ∼ WEI3(λ⋆
i , τ), Yi ∼ WEI4(λ⋆

i , τ)
or Yi ∼ WEI5(λ⋆

i , τ), with λ⋆
i = exp(x⊤i δ) and a non-modeled τ. If intercept terms are considered

in xi, then the elements of (δ⊤, τ) can be obtained uniquely from (β⊤, ν).

Proof. Equating the hazard functions for the WEI2, WEI3, WEI4, and WEI5 models with those
associated with the WEI model, we obtain λi = k(λ⋆

i , τ) and ν = τ, where k(λ⋆
i , τ) =

[
λ⋆

i
]−1/τ,

for the WEI2 model, k(λ⋆
i , τ) = λ⋆

i ×
[
τ{Γ(1+ 1/τ)}τ]−1, for the WEI3 model, k(λ⋆

i , τ) = λ⋆
i ×

− log(1− q), for the WEI4 model and k(λ⋆
i , τ) = λ⋆

i ×
[
1− 1

τ

]1/τ
, for the WEI5 model. Con-

sidering the partitions x⊤i = (1, x△⊤
i ), β⊤ = (β0, β△⊤) and δ⊤ = (δ0, δ△⊤), i.e., x△⊤

i , β△⊤

and δ△⊤ are related to the non-intercept terms of x⊤i , β⊤ and δ⊤, respectively. With this,
the equation λi = k(λ⋆

i , τ) assumes the following forms for each case:

• WEI2 model:

exp
(
−β0 − x△⊤

i β△
)
= exp

(
δ0

τ
+

x△⊤
i δ△

τ

)
.

In this case, we conclude that δ0 = −τβ0 and β△ = −δ△/τ.
• WEI3 model:

exp
(
−β0 − x△⊤

i β△
)
= exp

(
δ0 − log τ − τ log Γ(1 + 1/τ) + x△⊤

i δ△
)

.

Here, it can be concluded that δ0 = −β0 + log τ + τ log Γ(1 + 1/τ) and β△ = δ△.
• WEI4 model:

exp
(
−β0 − x△⊤

i β△
)
= exp

(
δ0 + log(− log(1 − q)) + x△⊤

i δ△
)

,

where we conclude that δ0 = −β0 − log(− log(1 − q)) and β△ = δ△.
• WEI5 model:

exp
(
−β0 − x△⊤

i β△
)
= exp

(
δ0 +

1
τ

log
(

1 − 1
τ

)
+ x△⊤

i δ△
)

.
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In this case, we conclude that δ0 = −β0 − 1
τ log

(
1 − 1

τ

)
and β△ = δ△.

Note that in all cases, (δ⊤, τ) can be obtained uniquely from (β⊤, ν).

Remark 2. Theorem 1 implies that when only λ is modeled in the WEI, WEI2, WEI3, WEI4, and
WEI5 models, all the distributions produce the same PDF. Consequently, model selection criteria,
such as the Akaike Information criterion (AIC) and Bayesian information criterion (BIC), yield
identical values.

Remark 3. When an additional set of covariates, denoted as zi (not necessarily identical to xi), is
considered to model the shape parameter as νi = h(z⊤i ζ), where h : R → R+, the five parameteriza-
tions of the Weibull model define different PDFs. This distinction arises because the relationship
λi = k(λ⋆

i , τi) incorporates only the covariates xi on the left side of the equation, while both sets of
covariates are involved on the right side.

4. Inference

In this section, we discuss the estimation procedure in a unified way for the WEI, WEI2,
WEI3, WEI4, and WEI5 models from a classical approach. The asymptotic distribution of
the estimators is also presented.

Parameter Estimation

Let Y1, . . . , Yn be n independent random variables, where each Yi, i = 1, . . . , n, follows
a WEI, WEI2, WEI3, WEI4, or WEI5 model. The log-likelihood function for θ⊤ = (β⊤, δ⊤)
has the form

ℓ(θ) =
n

∑
i=1

ℓi(λi, νi; yi),

where

ℓi(λi, νi; yi) = log νi − log λi + (νi − 1)[log ti − log λi]−
[

ti
λi

]νi

,

with λi = k(λ⋆
i , νi), λ⋆

i = g(x⊤i β) and νi = h(z⊤i δ). The function k(·, ·) is defined in Table 2
for the different parameterizations of the WEI model.

Table 2. Function k(λ, ν) for the different parameterizations of the WEI model.

Model WEI WEI2 WEI3 WEI4 WEI5

k(λ, ν) λ λ−1/ν λ[ν{Γ(1 + 1/ν)}ν]−1 −λ log(1 − q) λ
[
1 − 1

ν

]1/ν

The maximum likelihood (ML) estimates of β and δ are computed as the solution of
the non-linear system U(θ) = 0q+r, where 0q+r denotes a (q + r)× 1 vector of zeros and
U(θ) is given by

U(θ) =

[
∂ℓ(θ)/∂β
∂ℓ(θ)/∂δ

]
=

[
X⊤AλCλDλ

Z⊤AνDν

]
,

where Au = diag(a(1)u , . . . , a(n)u ), Cλ = diag(c(1)λ , . . . , c(n)λ ), Du = diag(d(1)u , . . . , d(n)u ), for

u ∈ {λ, ν}, a(i)λ = g′(x⊤i β), a(i)ν = h′(z⊤i δ) and
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c(i)λ =



1 , for the WEI model
− 1

ν λ−1/ν−1 , for the WEI2 model
[ν{Γ(1 + 1/ν)}]−1 , for the WEI3 model
− log(1 − q) , for the WEI4 model
[1 − 1ν]1/ν , for the WEI5 model

d(i)λ = − νi
λi

+
νi
λi

[
ti
λi

]νi

,

d(i)ν =
1
νi

+ log ti − log λi −
[

ti
λi

]νi

[log ti − log λi].

The Fisher information matrix for models can be written as

I(θ) = E
[

−∂2ℓ(θ)/∂β∂β⊤ −∂2ℓ(θ)/∂β∂δ⊤

· −∂2ℓ(θ)/∂δ∂δ⊤

]
= X̃⊤W(θ)X̃,

where

X̃ =

(
X 0p×1

0q×1 Z

)
and

W(θ) =

[
AλCλVλλCλAλ AλVλνCλAν

AνVλνCλAλ AνVννAν

]
,

with Vuv = diag(V(1)
uv , . . . , V(n)

uv ), for u, v ∈ {λ, ν}, where

V(i)
λλ = −E

(
∂2ℓi(θ)

∂λ2
i

)
= −E

(
νi

λ2
i
− νi(νi + 1)

λ2
i

[
ti
λi

]νi
)

=
ν2

i
λ2

i
,

V(i)
νν = −E

(
∂2ℓi(θ)

∂ν2
i

)
= −E

(
− 1

ν2
i
−
[

ti
λi

]νi

[log ti − log λi]

)

=
1
ν2

i
+

1
νi

[
ψ′(1) + ψ2(1) + 2νi log λiψ(1) + ν2

i log2 λi − ψ(2)− νi log λi + νi log2 λi

]
,

V(i)
λν = −E

(
∂2ℓi(θ)

∂λi∂νi

)
= −E

(
− 1

λ2
i
+

1
λi

[
ti
λi

]νi

+
νi
λi

[
ti
λi

]νi

[log ti − log λi]

)
= −ψ(2)

λi
.

An alternative way to obtain the ML estimates of θ is by using the Fisher scoring
iterative procedure, providing the following estimation algorithm:

θ̂(k+1) = θ̂(k) +
[
I
(

θ̂(k)
)]−1

× U
(

θ̂(k)
)

= θ̂(k) +
[
X̃⊤W

(
θ̂(k)

)
X̃
]−1

X̃⊤W1

(
θ̂(k)

)
, k = 0, 1, 2, . . . ,

where W1(θ) = (AλCλDλ, AνDν)
⊤. We recommend initializing the algorithm by using,

as an initial guess for β, the ordinary least squares estimates obtained from the linear
regression of the transformed responses: g(y1), . . . , g(yn) on X, i.e.,

(
X⊤ X

)−1
X⊤ Z, where

Z = (g(y1), . . . , g(yn))
⊤.

In order to approach the interval estimation and hypothesis testing on the model
parameters β and δ, normal approximation for the ML estimators can be applied. Note that
under certain conditions for the parameters, the asymptotic distribution of

√
n(θ̂− θ) is

multivariate normal Nq+r(0q+r, I−1(θ)).
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Let the θj be the jth component of θ. The asymptotic 100(1 − γ)% confidence interval
for θj is given by

θ̂j ± z1−γ/2 se(θ̂j), j = 1, . . . , q + r,

where se(θ̂r) is the asymptotic standard error of θ̂j, which is the square root of the jth
diagonal element of the inverse of I(θ̂).

5. Monte Carlo Simulation Studies

In this section, we assess the performances of the ML estimators through MC sim-
ulations, compare their empirical biases and mean squared error (MSE), and evaluate
the residuals for WEI models. The WEI4 and WEI5 models are implemented in R soft-
ware (version 4.2, accessed on 5 December 2023). www.r-project.org and a routine has
been developed for the aforementioned simulations. The R-code can be obtained from
https://github.com/lsanchez2020/Weibull_reparameterized.git.

5.1. MC Simulation Study I: Behavior of the ML Estimators

For WEI4 (with q = 0.5) and WEI5 models, the following regression structure is considered:

λi = exp
(

x⊤i β
)

, and νi = exp(z⊤i ζ), i = 1, . . . , n.

To assess the performance of the ML estimators for the WEI4 and WEI5 models, both
the bias and the MSE are reported. The bias and MSE are calculated as follows:

B̂ias(φ̂) =
1
B

B

∑
j=1

(φ̂j − φ), M̂SE(φ̂) =
1
B

B

∑
j=1

(φ̂j − φ)2,

where φ̂j is the estimate in the jth replicate, φ is the true value of the parameter, and B is
the number of MC replicates; 5000 MC replicates are conducted, where the explanatory
variables are simulated from a Uniform (0, 1) distribution. Four scenarios for the true
values of the parameters are considered: (i) true values of β1, β2, ζ1, and ζ2 are 0.2, 1.0, 0.2,
and 1.0; (ii) true values of β1, β2, ζ1, and ζ2 are 0.2, 0.5, 0.2, and 1.0; (iii) true values of β1,
β2, ζ1, and ζ2 are 0.5, 1.0, 0.2, and 1.0; and (iv) true values of β1, β2, ζ1, and ζ2 are 0.5, 1.5,
0.2, and 1.0.

Tables 3 and 4 report the ML estimation results for the bias and the MSE of the WEI4
and WEI5 model estimators, respectively. A general trend observed in these tables is that—
as the sample size increases—both bias and MSE decrease, as expected in a Monte Carlo
study. Therefore, the results confirm the consistence and un-biasing of the ML estimators.

Table 3. Bias and MSE for the WEI4 model parameters, with the indicated sample size and true
values of the parameters.

β1 = 0.2; β2 = 1.0; ζ1 = 0.2; ζ2 = 1.0

Bias MSE

n β1 β2 ζ1 ζ2 β1 β2 ζ1 ζ2

30 −0.0028 0.0013 0.0761 0.0232 0.0808 0.2592 0.2330 0.6466
50 −0.0039 0.0035 0.0371 0.0296 0.0502 0.1470 0.0972 0.3091

100 −0.0005 0.0007 0.0152 0.0179 0.0206 0.0661 0.0411 0.1357
500 −0.0001 0.0000 0.0048 −0.0005 0.0043 0.0134 0.0080 0.0253

www.r-project.org
https://github.com/lsanchez2020/Weibull_reparameterized.git
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Table 3. Cont.

β1 = 0.2; β2 = 0.5; ζ1 = 0.2; ζ2 = 1.0

Bias MSE

n β1 β2 ζ1 ζ2 β1 β2 ζ1 ζ2

30 −0.0153 0.0185 0.0533 0.0503 0.0843 0.2499 0.1846 0.5915
50 0.0021 −0.0036 0.0368 0.0318 0.0430 0.1333 0.0937 0.3019

100 0.0013 −0.0010 0.0144 0.0223 0.0206 0.0619 0.0470 0.1478
500 −0.0004 0.0001 0.0037 0.0029 0.0041 0.0134 0.0075 0.0238

β1 = 0.5; β2 = 1.0; ζ1 = 0.2; ζ2 = 1.0

Bias MSE

n β1 β2 ζ1 ζ2 β1 β2 ζ1 ζ2

30 0.0024 −0.0136 0.0596 0.0539 0.0867 0.2542 0.1826 0.5722
50 −0.0047 0.0017 0.0326 0.0285 0.0515 0.1707 0.0911 0.3315

100 −0.0004 −0.0012 0.0184 0.0132 0.0238 0.0713 0.0403 0.1326
500 −0.0016 0.0023 0.0020 0.0038 0.0045 0.0137 0.0078 0.0248

β1 = 0.5; β2 = 1.5; ζ1 = 0.2; ζ2 = 1.0

Bias MSE

n β1 β2 ζ1 ζ2 β1 β2 ζ1 ζ2

30 0.0007 −0.0067 0.0533 0.0574 0.0802 0.2363 0.1851 0.6371
50 −0.0052 0.0021 0.0315 0.0368 0.0487 0.1529 0.0943 0.3092

100 −0.0012 0.0016 0.0194 0.0071 0.0251 0.0714 0.0422 0.1316
500 0.0006 −0.0020 0.0040 0.0022 0.0045 0.0134 0.0076 0.0243

Table 4. Bias and MSE for the WEI5 model parameters, with the indicated sample size and true
values of the parameters.

β1 = 0.2; β2 = 1.0; ζ1 = 0.2; ζ2 = 1.0

Bias MSE

n β1 β2 ζ1 ζ2 β1 β2 ζ1 ζ2

30 −0.0019 0.0099 0.0192 0.1226 0.1699 0.4900 0.0889 0.3378
50 0.0082 −0.0045 0.0149 0.0620 0.0877 0.2437 0.0454 0.1648

100 0.0075 −0.0051 0.0050 0.0333 0.0659 0.1702 0.0158 0.0642
500 0.0003 0.0001 0.0031 0.0022 0.0067 0.0177 0.0025 0.0110

β1 = 0.2; β2 = 0.5; ζ1 = 0.2; ζ2 = 1.0

Bias MSE

n β1 β2 ζ1 ζ2 β1 β2 ζ1 ζ2

30 0.0043 −0.0059 0.0211 0.1135 0.2746 0.5124 0.0865 0.3565
50 0.0021 0.0046 0.0164 0.0617 0.1146 0.2692 0.0366 0.1447

100 0.0012 0.0027 0.0035 0.0396 0.0454 0.1138 0.0178 0.0673
500 0.0015 −0.0020 0.0018 0.0058 0.0067 0.0181 0.0027 0.0108

β1 = 0.5; β2 = 1.0; ζ1 = 0.2; ζ2 = 1.0

Bias MSE

n β1 β2 ζ1 ζ2 β1 β2 ζ1 ζ2

30 0.0074 −0.0023 0.0188 0.1126 0.1963 0.5392 0.0832 0.3169
50 −0.0019 0.0055 0.0123 0.0638 0.1380 0.3698 0.0434 0.1694

100 0.0006 −0.0019 0.0035 0.0338 0.0360 0.1027 0.0158 0.0626
500 0.0015 −0.0020 0.0009 0.0076 0.0066 0.0175 0.0026 0.0107
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Table 4. Cont.

β1 = 0.5; β2 = 1.5; ζ1 = 0.2; ζ2 = 1.0

Bias MSE

n β1 β2 ζ1 ζ2 β1 β2 ζ1 ζ2

30 −0.0136 0.0217 0.0205 0.1142 0.4725 1.5218 0.0842 0.3431
50 0.0013 0.0040 0.0104 0.0720 0.0886 0.2640 0.0414 0.1756

100 −0.0034 0.0078 0.0056 0.0324 0.0485 0.1301 0.0226 0.0738
500 0.0004 −0.0003 0.0010 0.0063 0.0062 0.0169 0.0027 0.0108

5.2. MC Simulation Study II: Residuals Analysis

We delve into the analysis of the Cox–Snell (CS) and randomized quantile (RQ)
residuals for the WEI4 and WEI5 models. The computation of the CS residual is as follows:

r̂CS
i = − log(Ŝ(yi; xi)), i = 1, . . . , n,

where Ŝ(yi|xi) is the estimated survival function obtained from the fitted model with values
xi for the explanatory variables. The survival functions of the models under consideration
are presented in Section 2. The RQ residual is defined as

r̂RQ
i = Φ−1(Ŝ(yi|xi)), i = 1, . . . , n,

where Φ−1 is the quantile function of the standard normal distribution.
For this investigation, we maintain the same simulation scenario as in the MC sim-

ulation study I, as outlined above. Tables 5 and 6 display the empirical mean, standard
deviation (SD), and coefficient of skewness (CSk) of the CS and RQ residuals. Theoretical
expectations for these statistics are 1, 1, and 2, respectively, for the CS residuals, and 0,
1, and 0, respectively, for the RQ residuals, due to their respective theoretical distribu-
tions being exponential and standard normal. The results in Tables 5 and 6 demonstrate
that, in general, both types of residuals provide good approximations for the WEI4 and
WEI5 models.

Table 5. Mean, SD, and CSk of the CS and randomized quantile residuals for the WEI4 model, with
the indicated sample size and true values of the parameters.

β1 = 0.2; β2 = 1.0; ζ1 = 0.2; ζ2 = 1.0

Randomized Quantile Cox–Snell

n Mean SD CSk Mean SD CSk

30 −0.0176 1.0197 0.0225 0.9879 0.9686 1.2599
50 −0.0064 1.0067 0.0761 0.9936 1.0119 1.8385
100 0.0057 0.9918 0.1559 1.0024 1.0380 1.9373
500 0.0085 0.9903 0.1282 1.0057 1.0256 1.9420

β1 = 0.2; β2 = 0.5; ζ1 = 0.2; ζ2 = 1.0

randomized quantile Cox–Snell

n mean SD CSk mean SD CSk

30 −0.0124 0.9931 0.3132 0.9862 1.0388 1.4458
50 −0.0045 1.0443 −0.3680 1.0011 0.9207 1.3308
100 −0.0268 1.0082 −0.0545 0.9732 1.0482 2.7658
500 −0.0038 0.9844 0.2264 0.9942 1.0366 2.0337
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Table 5. Cont.

β1 = 0.5; β2 = 1.0; ζ1 = 0.2; ζ2 = 1.0

randomized quantile Cox–Snell

n mean SD CSk mean SD CSk

30 −0.0190 1.0429 −0.2383 0.9903 0.9126 1.0349
50 −0.0207 1.0441 −0.4426 0.9851 0.9050 1.1128
100 −0.0300 1.0318 −0.2247 0.9815 0.9164 1.8438
500 −0.0064 1.0036 −0.0312 0.9937 1.0155 2.4167

β1 = 0.5; β2 = 1.5; ζ1 = 0.2; ζ2 = 1.0

randomized quantile Cox–Snell

n mean SD CSk mean SD CSk

30 0.0280 0.9916 0.3017 1.0226 1.0364 1.2727
50 0.0098 1.0222 −0.1606 1.0113 0.9557 1.2558
100 −0.0207 1.0208 −0.1657 0.9843 0.9607 1.6202
500 −0.0116 0.9978 0.0671 0.9904 0.9961 1.9101

Table 6. Mean, SD, and CSk of the Cox–Snell and randomized quantile residuals for the WEI5 model,
with the indicated sample size and true values of the parameters.

β1 = 0.2; β2 = 1.0; ζ1 = 0.2; ζ2 = 1.0

Randomized Quantile Cox–Snell

n Mean SD CSk Mean SD CSk

30 0.0319 0.9772 0.0273 1.0073 0.9587 1.3523
50 −0.0288 1.0180 0.1452 0.9868 0.9880 1.1914
100 0.0152 1.0165 −0.3226 1.0084 0.9403 1.4739
500 −0.0029 1.0066 −0.0848 0.9978 0.9802 1.7448

β1 = 0.2; β2 = 0.5; ζ1 = 0.2; ζ2 = 1.0

randomized quantile Cox–Snell

n mean SD CSk mean SD CSk

30 0.0726 0.9760 −0.0228 1.0433 0.9477 1.2336
50 0.0131 1.0012 −0.0942 1.0043 0.9477 1.5201
100 −0.0237 0.9867 0.3180 0.9791 1.0466 2.1566
500 0.0099 0.9854 0.1456 1.0048 1.0183 2.0615

β1 = 0.5; β2 = 1.0; ζ1 = 0.2; ζ2 = 1.0

randomized quantile Cox–Snell

n mean SD CSk mean SD CSk

30 −0.0715 1.0858 −0.1631 0.9710 0.9773 1.7365
50 −0.0193 1.0235 −0.0200 0.9914 0.9712 1.6429
100 −0.0115 1.0165 −0.0516 0.9960 0.9590 1.4681
500 −0.0127 1.0102 −0.0333 0.9930 0.9906 1.8522

β1 = 0.5; β2 = 1.5; ζ1 = 0.2; ζ2 = 1.0

randomized quantile Cox–Snell

n mean SD CSk mean SD CSk

30 0.0197 1.0379 −0.4223 1.0133 0.9251 1.3285
50 0.0156 1.0119 0.0220 1.0156 1.0344 2.2866
100 0.0032 1.0122 −0.1720 1.0023 0.9195 1.1461
500 0.0031 1.0092 −0.1179 1.0044 0.9577 1.5290
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6. Real Data Illustrations

In this section, the analyzed parametrizations to real data are applied to demonstrate
their effectiveness and applicability. In Illustrations 1 and 2, models WEI4 and WEI5, as well
as WEI1, WEI2, and WEI3, respectively, showcase their applicability in real-life scenarios.

6.1. Illustration 1: Concrete Fatigue Life Dataset

The dataset under analysis represents the fatigue life of concrete specimens, measured
in cycles (multiplied by 10−3). The dataset is defined by the applied stress-causing failure,
with ratios of 0.95, 0.90, and 0.825. A lower ratio is expected to correspond to a longer
number of cycles until failure. Each ratio is accompanied by 15 observations, as outlined in
([46], p. 88). The concrete fatigue life is designated as the response variable, and the
ratio is identified as the covariate.

Initially, we provide an exploratory analysis of the response variable. Table 7 presents
some descriptive statistics, including SD, CSk, the coefficient of variation (CV), and coeffi-
cient of kurtosis (CK). Additionally, Figure 1 displays the corresponding histogram and
boxplot. From Table 7 and Figure 1, it is evident that the dataset exhibits considerable
variability (CV = 131.401%), positive skewness (CSk = 1.414), heavy tails (CK = 0.771), and
the presence of outliers (case nos. 40, 41, 42, 43, 44, and 45).

Table 7. Descriptive statistics of the concrete fatigue life dataset.

n min Max Mean Median SD CSk CV CK

45 37 5598 1216.58 342 1598.60 1.41 131.40 0.77
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Figure 1. Histogram with the density kernel estimation (a) and boxplot (b) for the concrete fatigue
life dataset.

In this study, a regression structure is incorporated into the WEI4 (with q = 0.5) and
WEI5 models for both λ and ν, as follows:

λi = exp
(
x⊤i β

)
, νi = exp(x⊤i ζ), i = 1, . . . , 45,

where β = (β0, β1)
⊤, and ζ = (ζ0, ζ1)

⊤ represent the regression coefficients, and x⊤i =
(1, x1i) denotes the respective design matrix, with x1i being the i-th observation of the
covariate ratio.

Table 8 presents the fitting of these models, including parameter estimation using the
ML method, the respective standard errors, the associated Z-test p-value, the AIC, and
the p-value from the Kolmogorov–Smirnov (KS), Anderson–Darling (AD), and Cramer
von Mises (CVM) goodness-of-fit tests for the CS and RQ residuals. It is important to note
that the theoretical distributions for CS and RQ residuals are exponential and standard
normal, respectively. In this table, it can be observed that for modeling λ, both regression
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coefficients (intercept and slope) are significant. However, this situation is not observed in
the modeling of ν, where none of the regression coefficients are significant.

Additionally, Figures 2 and 3 provide quantile–quantile (QQ) goodness-of-fit plots
with simulated envelopes for the CS and RQ residuals. Consistent with the goodness-
of-fit test results, both residuals are well-fitted to the exponential and standard normal
distributions, respectively.

Table 8. ML estimates, SEs, p-values, AIC, and KS p-value of the indicated model.

WEI4 WEI5

Parameter Estimate SE p-Value Estimate SE p-Value

λ β1 29.2805 1.4737 <0.0001 29.5963 1.8853 <0.0001
β2 −25.8166 1.6582 <0.0001 −26.3132 2.1276 <0.0001

ν ζ1 1.4702 2.2139 0.5066 1.5362 1.8117 0.3965
ζ2 −0.7999 2.4753 0.7466 −0.8740 2.0218 0.6655

AIC 635.03 635.02
KS p-value 0.8729 (CS) 0.4339 (RQ) 0.8753 (CS) 0.4102 (RQ)
AD p-value — 0.1082 (RQ) — 0.1117 (RQ)

CVM p-value — 0.1203 (RQ) — 0.1234 (RQ)

(a) (b)

Figure 2. QQ plot with the envelope of CS (a) and RQ (b) residuals for the WEI4 model.

(a) (b)

Figure 3. QQ plot with the envelope of CS (a) and RQ (b) residuals for the WEI5 model.

6.2. Illustration 2: Ovarian Dataset

The ovarian cancer data (ovarian) are also considered, which are included in the
survival package, R version 3.5-7 [47]. This dataset contains censored observations and
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will be used to illustrate the reparameterized Weibull model in the context of censored
data. It comprises information on 26 patients with stage III and IV ovarian carcinoma who
were treated with radical surgery and postoperative chemotherapy. The covariates used
are the minimal residual disease (residual), which indicates a tumor mass of less than 2
cm in diameter, and the patient’s age in years. Figure 4 displays the Kaplan–Meier (K-M)
estimator for both residual and age. Descriptively, it is evident that both covariates have
an impact on patient survival. In addition, and similar to the last application, in Figure 5,
the QQ plot and simulated envelope for the RQ residuals are provided, suggesting that this
kind of residual is reasonably fitted to the standard normal distribution.

Figure 4. K-M estimator for ovarian dataset separated by the residual (left panel) and age (right
panel).

Table 9 shows the AIC for the WEI, WEI2, and WEI3 models in the ovarian dataset
with different combinations of covariates in λ and ν. As discussed previously, the AIC is
the same for the three models if covariates are not included in ν and differ if ν is modeled.
The results also suggest that the best combination is to include the covariates residual
plus age in λ, but not in ν. Table 10 shows the estimate, the corresponding SE for the
WEI2 model (it could have been any of them), and the p-value from the KS, AD, and CVM
goodness-of-fit tests for RQ residuals.

Table 9. The AIC for the fitted model ovarian dataset.

Covariates Model
λ ν WEI WEI2 WEI3

Only intercept Only intercept 199.91
Residual plus age Only intercept 186.04
Residual plus age Residual plus age 189.56 190.04 189.53

Finally, Figure 6 shows the mean, median, and mode of the WEI, WEI2, and WEI3
models. As proved in Theorem 1, such measures are identical for the three models because
no covariates are included in the dispersion parameter.
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Figure 5. QQ plot with the envelope of RQ residuals for the ovarian dataset. Note that the plot is
identical for WEI, WEI2, and WEI3 models.

Table 10. ML estimate, standard error (SE) for WEI2, considering the residual plus age covariates
for the ovarian dataset.

WEI2
Parameters Estimate SE

Intercept −20.5374 1.1339
λ residual 0.9720 0.4152

age 0.1401 0.0207

ν Intercept 0.5559 0.0155

AIC 186.04
KS p-value 0.6703
AD p-value 0.1916

CVM p-value 0.1895
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Figure 6. Different measures of central tendency for the survival time in the ovarian problem in terms
of age: residual = 1 (left panel) and residual = 2 (right panel). The plots are identical for WEI,
WEI2, and WEI3 models.

7. Conclusions and Future Work

In this paper, a general parameterization for Weibull regression models was intro-
duced, based on central tendency measures and shape parameters. A comprehensive
review of Weibull regression models was provided, specifically focusing on different pa-
rameterizations of the Weibull distribution that utilize central tendency measures. The
interpretation of regression coefficients when incorporating regression structures into these
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parameterizations was also explored. Furthermore, closed-form expressions for the ex-
pected Fisher information matrix have been derived for this general parameterization of
Weibull regression models. Two types of residuals were explored, and maximum likelihood
inference was implemented for estimating model parameters. The performance of this
inference method was assessed through Monte Carlo simulations.

A significant result, as established in Theorem 1, is that when modeling only λ in
the WEI, WEI2, WEI3, WEI4, and WEI5 models, the same probability density function is
yielded by all these parameterizations. Therefore, in these cases, it does not matter which
model is used, as the conclusions for any measure of interest must be the same for any of
the five models.

To illustrate the practical relevance of the approach, two real-world applications using
authentic datasets were presented. These applications underscored the adequacy of the
introduced Weibull models when data present an asymmetric distribution. Depending on
which parameter is of interest in the study, one model will be more convenient to use than
the other.

As part of future research, the plan is to develop an R package that facilitates inference
in WEI4 and WEI5 regression models.
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