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Abstract: The applications of artificial intelligence (AI) and natural language processing (NLP) have
significantly empowered the safety and operational efficiency within the aviation sector for safer and
more efficient operations. Airlines derive informed decisions to enhance operational efficiency and
strategic planning through extensive contextual analysis of customer reviews and feedback from social
media, such as Twitter and Facebook. However, this form of analytical endeavor is labor-intensive
and time-consuming. Extensive studies have investigated NLP algorithms for sentiment analysis
based on textual customer feedback, thereby underscoring the necessity for an in-depth investigation
of transformer architecture-based NLP models. In this study, we conducted an exploration of the
large language model BERT and three of its derivatives using an airline sentiment tweet dataset
for downstream tasks. We further honed this fine-tuning by adjusting the hyperparameters, thus
improving the model’s consistency and precision of outcomes. With RoBERTa distinctly emerging
as the most precise and overall effective model in both the binary (96.97%) and tri-class (86.89%)
sentiment classification tasks and persisting in outperforming others in the balanced dataset for
tri-class sentiment classification, our results validate the BERT models’ application in analyzing
airline industry customer sentiment. In addition, this study identifies the scope for improvement in
future studies, such as investigating more systematic and balanced datasets, applying other large
language models, and using novel fine-tuning approaches. Our study serves as a pivotal benchmark
for future exploration in customer sentiment analysis, with implications that extend from the airline
industry to broader transportation sectors, where customer feedback plays a crucial role.

Keywords: natural language processing; machine learning; sentiment analysis; airline customer
service

MSC: 62P25

1. Introduction

Social media platforms play a pivotal role as communication conduits between cus-
tomers and airlines. Airlines increasingly rely on customer reviews and feedback as
valuable inputs for assessing service quality and operational effectiveness. Also, such data
provide actionable insights to guide airlines’ strategic decision-making, improve service
quality and customer satisfaction, and ultimately increase profitability [1–3]. However,
the analysis of vast amounts of existing contextual data, coupled with continual daily
updates, presents a labor-intensive challenge [4]. The rapid advancements in machine
learning technologies, particularly in natural language processing (NLP), have significantly
facilitated the big analysis of data in recent years [5–7]. Various studies have shown the
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effectiveness of large language models (LLMs) such as BERT (bidirectional encoder repre-
sentations from transformers) and GPT (generative pre-trained transformers) in analyzing
and classifying the sentimental contextual information of the text [8,9]. However, limited
studies focused on the applications of advanced machine learning models in analyzing
airline customer sentiment.

In this study, we aimed to explore the uncharted territory of the LLM applications
in supporting aviation business and the decision-making process, specifically by a closer
examination of how BERT and its variations perform in airline customer-feedback senti-
ment analysis. With enhanced pre-training and a more intricate algorithmic architecture,
BERT is expected to outperform traditional machine learning models in this domain. We
hypothesize that specific BERT variants, with proper training approaches or modifications,
can perform even better in classifying sentimental information in a corpus of text.

2. Related Works
2.1. Customer Feedback Analysis

Customer reviews and feedback are essential to an airline’s public reputation, oper-
ational efficiency, and strategic planning. Several studies concluded that service quality
significantly influences US airline’s return on investment (ROI) [1–3,10–12]. In a recent
study by Wu and Gao [13], a support vector machine (SVM) was employed and trained as
a binary classifier to predict whether a tweet was positive or negative in its sentimental
values. This study used Kaggle’s airline customer sentiment dataset, extracted from Twitter
in 2015, excluding instances labeled as ‘Neutral.’ Wu and Gao’s study achieved the highest
accuracy (91.86%) among the studies reviewed in Table 1, based on the assumption that all
testing data are distinctly polarized, being categorized as either positive or negative.

Table 1. Summary of existing studies in airline customer review analysis.

Studies Training Dataset Algorithm Performance

Wu and Gao [13] Kaggle SVM

A 91% prediction accuracy
was achieved by their model,
which can determine whether

a given tweet is positive
or negative.

Patel et al. [8] Kaggle
Logistic regression, KNN,

decision tree, random forest,
AdaBoost, and BERT

BERT produced the highest
accuracy (83%), precision,

recall, and F-1 score.

Sezgen et al. [14] TripAdvisor Singular value decomposition
(SVD)

LSA identifies the key factors
that influence passengers to

choose the airlines.

Siering et al. [15] airlinequality.com Naïve Bayes (NB), neural
network, and SVM

Neural network yields the
highest accuracy (75%) in the
random sampling, while NB
yields the highest accuracy

(71%) in the LCC airline
sample with overall

sentiment configuration.

Kumar and Zymber [16] Tweet data using Twitter API

SVM, artificial neural
networks (ANNs), and
convolutional neural

networks (CNN)

CNN outperforms traditional
ANN (69%) with a greater

accuracy of 92%.

Lucini et al. [17] Airline Travel Review
Latent Dirichlet allocation

(LDA) and logistic
regression analysis

The developed model can
predict airline

recommendations by
customers with an accuracy

of 79%.
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In a parallel study, Patel et al. [8] applied BERT to the identical tweet dataset from
Kaggle. Incorporating the ‘Neutral’ labels, they transformed it into a three-class multi-
classification task and yielded the highest performance at 83% among all tested traditional
classifiers. These findings highlight the ongoing shortcomings in research, particularly
in developing models capable of high-accuracy multi-class classification and leveraging
state-of-the-art transformer-based models in such tasks.

2.2. Natural Language Processing (NLP) and Natural Language Understanding (NLU)

Natural language processing (NLP), a subset of machine learning (ML), facilitates the
interpretation of human language by machines. Early algorithms involving online text
retrieval, splitting, spell-checking, and word counts have relied on textual representation.
Still, NLP aims to release manual labor and reduce the time cost by efficiently analyzing
extensive textual data through a higher-level symbolic representation and processing capa-
bility, using a statistically based method that uncovers semantic information for language
understanding [18]. NLP research started as early as the 1950s, focusing on tasks like
translation, information retrieval, content analysis, etc. A wide range of research has been
conducted in such areas. Later algorithms that seek a higher-level representation include
neural and non-neural methods [19]. Non-neural models focused on a statistical aspect
of representation and distribution. One of the key founding works of these models is
Brown clustering, which proposed a statistical language model that characterizes words
into probabilistic-determined classes to interpolate N-gram probabilities. This approach
solved the sparsity issue in traditional language models, leading to a more accurate and
robust framework for NLP tasks [19].

Emerging around 2013, neural models eschewed manual feature crafting and rule-
based algorithms in favor of self-supervised learning to learn features from data and
obtain a more robust and nuanced understanding of language, such as word2vec and
GloVe [20,21]. Distinguishing from previous traditional classifier models that are shallow
and work with features or outputs that are explicitly definable by mathematical equations,
neural models are commonly categorized as ‘Deep Learning,’ specifically because of the
neural network architecture nature and their multi-layer structure [22].

2.3. BERT

Bidirectional encoder representations from transformers, also known as BERT, first
introduced by Devlin et al. [23] from Google, marked a new era in natural language pro-
cessing.

BERT is a transformer-based machine learning technique for pre-training natural
language processing (NLP). Transformer architecture processes all tokens in the input
sequence at once and can process correlations of words and sentences in text input from a
long range. This feature allows transformers to process and train faster than other models
and perform better in context comprehension [23].

The cornerstone of the robust capability of the transformer is the attention mechanism,
first introduced by Vaswani [24], which aims to solve the limitation of long-sequence
handling for recurrent neural networks (RNN). It calculates attention scores between all
elements in the input sequence and the current element and then has the score pass through
a Softmax layer, outputting attention weights. The attention weights of all elements are then
used to calculate a weighted sum and output a final context vector, allowing transformers
to capture both short-range and long-range dependencies in the long corpus of text.

Equation (1) shows the calculation of the attention score.

Attention (Q, K, V) = so f tmax
(

QKT
√

dk

)
(1)

where Q represents the query matrix, K represents the key matrix, V represents the value
matrix, dk is the dimensionality of the keys (and queries).
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2.4. Fine-Tuning

The application of pre-trained transformer models like BERT for sentimental analy-
sis and classification tasks necessitates fine-tuning BERT, a process that presents several
challenges. Fine-tuning involves modifying the pre-trained BERT model to align it with
the specific requirements of the task in question. This process demands meticulous atten-
tion to maintain a balance between the general language comprehension inherent in the
pre-trained model and the task-specific functioning requirement.

Sun et al. [25] delved into fine-tuning strategies for BERT in text classification tasks
and explored the possibility of using fine-tuned versions of GPT to serve the purpose of
text sentimental value classification by extending its existing capability in natural language
understanding towards a more thorough representation of the task. In text classification,
Softmax layers are utilized to retrieve the probability of class membership for a given data
observation by feeding the model with the first token of the sequence’s final hidden state.
When applied to a downstream task, BERT can autonomously update its weights and
configure the output layer to meet the task-specific requirement. For example, a Softmax
layer is used for multi-label classification or a sigmoid layer is used for binary classification.

Equations (2) and (3) show Softmax and sigmoid functions in mathematical terms.

Softmax : f or vector Z = [Z1, Z2, . . . , ZK] o f K raw scores :

So f tmax (Zi) =
eZi

∑K
j=1 eZj

, f or i = 1, . . . , K
(2)

Sigmoid : σ(Z) =
1

1 + e−Z (3)

3. Methods

In our study, we used BERT and its variants (DistilBERT, RoBERTa, and ALBERT)
to perform a sentimental classification of airline customer reviews and determine the
most optimal model based on metrical performance measurements. The performance of
these models was gauged using metrics that included accuracy, precision, recall, and the
F-1 score.

Kaggle’s Twitter customer feedback sentiment dataset was adopted to test the pro-
posed models for a performance comparison in this study. This dataset has been widely
used for model performance testing in several relevant studies [7,8,13].

The overall process is shown in Figure 1. Initially, we processed the text input through
the tokenizer tailored for the corresponding model. Subsequently, the encoded text was
transformed into a tensor dataset, which served as the input for the classification model.
Logits generated by the classification model, then, were converted into classified labels,
which were finally assessed by metric performance.
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3.1. Model Performance Evaluation

Accuracy, precision, recall, and the F-1 score, which align well with our sentiment
analysis and classification, were used to evaluate the model’s performance. The confusion
matrix is presented in Figure 2.
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The mathematical expressions of the evaluation metrics are defined below:

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1 Score =
2 ∗ (Precision ∗ Recall)

Precision + Recall
(7)

Accuracy is a fundamental measure that provides us with a holistic view of how well
the model performs across all classes. Nevertheless, within the context of imbalanced
datasets, accuracy might yield an excessively favorable portrayal of the model’s perfor-
mance. To mitigate this issue, we integrated both precision and recall into our evaluation
framework. Precision quantifies the proportion of true ‘positive’ predictions among all
‘positive’ predictions generated by the model. This metric helped us understand how many
predicted ‘positive’ sentiments were correct.

Recall measures the proportion of true ‘positive’ predictions relative to the total actual
positives, providing us insights into how many total positive sentiments were captured
by the model. Finally, the F-1 score balances the trade-off between precision and recall,
providing a single metric that encapsulates model performance regarding both aspects.
It is useful to achieve a balance between precision and recall while there is an uneven
class distribution. Integrative use of the metrics helped us comprehensively evaluate the
performance of our models.

Learning curves were employed to visualize the training loss over the epochs. We
initiated and trained the models on two downstream tasks: binary and three-class classifi-
cations. This process is expected to allow BERT to fine-tune its weights and stabilize its
performance. The comparative plots of “training vs. validation loss learning curve” across
learning curves are presented in Appendix A Figures A1–A8.

3.2. Models

Our study aims to evaluate the fundamental BERT (bidirectional encoder represen-
tations from transformers) model, a transformer-based approach that uses a bidirectional
context for semantic language comprehension. We inspected four different variations of
BERT for improvements. All models were trained in two different downstream tasks:
binary classification and multi-class classification (k = 3).
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3.2.1. Bidirectional Encoder Representations from Transformers

Employing the transformer architecture, BERT demonstrates superior natural language
processing capabilities compared to many contemporaneous models. BERT’s distinctive
adaptation incorporates a bidirectional encoder, enabling it to process input sequences and
comprehensively capture contextual information from both directions of the text. BERT
undergoes extensive training on vast corpora and diverse tasks, initially employing the
masked language model (MLM) approach. In MLM, random tokens within an input
sequence are masked, prompting the model to predict the occluded elements. This method
effectively leverages BERT’s bidirectional capabilities, necessitating the consideration of
contextual cues from both sides of a masked token, thereby fostering a more comprehensive
understanding of language. Such training is instrumental in preparing BERT for fine-tuning
downstream tasks. Additionally, BERT undergoes ‘Next Sentence Prediction’ training,
where it assesses whether a sentence logically follows a preceding one. This step further
refines BERT’s language comprehension ability, enabling it to discern semantic relationships
between sentences and achieve a contextual understanding that transcends individual
phrases and words [23].

3.2.2. DistilBERT

DistilBERT, a streamlined variant of BERT, retains approximately 95% of BERT’s lin-
guistic performance while being about 60% smaller in size. DistilBERT uses knowledge
distillation, which transfers knowledge from a large and complex model (BERT) to a smaller
and simpler one (DistillBERT), to learn from BERT’s soft predictions and to keep its strong
language understanding capability. This process involves the larger BERT model function-
ing as the ‘teacher’, generating probability distributions for a dataset, while DistillBERT,
the ‘student’, is trained to approximate these probabilities. This architecture renders Dis-
tilBERT much faster, more memory-conservative, and able to maintain most of BERT’s
performance [26].

3.2.3. RoBERTa

RoBERTa, also known as the robustly optimized BERT approach, is a variant that
omits the Next Sentence Prediction component during the pre-training phase. Instead, it
focuses on training with larger mini-batches and learning rates. This alteration, coupled
with the utilization of an expanded corpus for training, enables RoBERTa to optimize
its learning process. Consequently, it demonstrates better performance in certain tasks
than BERT. Furthermore, RoBERTa’s training emphasizes enhanced context and sentence
packing within the MLM framework. This approach significantly improves its ability to
analyze sentiments and contextual correlations within text passages more effectively [27].

3.2.4. ALBERT

ALBERT (A Lite BERT) is another streamlined adaptation of BERT, distinguished by
its compact and efficient design. Different from DistillBERT, ALBERT introduces two key
innovations of parameter sharing across layers and factorized embedding parametrization.
The latter involves employing smaller embeddings relative to the model’s hidden states.
These features help reduce the number of model parameters compared to BERT, thus
accelerating the training process and mitigating the risk of overfitting, which is a common
challenge in complex models. In addition, by addressing overfitting, ALBERT maintains
and occasionally outperforms BERT [28].

3.3. Data

This study retrieved training and validation data from Kaggle’s Twitter US Air-
line Sentiment dataset, comprising Twitter data from February 2015. This dataset is
rich in detail, featuring manually encoded labels such as sentiment and confidence val-
ues. Contributors were tasked with categorizing tweets as positive, negative, or neu-
tral, as well as further classifying the reasons for negative sentiments (e.g., ‘flight de-
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layed’, ‘rude services’) [29]. The dataset comprises 14, 640 records, each with 15 attributes
(tweet_id, airline_sentiment, airline_sentiment_confidence, negative reason, negativerea-
son_confidence, airline, airline_sentiment_gold, name, negativereason_gold, retweet_count,
text, tweet_coord, tweet_created, tweet_location, user-timezone). Previous studies have
leveraged this dataset to evaluate the machine learning model’s performance in sentiment
classification tasks [8,13]. Despite Twitter’s evolution over recent years, this dataset remains
pertinent for the current study’s objective: evaluating deep learning models’ proficiency in
discerning sentimental labels from textual data. Given its successful application in previous
studies and its role in enhancing the model’s performance, this dataset serves as an essential
benchmark for model comparison.

3.4. Pre-processing

Given that the BERT model requires a sequence of text as input, our processing
primarily focused on the text data, disregarding the other 14 columns in the dataset except
for the label column (‘airline_sentiment’). The tokenization process varies depending on the
chosen model. BERT and DistilBERT utilized WordPiece tokenization, a method that breaks
down text into recognizable subwords or symbols. RoBERTa used byte-pair encoding
(BPE), which merges the most frequent pair of bytes in a sequence iteratively. ALBERT
adopted the SentencePiece tokenizer, an approach that enables the direct tokenization of
raw text without the necessary explicit text formatting [23,25–28].

3.4.1. Tokenization

The BERT tokenizer is a sub-word tokenization algorithm that begins with a base
vocabulary of individual characters. It iteratively expands this vocabulary by adding the
most frequent combinations of two subwords from the existing vocabulary. This strategy
effectively addresses out-of-vocabulary words by decomposing them into recognizable
subwords. For example, the word ‘largest’ might be tokenized into [‘large’, ‘##st’], where
‘##’ denotes a continuation of the previous sub-word. In contrast, the ALBERT tokenizer
utilizes the SentencePiece tokenization method. Different from BERT’s approach, Sen-
tencePiece tokenization processes raw text sequences directly and allows the model to
learn optimal word-splitting and sub-word formations. Regarding RoBERTa, its use of
byte-pair encoding (BPE) tokenization is similar to BERT’s method. BPE also merges the
most frequently occurring character pairs in the training text, but it has its unique nuances
in implementation and application [23,25–28].

3.4.2. Lower-casing

The BERT tokenizers, specifically the ‘uncased’ versions labeled as ‘bert-base-uncased’
and ‘distilbert-base-uncased’, are trained on the text where all letters are converted to
lowercase. This approach means that these models do not differentiate between uppercase
and lowercase letters during tokenization and subsequent processing. In contrast, the
ALBERT and RoBERTa models are case-sensitive. These two models preserve the case of
the input text. This feature allows them to potentially capture more nuanced information,
which might be relevant for certain predictive tasks [23,25–28].

3.4.3. Others

In our tokenization process, stop words are retained across all tokenizer types. This
is because stop words play a crucial role in understanding the context of sentences, and
their removal could alter the intended meaning. Additionally, traditional NLP techniques,
such as stemming, bag-of-words (BoW), and TF-IDF matrices, are not employed in our
tokenizers. Stemming, which reduces words to their root form, may strip away vital
linguistic information for comprehensive language understanding. Conversely, BoW and
TF-IDF do not facilitate contextual understanding while useful in certain contexts. The
BERT tokenizer uses contextualized embeddings for each word, preserving both semantic
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and syntactic information in the tokenized word, which is crucial for capturing nuances of
language.

Regarding the processing of labels, we employed sci-kit-learn’s LabelEncoder to
convert text labels into numerical representations. This step is crucial, as it enables the
models to interpret and learn from the data effectively. In our binary classification task,
labels are encoded as 0 and 1 for ‘Negative’ and ‘positive’ sentiments, respectively. For
the multi-class classification task (K = 3), the labels ‘Negative’, ‘positive’, and ‘Neutral’ are
correspondingly encoded as 0, 1, and 2 [23,25–28].

3.5. Model Training

In the downstream training phase, the applied models were specifically tailored to
the characteristics of the dataset. For BERT, this involved adding one or more task-specific
layers, including a Softmax layer, for classification purposes in our study. Initially, the
weights of these layers were randomly initialized. During the downstream task training,
BERT underwent a process of gradient descent and backpropagation. This fine-tuning step
involved adjusting the model’s weights based on the calculated loss, with the objective
of minimizing this loss. As a result of this iterative process, the weights were updated,
culminating in the development of a finely tuned model optimized for the specific task
at hand.

The model training was conducted using Google Colab, utilizing a single Nvidia V100
GPU for computational support with the code implemented using Python3. We recorded
the accuracy and training loss at each epoch throughout the training process. To counteract
the risk of overfitting, an early stopping technique was employed. The early stopping
technique, recognized for its simplicity and computational efficiency, is particularly suitable
for training large models. Early stopping halts the training process when there is no further
decrease in the model’s loss, thereby preventing overfitting. It helps the model achieve
the best result without wasting more resources and time. Compared to other over-fitting-
prevention methods, early stopping appears to be the most effective strategy, given the
limitations of a single GPU and the constrained runtime on Google Colab; this method
strikes a balance between computational resource usage and training efficiency in the
context of our study scenario.

4. Results
4.1. Binary Classification Task

In the binary classification task, initial performance metrics revealed minor discrep-
ancies among the models at the first epoch. Notably, ALBERT demonstrated superior
performance in terms of training loss (approximately 0.225) compared to its counterparts
(greater than 0.275). However, all models except ALBERT showed significantly lower
validation losses (<0.20) at epoch 1, with RoBERTa reaching as low as approximately 0.13,
whereas ALBERT remained around 0.225. As for the multi-class classification, RoBERTa
demonstrated the lowest initial training loss, around 0.39 at epoch one, whereas BERT
and DistilBERT exhibited higher losses, exceeding 0.7. Interestingly, RoBERTa, among all
models, achieved the lowest training loss in both tasks, reaching approximately 0.125 in
four epochs for binary classification and approximately 0.28 in five epochs for multi-class
classification. However, RoBERTa exhibited signs of a severe overfitting pattern as its
validation loss climbed up to around 0.43 while its training loss continued to decrease.
A similar overfitting pattern was also observed in ALBERT’s multi-class classification
task learning curve. Conversely, BERT and DistilBERT maintained a more stable learning
trajectory with minimal signs of overfitting.

Table 2 provides a more detailed breakdown of the metric performances for the binary
classification task. We found that BERT and its variants showed a similar pattern—being
able to predict ‘Negative’ classes better than other classes. The pattern is particularly
evident in the precision scores: models can range from approximately 0.96 to 0.99 on
binary classification for the ‘Negative’ label but perform relatively worse on ‘Positive’,
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from approximately 0.87 to 0.90. A comparative analysis revealed parallel performances
between BERT and DistilBERT in the binary task, with the accuracy and all metrical scores
extremely close at a very slight difference of less than 0.002 in the ‘Negative’ class and a
difference of less than 0.005 in the ‘Positive’ class.

Table 2. Performance comparison of applied models on binary classification task.

Model Accuracy
Negative Positive

Parameters
Precision Recall F-1 Precision Recall F-1

BERT 0.9532 0.9720 0.9699 0.9710 0.8758 0.8837 0.8797 109,483,778

RoBERTa 0.9697 0.9878 0.9737 0.9807 0.9055 0.9544 0.9293 124,647,170

DistilBERT 0.9515 0.9704 0.9683 0.9693 0.8807 0.8880 0.8843 66,955,010

ALBERT 0.9589 0.9649 0.9721 0.9685 0.8796 0.8520 0.8656 11,685,122

Our findings reveal significant improvement in accuracy for BERT, DistilBERT, and
RoBERTa, with each model exceeding the 95% accuracy benchmark. RoBERTa exhibited
superior performance among all evaluated models in the binary classification task, achiev-
ing the highest accuracy of approximately 0.9697. The performance of RoBERTa is further
underscored by its leading scores in all three metric measurements across both classes, peak-
ing with a precision of approximately 0.9878 for the ‘Negative’ label. Notably, these results
not only highlight the robustness of RoBERTa in this task but also call for further investi-
gation into its underlying mechanisms and wider applications. With 124,647,170 trainable
parameters, RoBERTa has the largest size of all models, suggesting a potential link between
the size of a model and its effectiveness in specific tasks. Such correlation prompts further
investigation into how the scale of a model may influence its task-specific performance.

Compared to RoBERTa, ALBERT is only 10% of its size, with only 11,685,122 trainable
parameters. ALBERT presented the least effective performance among all the models
compared in this research, registering an accuracy of approximately 0.9489 in the binary
classification task. Despite its lower accuracy, ALBERT achieved marginally higher recall
scores for the ‘Negative’ class compared to BERT and DistilBERT.

4.2. Multi-Class Classification Task (k = 3)

We used the same models under the same initialization for the three-class classification
(Table 3).

Table 3. Performance comparison of applied models on multi-class classification task (k = 3).

Model Accuracy
Negative Positive Neutral

Precision Recall F-1 Precision Recall F-1 Precision Recall F-1

BERT 0.8528 0.9070 0.9195 0.9132 0.8125 0.7930 0.8026 0.7009 0.6828 0.6917

RoBERTa 0.8689 0.9098 0.9424 0.9258 0.8115 0.8719 0.8406 0.7729 0.6424 0.7016

DistilBERT 0.8443 0.9204 0.8924 0.9062 0.7010 0.6987 0.6998 0.7528 0.8430 0.7953

ALBERT 0.8408 0.9224 0.8874 0.9046 0.8502 0.7395 0.7910 0.6386 0.7781 0.7015

Our analysis revealed that all models experienced an approximate 10% reduction
in accuracy for the three-class classifications and a much more significant decrease in
the ‘Positive’ label metric measurements, with DistilBERT’s precision score significantly
decreasing by approximately 18%. A similar pattern was observed in the three-class and
binary classification tasks: all models performed better on the ‘Negative’ label prediction.
While performance metrics for the ‘Negative’ label ranged from approximately 0.90 to 0.92,
the models demonstrated notably weaker performances for the ‘Positive’ (from approxi-
mately 0.70 to 0.81) and ‘Neutral’ (from approximately 0.64 to 0.75) labels. We found BERT
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and its variants performing better in distinguishing the ‘Negative’ class. All models other
than DistilBERT encountered difficulties with the ‘Neutral’ classification, with around a
10% decrease in precision for BERT and RoBERTa and an approximately 22% decrease in
precision for ALBERT, compared to the ‘Positive’ classification. DistilBERT’s performance
was slightly improved in the ‘Neutral’ class compared to ‘Positive’, with around 5%, 15%,
and 10% improvement on precision, recall, and the F-1 score.

RoBERTa remains the best-performing model in the multi-class task, achieving the
highest accuracy of 0.8689. However, RoBERTa is no longer consistent in yielding the best
metrical performance, as it suffers a lower precision in the ‘Negative’ and ‘Positive’ classes
than the other models and the lowest recall score (0.6424) in the ‘Neutral’ class.

4.3. Benchmark Comparison Task

Our analysis extended to a comparative evaluation of our models against established
machine learning methodologies and prior studies focusing on BERT. For consistency, we
used the exact metrical measurements of precision, recall, and the F-1 score, as Patel et al.’s
paper selected. Table 4 shows the parallel comparison of model accuracy in separate tasks
under the same dataset. SVM (support vector machine) from Wu and Gao [13] was selected
as our baseline model for comparison in the binary classification task, and BERT from Patel
et al. [8] was selected for the baseline in the multi-class classification task (k = 3).

Table 4. Performance comparison with existing studies.

Model Accuracy
Negative Positive Neutral

Precision Recall F-1 Precision Recall F-1 Precision Recall F-1

Binary

Benchmark
(SVM [13]) 0.9186 N/A 1 N/A N/A N/A N/A N/A N/A 2 N/A N/A

BERT 0.9532 0.9720 0.9699 0.9710 0.8758 0.8837 0.8797 N/A N/A N/A

RoBERTa 0.9697 0.9878 0.9737 0.9807 0.9055 0.9544 0.9293 N/A N/A N/A

DistilBERT 0.9515 0.9704 0.9683 0.9693 0.8807 0.8880 0.8843 N/A N/A N/A

ALBERT 0.9589 0.9649 0.9721 0.9685 0.8796 0.8520 0.8656 N/A N/A N/A

Multi-class (k = 3)

Benchmark
(BERT k = 3 [8]) 0.83 0.85 0.96 0.90 0.78 0.77 0.78 0.79 0.46 N/A 3

BERT 0.8528 0.9070 0.9195 0.9132 0.8125 0.7930 0.8026 0.7009 0.6828 0.6917

RoBERTa 0.8689 0.9098 0.9424 0.9258 0.8115 0.8719 0.8406 0.7729 0.6424 0.7016

DistilBERT 0.8443 0.9204 0.8924 0.9062 0.7010 0.6987 0.6998 0.7528 0.8430 0.7953

ALBERT 0.8408 0.9224 0.8874 0.9046 0.8502 0.7395 0.7910 0.6386 0.7781 0.7015
1 The performance metrics were not presented in [13]. 2 The performance metrics for ‘Neutral’ are not available in
binary classification tasks. 3 The F-1 score was not presented in [8].

Our model shows an improvement from the SVM used by Wu and Gao in 2023 [13],
with RoBERTa showing the highest accuracy in the binary classification tasks. As for the
three-class classification task, our models present a marginal improvement compared to the
BERT used by Patel et al. in 2023 [8], with DistiBERT and ALBERT improving by around
1% and BERT improving by approximately 2.5%. RoBERTa achieved approximately a 3.8%
increase in accuracy and an overall higher metric performance across most labels, with the
exception of recall in the ‘Negative’ class.

5. Discussion

Based on the benchmark results, this study concludes that BERT and its variants
outperformed traditional machine learning models like SVM [13] in the binary classification
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tasks and yielded superior results than the BERT-only study [8] in three-class classification
tasks. Given sufficient computational resources, BERT can process up to 512 tokens per
sequence, contributing to its impressive accuracy of up to 95.32%, significantly higher
than the reported results in earlier studies. We also found that RoBERTa outperformed
the basic BERT on both of our downstream tasks, returning the best accuracy (96.97% and
86.89%) among all models. BERT and its variants excel in sentimental analysis, owing
to their contextual understanding and capability to capture subtle linguistic cues, with
their bidirectional nature spotting more semantic information than the traditional machine
learning models or one-directional NLP models, leading to better performance. Moreover,
improvements were demonstrated from BERT on the three-class prediction tasks when
comparing the models’ performance from Patel et al. [8]. With a batch size of 16 and a
full-length token input of 512 tokens, BERT can reach as high as 95% on binary classification
tasks and 85% on three-class classification. Limitations and future directions are discussed
in the section.

5.1. Limitations

Based on reported precision, recall, and the F-1 scores, we discovered that all models
have the highest performance for the ‘Negative’ class for all metrics in both tasks. These
quantitative results show these models are adept at identifying ‘Negative’ sentiments in
text, and the high precision of the ‘Negative’ class signifies that the models are reliable in
their ‘Negative’ predictions. The following reasons should explain this phenomenon: we
believe it is possible that BERT’s architecture can algorithmically distinguish ‘Negative’
tokens and contextual information in its sequences. Specifically, ‘Negative’ tokens may
be given higher weights during the pre-training phase, making BERT more sensitive to
negative sentiment tokens in its input sequence. Our findings can also be explained by
the possibility that the pre-trained data and tasks given to BERT have more ‘Negative’
semantic tokens. With more exposure during the pre-training phase, BERT can become
more experienced with these semantic cues and perform better in such situations. On the
other hand, the distribution of classes in the applied dataset may lead to such results. In
our early exploratory data analysis (EDA) process, we plotted the number of occurrences
for each class in the dataset (Figure 3).
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As Figure 3 shows, there are significantly more ‘Negative’ cases in the dataset, which
might lead to the observed superior ability of our models to distinguish the ‘Negative’
class. However, a common challenge for all models was the ‘Neutral’ class, where they
exhibited the lowest scores in precision, recall, and the F-1 score. This result suggests
that identifying ‘Neutral’ sentiments is more challenging for these models because of the
subtlety and ambiguity often associated with neutral sentiment in languages (source).
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Finally, we observed that all models performed moderately in the ‘Positive’ class, showing
a balanced performance in identifying ‘Positive’ sentiments. These observations can also
be caused by the relatively limited size of occurrence in our dataset.

To draw a more precise conclusion about the model performances in each sentiment
class, we balanced the original dataset to achieve the same observations across three classes.
We randomly sampled 2363 observations from the ‘Negative’ (9178) and ‘Neutral’ classes
(3099) with a random seed of 42. The new balanced dataset now has 7089 rows.

As presented in Table 5, removing the large number of ‘Negative’ observations led to
a large drop in the models’ performances in the ‘Negative’ class, with around an 8% drop
in precision, recall, and the F-1 score. Removing 736 entries from the ‘Neutral’ class did not
compromise the models’ abilities to identify neutral sentiments, which instead exhibited
a slightly heightened precision. Conversely, the models showed an enhanced capability
in distinguishing the ‘Positive’ sentiments, evidenced by a 7.93% boost in recall and a
5.29% enhancement in the F-1 score, alongside a modest improvement in precision.

Table 5. Overview of the models’ performances on the balanced dataset.

Model Accuracy
Negative Positive

Precision Recall F-1 Precision Recall F-1

BERT 0.7784
(−7.44%) *

0.7731
(−13.39%)

0.8328
(−8.67%)

0.8019
(−11.13%)

0.7844
(−2.81%)

0.8590
(+6.60%)

0.8200
(+1.74%)

RoBERTa 0.8237
(−4.52%)

0.8597
(−5.01%)

0.8520
(−9.04%)

0.8559
(−6.9%)

0.8115
(0%)

0.8828
(+1.09%)

0.8457
(+0.49%)

DistilBERT 0.7955
(−4.88%)

0.7698
(−12.36%)

0.8700
(−2.24%)

0.8168
(−8.94%)

0.8326
(+13.16%)

0.8326
(+13.39%)

0.8326
(+13.28%)

ALBERT 0.8138
(−2.70%)

0.8889
(−3.35%)

0.7619
(−12.55%)

0.8205
(−8.41%)

0.8492
(−0.10%)

0.8458
(+10.63%)

0.8475
(+5.65%)

Neutral

Precision Recall F−1

BERT 0.7774
(+7.65%)

0.6548
(−2.80%)

0.7108
(+1.91%)

RoBERTa 0.8026
(+2.97%)

0.7408
(+9.84%)

0.7705
(+6.89%)

DistilBERT 0.7844
(+3.16%)

0.6923
(−15.07%)

0.7355
(−5.98%)

ALBERT 0.7329
(+9.43%)

0.8252
(+4.71%)

0.7763
(+7.48%)

* Percentage is based on a comparison with the experiment on the original unbalanced dataset (see Table 3).

In summary, the original dataset contains more cases in the “Negative” class, boosting
the models’ capabilities of negative sentiment prediction. Based on the results from the test
on the balanced dataset, it turned out that the performances on both “Positive” and “Neu-
tral” class predictions were improved. In contrast, the overall performance of “Negative”
class predictions was downgraded.

Several reasons might lead to such observations: first, BERT-structured large lan-
guage models (LLMs), like RoBERTa, might have trouble identifying the ‘Neutral’ class,
specifically because of the inherent limitations of the pre-training phase. This challenge
could be rooted in how BERT and its derivatives are pre-trained, focusing primarily on
contexts with clear sentiment polarity (positive or negative) rather than the subtler cues
of neutrality. These models are adept at picking up strong sentiment indicators but may
fumble regarding less expressive language, often found in neutral statements from airline
customer reviews. The pre-training corpora for these models might contain fewer examples
of neutral language, leading to a bias towards more emotionally charged expressions. The
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underrepresentation of neutral language in the training dataset could cause less effective
learning of the linguistic patterns that typically signify a neutral stance.

Second, it might be a challenge to define ‘Neutral’ consistently and distinguishably
from others, which is more subjective than clear-cut positive or negative sentiments. Be-
cause of the comparative nature of our study, the dataset itself might contain biased or
subjective neutral data points. Future studies can use a more systematic method to identify
textual sentiment to address BERT’s applicability in multi-class sentiment classification.

Last but not least, the limited dataset size may also undermine the effective sentimental
information learned by BERT and its variants. As addressed in the Sections 4 and 5, a
decline was found in the accuracy of distinguishing the ‘Negative’ class when we tested
the models on the balanced dataset. This indicates that the size of the dataset might lead to
a downgrade in performance. When dealing with unbalanced datasets, models like BERT
can become adept at recognizing the more frequently occurring classes. However, this
can lead to biased learning to identify under-represented classes. Balancing the dataset
alters this dynamic, as the model must learn and distinguish between all classes equally. A
larger, well-balanced dataset provides a more comprehensive range of examples for each
sentiment class, potentially improving the model’s performance. Therefore, future studies
may need to focus on expanding the dataset size and ensuring its balanced representation.

Additionally, we generated word clouds to conclude the most frequent appearance
of words in the text that our models processed. Figure 4 shows that most comments are
associated with airline companies. We also plotted the distribution of user time zones
from our dataset in Figure 5, and most airline comments are given from Western coun-
tries. This finding indicates a potential bias in our dataset, predominantly comprising
Western, educated, industrialized, rich, and democratic (WEIRD), representing only 12%
of the world’s population. As a result, there is a potential limitation in applying a deep
learning approach to airline customer service analysis, as the unrepresented population
of the world may cause confusion in models and lead to diminished performance on
sentimental comprehension.
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5.2. Future Directions

While the notable advancements are demonstrated by BERT and its variants in this
study, opportunities for enhancement remain in the realm of semantic interpretation in
natural language processing. Despite additional fine-tuning, the performance cap suggests
optimizations are needed for both the model and training dataset.

First, BERT and its variants have a limit of 512 tokens, meaning that any sequence
input longer than 512 would be cut off in the processing. This limitation could lead to
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confusion in the specific text input to BERT and its variants if the entire sequence were
neutral but twisted to be negative at the very end. Since BERT and its variants were
pre-trained mostly over internet texts, it can lead to knowledge gaps in certain text types,
such as historical work, or may introduce language biases. The amount of text used in pre-
training is far less representative than the human language. As a result, it can give us a high
but limited or capped sentimental classification accuracy. It is also worth exploring models
that utilize a different underlying architecture than BERT, such as BART (bidirectional
and auto-regressive transformers) [30], GPT (generative pre-trained transformers) [31], or
XLNet [32].
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Second, the size of the Kaggle dataset (comprising only 14,640 records), while serving
as a benchmark, may restrict the potential for training improvement due to its limited scope.
The random train–test split may not have produced a test set that adequately represents
the characteristics of the training set, affecting validation accuracy. Aside from the limited
sample size, another issue from this widely used training data is the validity of several
attributes, such as customer sentiment confidence [14]. The original dataset from Kaggle
needs to provide the authors with details regarding how the contributors annotated the
data and computed the confidence matrix, which might affect the validity of relevant
studies. For a more comprehensive analysis, incorporating online customer reviews (OCRs)
data from diverse platforms such as TripAdvisor and Air Travel Review (ATR) might offer
richer and more varied data sources [14,17].

6. Conclusions

This study investigates the efficacy of the transformer-based NLP technique BERT
and its variants, focusing on their applications for airline customer reviews sourced from
Kaggle [26]. We found that BERT and its derivatives, especially RoBERTa, significantly
outperform previous machine learning and deep learning approaches in both original and
balanced datasets. Notably, RoBERTa stood out as the most proficient model, showcasing
the highest accuracy and metric scores.

In light of these findings, this study proposes several future directions and recom-
mendations. A critical need was identified for a more systematic and balanced customer
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review dataset, which could further refine sentiment analysis accuracy. Additionally, ex-
ploring models with different underlying architectures and experimenting with various
fine-tuning techniques could yield further insights into optimizing sentiment analysis.
Given RoBERTa’s superior performance in accurately classifying sentiments in airline cus-
tomer reviews, its application could significantly streamline the labor-intensive process
of sentiment analysis. This, in turn, could reduce the operational costs associated with
customer service improvement, offering practical benefits to the airline industry.
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