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Abstract: Against the backdrop of the current Chinese national carbon peak and carbon neutrality
policies, higher requirements have been put forward for the construction and upgrading of smart grids.
Non-intrusive Load Monitoring (NILM) technology is a key technology for advanced measurement
systems at the end of the power grid. This technology obtains detailed power information about the
load without the need for traditional hardware deployment. The key step to solve this problem is load
decomposition and identification. This study first utilized the Long Short-Term Memory Denoising
Autoencoder (LSTM-DAE) to decompose the mixed current signal of a household busbar and obtain
the current signals of the multiple independent loads that constituted the mixed current. Then, the
obtained independent current signals were combined with the voltage signals to generate multicycle
colored Voltage–Current (VI) trajectories, which were color-coded according to the background. These
color-coded VI trajectories formed a feature library. When the Convolutional Neural Network (CNN)
was used for load recognition, in light of the influence of the hyperparameters on the recognition
results, the Bayesian Optimization Algorithm (BOA) was used for optimization, and the optimized
CNN network was employed for VI trajectory recognition. Finally, the proposed method was
validated using the PLAID dataset. The experimental results show that the proposed method
exhibited better performance in load decomposition and identification than current methods.

Keywords: denoising autoencoder; Bayesian optimization; non-intrusive load recognition;
convolutional neural network

MSC: 86T20

1. Introduction

Given the ongoing increase in domestic electricity consumption, incorporating effec-
tive daily electricity usage planning is important to minimize energy waste. In this regard,
NILM can help identify domestic electrical appliances and their states, enabling domestic
consumers to have a better understanding of their electricity consumption behavior and
improve their usage patterns [1]. Moreover, NILM can also enhance the management and
optimization of the demand side of the power grid to achieve energy saving goals. There-
fore, NILM holds great significance for energy conservation and emission reduction [2].
Unlike traditional methods requiring the installation of multiple sensors, NILM integrates
electricity information into a single collection signal, making it more cost-effective and
practical [3]. NILM can be primarily divided into two categories based on its objectives.
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The first is load identification, which involves recognizing the electrical appliances that
users are currently using or identifying changes in the switch status of the appliances.
The second is load decomposition, where the total power is broken down into the power
consumption of individual electrical devices. By analyzing information from these two
categories, NILM can provide users and power suppliers with accurate device-level elec-
tricity consumption details, including startup and shutdown times, operating duration,
power consumption, and the associated costs. In terms of event changes, NILM can be
classified into event-based load identification and non-event-based load decomposition [4].
Event-based load identification methods typically include three steps: event detection,
feature extraction, and load classification [5]. Non-event-based load decomposition usually
does not require event detection; instead, it directly uses the total power sequence as the
model input. This is because its purpose is not to identify the electrical appliances running
during a specific time period but to decompose the total power based on the differences
in the power and operating modes of different appliances, directly obtaining the power
sequences of individual electrical devices.

Regarding load identification technology, a 2019 study [6] utilized the Dynamic Time
Warping (DTW) algorithm to calculate the similarity between test templates and reference
templates, using transient waveforms and the power change values of household load
switching events as feature quantities for load recognition. A more recent study [7] clus-
tered load data based on steady-state values and proposed a non-intrusive load recognition
method using Feature Weighted K-Nearest Neighbor (FWKNN), which improved the
feature distance calculations with feature weights and achieved high accuracy. A further
study [8] presented an attention model that combined global and sliding window ap-
proaches, employing bidirectional Long Short-Term Memory (LSTM) networks as encoders
to extract information, utilizing an attention mechanism to capture the current load infor-
mation and decode the output decomposition results. A 2020 study [9] encoded different
power states of target appliances using a deep recurrent convolutional model, extracting
spatiotemporal features of input total load power, and implemented state modeling of
different target appliances through transfer learning, achieving significant improvements
compared to Markov models. In another recent study [10], a lightweight recognition task
was accomplished by combining CNN and K-Nearest Neighbor (KNN) networks. Simulta-
neously, for unknown loads, user feedback may not be required, allowing the system to
operate in unfamiliar home environments. Even more recently [11], a novel method was
proposed to extract distorted images of current harmonics from aggregated signals over
60 cycles, enabling appliance classification within 1 s with low computational complexity.
Earlier, a study [12] described in detail eight shape features such as the asymmetry observed
in VI trajectories and conducted recognition using hierarchical clustering. Subsequently,
researchers [13] used the elliptical Fourier descriptor of VI trajectory contours as input for
a classification algorithm. A further study [14], based on [12], introduced a new feature
called “span” and compared it with the harmonic content, active power, and reactive
power of the current, utilizing four classification algorithms. The results showed that the
VI trajectories had good recognition capability. The authors of [15] introduced a transfer
learning methodology grounded in the VI trajectory to address the challenge of limited
data label acquisition. Additionally, the VI trajectory underwent a transformation into a
visual representation through color encoding. This process not only heightened the unique-
ness of the appliance signature but also facilitated the integration of transfer learning into
NILM. The authors of [16] proposed adaptive weighted recurrence graph blocks for the
representation of appliance signatures in event-based NILM. By converting the activation
current of a single cycle into a weighted recursive graph, the proposed method ensured
the distinctiveness of appliance signatures. Consequently, this approach demonstrated
superior recognition performance on the LILACD and PLAID public datasets compared
to traditional VI-trajectory-based methods. A reconstructed VI trajectory was introduced,
incorporating the Particle Swarm Optimization (PSO) algorithm to ascertain the optimal
threshold parameters. This enhancement aims to maximize the model’s classification
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capability, addressing the challenge faced by conventional VI-trajectory-based methods
in effectively distinguishing similar appliances [17]. A 2021 study [18] introduced the
Asymmetric Deep Supervised Hashing (ADSH) method, utilizing VI trajectory signatures
for NILM. This approach employed the VI trajectory as the model input, effectively ad-
dressing challenges related to the inefficient computation of massive data and the limited
discrimination of manually extracted signatures. Simultaneously, an asymmetric learn-
ing architecture was applied for hash code learning. Specifically, a convolutional neural
network model was used for high-dimensional feature extraction and hash function learn-
ing in some training trajectories to establish coding rules. For all training trajectories,
the direct learning of coding rules ensured consistency in the codes, thereby achieving
accurate appliance recognition. This approach significantly enhanced recognition accuracy
while maintaining a small code length and reducing the space complexity. To tackle the
difficulties associated with acquiring label data and correctly identifying the VI trajectory
of multistate appliances, a semi-supervised learning method based on the semi-supervised
teacher graph network [19] was proposed. This method compacted the feature distribution
of multistate appliances by constructing a teacher graph, leading to improved recognition
results. However, while significant progress has been made in the accuracy of load iden-
tification using VI trajectories as features, several challenges persist. Firstly, the current
approach normalizes the voltage and current data to derive the VI trajectories, leading
to a loss of energy information. Secondly, appliances with continuous power variations,
such as computers, are difficult to represent using steady-state VI trajectories. Lastly, VI
trajectories fail to capture the stability characteristics of a load’s operational state during
runtime, specifically the amplitude of the current oscillations.

In the realm of load decomposition techniques, traditional methods rely on low-
frequency data to decompose aggregated data into device-level information. This process
does not necessitate event detection and typically focuses on power data as the primary
research object. The Hidden Markov Model (HMM) has been a commonly used regression
model. Kim et al. validated four HMM extension models and introduced non-electrical
characteristics such as the load switching duration, load usage frequency, and interdepen-
dence among loads, which improved the decomposition accuracy to a certain extent [20].
Kolter et al. applied the Factorial Hidden Markov Model (FHMM) algorithm to establish a
load decomposition model, using the total current signals as the research object. When a
signal change was detected, the signal differences between the load currents were encoded,
resulting in the optimal solution for the model and achieving a high decomposition accu-
racy [21]. With the continuous development of deep learning technology, non-intrusive
load decomposition models based on deep learning have emerged [22]. In 2015, Kelly
introduced deep learning methods into the NILM field and coined the term “Neural NILM”.
Kelly proposed three neural network structures: LSTM, Recurrent Neural Network (RNN),
and Distributed Agent Environment (DAE), which were effective in handling long time-
series data [23]. Roberto improved Kelly’s DAE model by combining it with a median filter,
which partially eliminated the noise interference and improved the model’s robustness [24].
Odysseas modified Kelly’s LSTM network to tackle the issue of the high number of network
neurons, which led to long training times and thus, its unsuitability for embedded devices.
Instead, the Gated Recurrent Unit (GRU) algorithm was used, reducing the network’s
depth while maintaining the accuracy and reducing the computational complexity [25].
Zhang proposed a load decomposition framework that mapped sequences to individual
load points, with aggregated power data of windows as the network’s input and the corre-
sponding single-point load data as the network’s output. This mapping pattern accelerated
the training speed and improved the load decomposition’s real-time performance [26].
Barsim proposed a general deep decomposition model that automatically adjusted the
model parameters based on the characteristics of different loads, thus obtaining more
accurate load-switching state sequences [27]. Piccialli adopted a neural network model
with an attention mechanism, which strengthened the correlation between the input and
output and improved the decomposition accuracy [28].
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The tasks of load decomposition and load identification have conventionally been
regarded as independent processes. However, during load identification tasks, it is imper-
ative to conduct load decomposition. Distinctive load characteristics can only be further
extracted by obtaining the independent electrical signals of individual loads through load
decomposition. In the load identification process, the commonly employed method for
decomposition is the differencing technique. This involves taking the difference between
the total voltage and current data before and after the occurrence of an “event”. However,
practical challenges arise in obtaining accurate current–voltage data through differencing
during actual operations, particularly when loads with substantial fluctuations exist on
the user bus. Obtaining precise current signals is especially challenging. Consequently,
this study introduces the notion of traditional load decomposition into the load identifi-
cation task to replace the differencing method. Given that voltage signals are minimally
affected by load switch actions, only current signals require decomposition. Hence, a deep
learning approach is employed for current decomposition, obtaining independent current
signals. The current decomposition in load identification differs from traditional load
decomposition, which employs low-frequency signals with a sampling frequency typically
ranging from 1/6 Hz to 1 Hz. Traditional methods require neural networks to learn the
features of the entire load operating cycle over an extended period. In contrast, load
identification necessitates high-frequency features, often employing data exceeding 1 kHz.
As high-frequency signals exhibit strong periodicity, this study transforms the decompo-
sition issue in load identification into a denoising problem. By denoising mixed current
signals, independent current signals for individual loads are obtained.

Thanks to the higher discriminability of electrical quantities in VI trajectories compared
to other features and its effective integration with image recognition, the complexity
of feature extraction and load identification was reduced. Consequently, the current
study opted for VI trajectories as the distinctive feature for load recognition. Despite
the significant progress achieved in load recognition accuracy by using VI trajectories
as features, the existing issues still exerted a considerable impact on the precision of
load identification.

To address these issues, this paper proposed an approach based on LSTM-DAE.
This method was employed to decompose complex mixed current signals and obtain
independent current signals of unknown loads. The decomposed current signals were
combined with voltage signals, and the resulting VI trajectories were plotted as features for
load identification. Recognizing the limitations inherent in VI trajectories, traditional single-
cycle VI trajectories were enhanced by transforming them into multicycle VI trajectories to
capture fluctuations during load operation. Additionally, color coding was applied to VI
trajectories to enhance the distinctiveness between different loads. Different background
colors were assigned to VI trajectories based on varying current amplitudes, addressing the
issue of energy information loss caused by the normalization of current–voltage data.

Following the completion of VI trajectory feature extraction, the improved VI trajecto-
ries were subjected to image recognition using the AlexNet architecture within a CNN to
accomplish the load identification task. Given the numerous parameters of the AlexNet
network and their significant influence on recognition accuracy, the BOA was employed
to optimize the hyperparameters of the AlexNet network, aiming to achieve the optimal
solution. The specific methodology was as follows:

(1) The high-frequency mixed current signals were decomposed using the LSTM-DAE.
This work accurately acquired the current signals of each load by exploiting the
high sensitivity of LSTM to temporal signal features and the ability of the DAE to
transform the load decomposition problems into denoising problems, which were
then utilized as the fundamental data for load recognition;

(2) Colored VI trajectories were generated by plotting the VI trajectories obtained from
the multicycle voltage and current data. The R channel represented the normal mul-
ticycle VI trajectory, the G channel represented the current variation slope between
adjacent sampling points, and the B channel represented the rate of power changes.
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Additionally, the VI trajectory background was color processed based on the dif-
ference in the current amplitude to obtain a multicycle color-encoded VI trajectory
feature library with filled background colors;

(3) The VI trajectory feature library was transformed into an n×n image format and
input into the AlexNet network for training. Since the traditional AlexNet network
was not suitable for load recognition tasks, the BOA algorithm was employed to
optimize the network parameters, thereby achieving better recognition performance;

(4) The PLAID dataset was utilized in the experiments, and the results demonstrated
that the six selected load decomposition accuracies all exceeded 94.

2. LSTM-DAE-Based Load Decomposition
2.1. Load Decomposition

Load decomposition is the process of decomposing one mixed telecommunications
signal into the independent telecommunications signals for each load. This research
transformed this process into a denoising problem to obtain accurate information about the
current of each load. Assuming there were N loads, the total current [29] at time t was:

I(t) =
N

∑
k=1

Ik(t) + Iδ(t), (1)

where I(t) was the total current at the current moment, Ik(t) was the current generated by
the kth load, and Iδ(t) was the noise disturbance.

Assuming the target load current represented the actual signal and considering the
total current signal as the composite of the actual signal and noise interference, the equation
was modified as follows:

I(t) = Iη(t) + Iβ(t), (2)

where Iη(t) is the current of the target load and also the real current in the denoising process,
and Iβ(t) is the noise in the denoising process, which is the superposition of the currents of
the loads other than the current of the target load and the real noise, expressed as:

Iβ(t) =
N−1

∑
k=1

Ik(t) + Iδ(t). (3)

2.2. Denoising Autoencoder

As shown in Figure 1, the Autoencoder (AE) had an equal number of nodes for the
input and output, with the aim of minimizing the reconstruction error between the input
and output. The AE consisted of an encoder ϕ and a decoder ψ, where the encoder mapped
the input to a low-dimensional feature space, and the decoder mapped the data from the
low-dimensional feature space back to the original input. In Figure 1, x represented the
input data to the encoder, h represents the data mapped from x to the hidden feature space,
and x′ represents the data reconstructed by the decoder using the hidden feature space
data h. Assuming the input space was I = Rn (where n was the number of variables),
the working principle of the autoencoder was defined as follows:

ϕ : I → F
ψ : F → I
ϕ, ψ = argmin

ϕ,ψ
∥x − x′∥2 , (4)

where ∥ · ∥ denoted the Frobenius norm. Taking an AE with one hidden layer as an example,
the encoder mapped the input x ∈ I to the hidden feature space h ∈ F = Rp (p was the
dimension of the hidden layer), and the mapping process was

h = σ(Wx + b), (5)
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where σ was the activation function in the encoder, W was the weight matrix, and b was the
bias vector. After the encoder mapped the input variable to the hidden layer, the decoder
reconstructed the variable x′ into a variable of the same size as the input variable x based
on the information in the hidden layer h. The mapping process was as follows:

x′ = σ′(W ′x + b′), (6)

where σ′ represented the activation function in the decoder, and W′ and b′ corresponded
to the weight matrix and deviation vector in the decoder, respectively. The goal of the
self-encoder was to find the process that minimized the residuals between the input and
the reconstructed quantity x′:

L
(

x, x′
)
=

1
m
∥∥x − x′

∥∥2

=
1
m
∥∥x − σ′(W ′σ(W x + b)

)
+ b′∥∥2,

(7)

where m represented the number of sample points in the AE network. The optimization
problem of the self-encoder was solved by backpropagation.

Figure 1. Basic structure of an Autoencoder.

The Denoising Autoencoder (DAE) is a variant of an AE first proposed by Vin-
cent et al. [30]; its network structure is shown in Figure 2. The difference between the
DAE and an AE is that it uses partially corrupted data to train the DAE network in order to
recover the real inputs, and its function is to separate and remove the noise in the data to
obtain the real data. The workflow of a DAE is as follows:

(1) We obtain the corrupted data by adding noise to the normal data or randomly
discarding parts of the normal data;

x̃ = q(x̃ | x) (8)

(2) In this study, the corrupted data x̃ is mapped to the low-dimensional hidden feature
space by the self-encoder coding process h = σ(Wx + b);

(3) The decoder decodes the corrupted data’s mapping in the hidden feature space using
Equation (6) and obtains the reconstructed data;

(4) The minimization problem of Equation (7) is solved using the backpropagation algorithm.
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Figure 2. Structure of the Denoising Autoencoder.

In this way, in this paper, signal decomposition was converted into a denoising
problem. Specifically, the mixed current signals were treated as noisy signals, and the
independent load signals were seen as real data after undergoing denoising processing.

2.3. Decomposition Model Based on LSTM-DAE

The LSTM network has exhibited good performance in extracting features from time-
series signals [31,32]. Therefore, LSTM was combined with DAE. The encoder and decoder
parts of the DAE were composed of a dual-layer LSTM and Dropout layers, respectively.
The input data were the mixed current data, and a sliding window approach was employed
in which multiple cycles of a mixed current were used as inputs. This work selected a
window size of 10 cycles to achieve the functionality of seq2seq and obtain the output of
the independent current. The structure is shown in Figure 3.

Figure 3. The LSTM-DAE neural network model.

3. Load Recognition of VI Traces Based on Background Color Coding
3.1. Construction of the VI Trajectory Pixelization

The VI trajectory refers to the voltage–current relationship curve used to describe
the performance characteristics of electrical equipment. Traditional VI trajectory analysis
methods mapped the curve onto a unit grid, where each grid cell represented the presence
or absence of VI trajectory information (0 or 1). The grid was then transformed into an
image, thereby converting the load recognition problem into an image recognition problem
for automated identification. However, previous methods only utilized binary values to
represent each grid cell, resulting in relatively limited information content. Therefore, the
current study proposes an improved approach aimed at enhancing the expressive power of
the VI trajectory data.

(1) Conventional VI traces typically analyzed changes in a single cycle, which failed
to capture the characteristic changes of the load across different operating cycles.
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Therefore, this work utilized 20 consecutive cycles of current–voltage signals to
generate VI traces, aiming to provide a more comprehensive reflection of the changes
across different cycles;

(2) Color coding the VI trajectory: The multicycle VI trajectory was represented in red (R
channel), the slope of the straight line segment between adjacent sampling points of
the VI trajectory was represented in green (G channel), and the instantaneous power
value was represented in blue (B channel), thereby generating a VI trajectory image
with colored tracks;

(3) Due to the significant differences in current amplitude between certain loads with
similar VI trajectories, and considering that current amplitude is an important load
characteristic, this research assigned different colors to the background of the VI tra-
jectories based on the varying current amplitudes in order to highlight the differences
in current amplitude.

The specific steps were as follows:

(1) In this study, the voltage and current values were standardized, and the resulting
standardized data were used to plot the standardized VI trajectory. The standardiza-
tion formula employed in this research is as follows:

∆Vm =
Vm

max |V| (9)

∆Im =
Im

max |I| , (10)

where max|V| was the maximum value of the voltage in the steady-state sequence
and max|I| was the maximum value of current in the steady state sequence. Vm and
Im were the voltage and current values of the mth sampling point in the sequence,
respectively, and ∆Vm and ∆Im were the voltage and current values of the mth
sampling point after normalization, respectively;

(2) In this study, the VI trajectory was created using normalized data, and the resultant
VI trajectory served as the R channel of the colored VI trajectory. Subsequently,
the green (G) and blue (B) channels were established in sequence, facilitating the
amalgamation of the RGB channels to form a colorful VI trajectory;

(3) In this study, the G channel was created by mapping the slope of the straight line
segments to the (0, 1) range using the arctan function.

Kj =
i f (j + 1)− i f (j)
V(j + 1)− V(j)

× max(|V|)
max

(∣∣∣I f

∣∣∣) (11)

Gj =
1
2
+

arctan
(
Kj
)

π
, (12)

where Kj was the slope of the jth straight line segment, and Gj was the G-channel
depth value of the jth straight line segment. i f (j) signified the current value at the
present data point, and i f (j + 1) represented the subsequent data point’s current
value. Vf (j) corresponded to the voltage value at the current data point, while
Vf (j + 1) represented the voltage value at the next data point. max|V| was utilized
to extract the absolute value of the maximum voltage obtained from the data used to
plot the VI trajectory, and max

∣∣∣I f

∣∣∣ was employed to extract the absolute value of the
maximum current obtained from the data depicting the VI trajectory.
The Gj was mapped to the VI trajectory to obtain the corresponding G-channel depth
value Gm,n for each grid, which was then normalized to obtain the G-channel value
for each grid point;

Gm,n
′ =

Gm,n

max G
(13)
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maxG = max{G1,1, G1,2, G1,3, · · · , Gn,n} (14)

(4) The B channel was created with the following instantaneous power values:

Pj = IjVj (15)

Mapping Pj onto the VI trajectory results in depth values Pm,n for each grid. Following
this, the multiperiod power was normalized.

Pm,n
′ =

Pm,n

max P
(16)

max P = max{P1,1, P1,2, P1,3, · · · , Pn,n}, (17)

where Pj was the instantaneous power value, Pm,n was the power superimposed
on each grid in the grid, max P was the maximum value of power in all the grids,
and the resulting P′

m,n was the value of the B channel;
(5) For the addition of the background color, the average of the RMS values of the current

energy of 25 adjacent cycles was obtained and matched with the set background
color to determine the background color.

Figure 4 shows the multicycle monochromatic VI trajectory, the multicycle color-coded
VI trajectory, and the color-coded VI trajectory with background fill.

(a) Air Conditioner

(b) Compact Fluorescent

(c) Laptop
Figure 4. Cont.
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(d) Vacuum

(e) Microwave Oven

(f) Washing Machine
Figure 4. Monochromatic VI trajectory, VI trajectory with color coding, and color-coded VI trajectory
with background colors.

3.2. Construction of a Convolutional Neural Network

CNN possess outstanding advantages in handling two-dimensional input data [33,34].
Therefore, the AlexNet network, proposed in 2012, was chosen for load recognition, as it
represented a significant breakthrough in deep learning in the field of image recognition.
The structure of this model consisted of five convolutional layers, three pooling layers,
two Dropout layers, and three fully connected layers, with the activation function being
Rectified Linear Units (ReLU). To accomplish the recognition task, the encoded VI trajectory
image with filled background color was used as the model input (an n × n matrix, where
n = 50). The schematic diagram of the AlexNet network is shown in Figure 5.

The classic AlexNet network could not be directly applied to load recognition tasks and
required some modifications to make it work properly. Additionally, due to the numerous
hyperparameters, there was a need to optimize the hyperparameters of the convolutional
layers, pooling layers, and fully connected layers in order to obtain a highly accurate
recognition model.
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Figure 5. AlexNet network model diagram.

3.3. Bayesian Optimization Algorithm

Bayesian Optimization (BO) is used to estimate the maximum value of a function based
on existing sampled points when the functional equation is unknown [35]. It effectively
addresses the classical problem of finding the next evaluation point based on the infor-
mation acquired about the unknown objective function, to quickly search for the optimal
solution [36]. Bayesian Optimization has been highly applicable in evaluating costly and
complex optimization problems and has been widely used in the optimization of machine
learning hyperparameters, deep learning model hyperparameters, and other related areas.
In this study, the hyperparameters selected for optimization were the number of convolu-
tional kernels, the size of the convolutional kernels, the stride of the convolutional kernels,
the size of pooling kernels, the stride, and the Dropout probability. The optimization ranges
are presented in Table 1. The parameter definitions for Bayesian Optimization are provided
in Table 2.

Table 1. Hyperparameters to be optimized and their ranges.

Layers Hyperparameters Dynamic Range

Number of convolution kernels 30∼135
Conv Convolution kernel size 2∼6

Convolution kernel step 1∼3
Pool Pool core size 2∼6

Pool nucleation step size 1∼3
Dropout Dropout rate 0∼1

Table 2. Parameter definitions in the Bayesian Optimization algorithms.

Layers Hyperparameters

a1, a2, a3, a4, a5 The number of convolution kernels in five
convolutional layers

b1, b2, b3, b4, b5 Convolutional kernel size for five
convolutional layers

c1, c2, c3, c4, c5 Convolutional kernel step size for five
convolution layers

d1, d2, d3 The number of pooling kernels in three
pooling layers

e1, e2, e3 Step size of pooling kernels in three
pooling layers

f1, f2 Dropout rate of the two layers
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4. Dataset and Evaluation Criteria

This research validated the effectiveness of the algorithm using the PLAID dataset
from Carnegie Mellon University in the United States. The dataset included instantaneous
values of current and voltage for 11 different types of appliances, sampled at 30 kHz,
recorded in multiple households in Pittsburgh, Pennsylvania. In this dataset, mixed
currents with multiple loads are missing, and only individual current data when each
load operated separately are available. Therefore, before analysis, it was necessary to
align and superimpose the current values based on the voltage values to obtain mixed
currents. This article selected six loads for load decomposition verification, namely, an air
conditioner, an energy-saving lamp, a laptop, a vacuum cleaner, a microwave oven, and a
washing machine.

5. Experimental Analysis
5.1. Assessment of Indicators
5.1.1. Evaluation Indexes of Decomposition Process

The root mean square error (RMSE), mean absolute error (MAE), phase error, and cor-
relation coefficient were selected as the evaluation metrics. The RMSE is a commonly used
metric that measures the mean square difference between the predicted and actual values,
representing the average magnitude of the prediction errors. A lower RMSE value indicates
that the predicted results are closer to the actual values. The MAE is another common
evaluation metric that measures the average absolute difference between the predicted
and actual values, reflecting the absolute error of the predictions. The phase error is an
important metric for high-frequency current decomposition, measuring the error between
the predicted and actual phase of the signals. The correlation coefficient is used to measure
the linear correlation between the predicted and actual values. A correlation coefficient
closer to 1 indicates a better linear relationship between the predictions and the actual
values. The definitions of these four evaluation metrics are as follows:

RMSE =

√
1
n

n

∑
i=1

(
Ii − Îi

)2
; (18)

MAE =
1
n

n

∑
i=1

∣∣∣Ii − Îi

∣∣∣; (19)

Phase Error = arccos

 ∑n
i=1 Ii Îi√

∑n
i=1 I2

i ∑n
i=1 Î2

i

; (20)

Correlation =
∑n

i=1(Ii − Ī)
(

Îi − Î
)

√
∑n

i=1(Ii − Ī)2 ∑n
i=1

(
Îi − Î

)2
. (21)

5.1.2. Evaluation Metrics for the Load Recognition Process

For the evaluation of non-intrusive load identification performance, common eval-
uation metrics such as recognition accuracy (Acc), F1 score, and F-measure [37] were
primarily utilized. The calculation formulas are depicted in Equations (22)–(25).

Acc =
m
n

, (22)

where m denotes the number of correct classifications of the model, and n is the total
number of samples;

F1i = 2 · precision · recall
precision + recall

; (23)
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precision =
TP

TP + FP
; (24)

recall =
TP

TP + FN
. (25)

In the above equation, TP represents the number of true positives, where both the
true value and the predicted value are positive; FP represents the number of false positives,
where the true value is negative, but the predicted value is positive; and FN represents
the number of false negatives, where the true value is positive, but the predicted value is
negative. The following equation was used to obtain the average value for each device:

Fi,mean =
1
L

L

∑
g=1

F1g,i . (26)

In this equation, L represents the total number of occurrences of device i in the test
set; F1g,i represents the F1 value of device i in the g-th occurrence; and Fi,mean represents
the average F1 score for the i-th device over L trials, explicitly portraying the F-measures
for device i. Finally, by calculating the average of all the F-measures using Equation (26),
the macro-average value Fmacro is obtained.

Fmacro =
1
A

A

∑
i=1

Fi,mean, (27)

where A represents the total number of different equipment types.

5.2. Example Analysis
5.2.1. Load Decomposition

The input of the LSTM-DAE model was a mixed current obtained by superimposing
multiple load currents. The window size of the data input was set to 10 cycles of current
data. In the PLAID dataset, one cycle contains 500 data points. Therefore, the size of each
window was set to 5000. The sliding step was one cycle of data, which was 500 data points.
The training times (epochs) were set to 1000. The decomposition results are shown in
Figure 6. Each figure contains three curves representing, from top to bottom, the mixed
current, the true target load current, and the predicted target load current.

From Figure 6, it can be observed that the latent information of strongly correlated
current sequences was effectively extracted, and the temporal features within the time-series
signals were mined using the LSTM-DAE network model. Even in cases where irregular
variations were present in the mixed signals and actual signals, the target signal was
accurately decomposed by the model. Overall, the decomposed current signals output by
this model were well able to track the variations in the actual current signals and essentially
fit the rising and falling trends of the actual current curves. These results suggest that the
decomposition and fitting of current signals were performed effectively by the model.

From Table 3, it can be seen that out of the six types of loads, five had correlation
coefficients exceeding 98%. Even the load with the lowest correlation coefficient, which
belonged to the laptop (notebook) category, had a coefficient close to 95%. This indicated
a strong linear relationship between the predicted results of the algorithm and the actual
values, effectively capturing the changing trends in the load current. Additionally, the max-
imum values for the RMSE, MAE, and phase error were 0.866, 0.551, and 0.332, respectively.
In comparison to the four network models listed in Reference [38], the algorithm in this
study achieved a minimum MAE score of 5.97 and a minimum RMSE of 10.52, demonstrat-
ing a significant improvement in algorithm performance. Overall, the algorithm exhibited
high precision, a low phase error, and a strong correlation in current signal decomposition
tasks, making it particularly suitable for handling high-frequency currents. These advan-
tages give the algorithm potentially high practical value in applications such as power load
analysis and energy management, providing a reliable tool.
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Figure 6. Monochromatic VI trajectory, VI trajectory with color coding, and color−coded VI trajectory
with background colors.
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Table 3. Evaluation metrics scores of the LATM-DAE algorithm.

Load Type RMSE MAE Phase Error Correlation
Coefficient (%)

Air conditioner 0.109 0.081 0.068 99.8
Energy-saving lamps 0.033 0.020 0.196 98.1

Notebook 0.097 0.040 0.332 94.5
Vacuum cleaner 0.295 0.220 0.035 99.9
Microwave oven 0.668 0.456 0.129 99.2

Washing machines 0.866 0.551 0.046 99.9

5.2.2. Load Recognition

After converting the dataset into VI trajectory images with background color coding,
it was input into the CNN network, and the Bayesian Optimization algorithm was used to
optimize the hyperparameters of the convolutional layers, pooling layers, and Dropout
layers. There were a total of five convolutional layers, three pooling layers, and two
Dropout layers. The comparison of the hyperparameters before and after optimization is
shown in Table 4. The data in the table indicate, for example, that the parameters of Conv1
layer were 3 × 3/48/1, which meant the convolutional kernel size was 3 × 3, the number
of convolutional kernels was 48, and the stride was 1. The parameter of Dropout1 layer
was 0.5, indicating a Dropout probability of 0.5.

Table 4. Comparison of the hyperparameter information between CNN and BOA-CNN.

Catagory CNN BOA-CNN

Conv1 3 × 3/48/1 4 × 4/60/1
Pool1 3 × 3/2 2 × 2/1
Conv2 5 × 5/128/2 4 × 4/121/1
Pool2 3 × 3/2 2 × 2/1
Conv3 3 × 3/192/1 4 × 4/126/1
Conv4 3 × 3/192/1 3 × 3/55/1
Conv5 3 × 3/192/1 3 × 3/125/1

Droout1 0.5 0.4
Droout1 0.5 0.1

The accuracy of the optimized model was compared with the recognition accuracy
of other models in the literature, as shown in Table 5. The accuracy of the CNN network
optimized by Bayesian Optimization was approximately 96.5%, while the accuracy of
the regular CNN network was approximately 93.1%, indicating a 3.4% improvement.
The recognition accuracy was also higher than that of other models in the literature.

Table 5. Comparison of the recognition accuracy of various algorithms.

Model Accuracy (%)

BOA-CNN 96.5%
CNN 93.1%

Model in [39] 90.0%
Model in [19] 92.8%
Model in [40] 91.7%
Model in [41] 93.20%

In order to test the stability of the BOA-CNN algorithm, 12 experiments were con-
ducted on the PLAID dataset . As shown in Figure 7, the recognition accuracy of the
BOA-CNN algorithm was superior to that of the ordinary CNN model in all experiments,
with good robustness. However, in terms of stability, the BOA-CNN algorithm performed
poorly and fluctuated significantly. Specifically, in the 12 experiments, the difference be-
tween the maximum and minimum accuracy of the BOA-CNN algorithm was about 4.7%,
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while the difference between those of the ordinary CNN model was about 3.5%. This
indicates that the BOA-CNN algorithm is unstable across different experiments. Further
analysis showed that this instability may be caused by the randomness and local optimal
solution of Bayesian Optimization algorithms. However, its automatic search for the opti-
mal hyperparameters of the convolution layer, pooling layer, and Dropout layer reduces
the time and labor costs of manual parameter adjustment.

0 2 4 6 8 10 12 14

0.88

0.90

0.92

0.94

0.96

0.98

1.00
A
CC

(%
)

Cross validiton times

 CNN
 BOA-CNN

Figure 7. Comparison of the recognition accuracy between the BOA-CNN and CNN.

The model confusion matrix is shown in Figure 8, in which the number in each cell
represents the number of corresponding devices, the abscissa represents the predicted
value for an appliance, and the ordinate represents the actual value for that appliance. It
can be seen that in the PLAID dataset, compared to the ordinary CNN model, the BOA-
CNN model reduced the number of false negatives (FN) and false positives (FP) for each
electrical appliance and also reduced the number of device types that were incorrectly
classified for each electrical appliance. This indicates that the BOA-CNN model showed
excellent results in the accuracy of electrical identification and has practical value.

Figure 8. Comparison of the BOA-CNN and CNN confusion matrices.
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In the case of the F-measure indicators and Fmacro indicators, as shown in Figure 9,
the Fmacro indicator for the BOA-CNN was 87%, while the Fmacro indicator for the CNN
was 81%. In addition, the F-measure values for the hair dryers were lower than the macro
average. This may be due to the small amount of measurement data for some devices in the
dataset, which limits the learning ability of the model, resulting in lower F-measure values
for some devices. However, in general, the convolutional neural network model based on
Bayesian Optimization proposed in this paper showed improved performance compared
to the original convolutional neural network model for 11 types of electrical appliances
in the PLAID dataset, with a maximum improvement of 21%. Therefore, the model has
good performance.

The incremental addition of numerous features during the CNN construction process
led to a significant increase in computational workload. The experiment was conducted
on a laptop equipped with 16 GB of RAM and 16 cores (12th Gen Intel(R) Core(TM) i5-
1240P @1.70 GHz). On this platform, the time required for VI trajectory construction
was 2016.47 milliseconds, while the recognition of input images took 868.01 milliseconds,
resulting in a total of 2884.48 milliseconds, which is less than 3 s. In comparison, the to-
tal time spent in Reference [11] was 388.24 milliseconds, and in Reference [42], it was
923 milliseconds. Despite the relatively substantial computational workload, the CNN
exhibits the capability to perform load recognition within seconds in the context of NILM
tasks, aligning with the intended goals and requirements of recognition.
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Figure 9. Comparison between the BOA-CNN and CNN F-measure indicators and Fmacro indicators.

6. Conclusions

This paper introduced a load decomposition method based on the LSTM-DAE and
presented a load recognition approach that employed color-coded VI trajectories with
background color filling. The experimental results revealed that the proposed load de-
composition method achieved an accuracy exceeding 98%, accompanied by a notable
current reproduction effect, thereby providing precise data support for high-frequency
load recognition. The amalgamation of multicycle signals, the color coding of VI trajec-
tories, and the background color filling enhanced the distinguishability among different
load VI trajectories. Moreover, the utilization of a BOA-optimized AlexNet network for
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VI trajectory recognition illustrated that the BOA-CNN model effectively mitigated the
issue of confusing devices compared to existing algorithms, showcasing elevated accuracy
and robustness. Relative to conventional CNN models, this method excelled in various
aspects of electrical appliance recognition. Although the algorithm presented in this paper
imposed a higher computational load than other lightweight algorithms, the processing
time aligned seamlessly with the requirements of load recognition. Nevertheless, despite
the high accuracy of the proposed decomposition method, it required preliminary data
training, unlike the differencing method, which does not require data pretraining. Conse-
quently, the proposed decomposition method exhibited certain limitations compared to the
differencing approach. Additionally, errors might have arisen in the CNN’s recognition of
VI trajectories due to significant differences among similar loads resulting from variations
in brand and power. Therefore, future research should further explore the scalability of the
load recognition capabilities of the proposed algorithm.
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