
Citation: Yeh, S.-T.; Du, X. Optimal

Tilt-Wing eVTOL Takeoff Trajectory

Prediction Using Regression

Generative Adversarial Networks.

Mathematics 2024, 12, 26. https://

doi.org/10.3390/math12010026

Academic Editor: Daniel-Ioan

Curiac

Received: 29 November 2023

Revised: 15 December 2023

Accepted: 19 December 2023

Published: 21 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Optimal Tilt-Wing eVTOL Takeoff Trajectory Prediction Using
Regression Generative Adversarial Networks
Shuan-Tai Yeh 1 and Xiaosong Du 2,*

1 Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
shuantai@umich.edu

2 Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology,
Rolla, MO 65409, USA

* Correspondence: xiaosongdu@mst.edu

Abstract: Electric vertical takeoff and landing (eVTOL) aircraft have attracted tremendous attention
nowadays due to their flexible maneuverability, precise control, cost efficiency, and low noise. The
optimal takeoff trajectory design is a key component of cost-effective and passenger-friendly eVTOL
systems. However, conventional design optimization is typically computationally prohibitive due
to the adoption of high-fidelity simulation models in an iterative manner. Machine learning (ML)
allows rapid decision making; however, new ML surrogate modeling architectures and strategies are
still desired to address large-scale problems. Therefore, we showcase a novel regression generative
adversarial network (regGAN) surrogate for fast interactive optimal takeoff trajectory predictions of
eVTOL aircraft. The regGAN leverages generative adversarial network architectures for regression
tasks with a combined loss function of a mean squared error (MSE) loss and an adversarial binary
cross-entropy (BC) loss. Moreover, we introduce a surrogate-based inverse mapping concept into
eVTOL optimal trajectory designs for the first time. In particular, an inverse-mapping surrogate
takes design requirements (including design constraints and flight condition parameters) as input
and directly predicts optimal trajectory designs, with no need to run design optimizations once
trained. We demonstrated the regGAN on optimal takeoff trajectory designs for the Airbus A3

Vahana. The results revealed that regGAN outperformed reference surrogate strategies, including
multi-output Gaussian processes and conditional generative adversarial network surrogates, by
matching simulation-based ground truth with 99.6% relative testing accuracy using 1000 training
samples. A parametric study showed that a regGAN surrogate with an MSE weight of one and a
BC weight of 0.01 consistently achieved over 99.5% accuracy (denoting negligible predictive errors)
using 400 training samples, while other regGAN models require at least 800 samples.

Keywords: eVTOL; optimal takeoff trajectory design; machine learning; surrogate modeling; genera-
tive adversarial networks; regGAN; inverse mapping

MSC: 93C85

1. Introduction

The attention on electric vertical takeoff and landing (eVTOL) aircraft has grown
significantly because eVTOL is suitable for missions that require flexible maneuverability
and precise control, such as urban air mobility (UAM) [1,2]. UAM represents a safe
and efficient air transportation system where everything from small package delivery
drones using unmanned aerial vehicles (UAVs) to passenger-carrying air taxis through
eVTOL aircraft can operate above populated areas [3,4]. UAVs have broad applications,
including the sixth-generation communication using UAVs and an aerial base station for
supporting the Internet of Things deployment in remote and disaster areas [5]. Hua et al. [6]
proposed 3D non-stationary modeling for UAV-to-ground communications and managed
to demonstrate its validity and practicality against measured results. eVTOL aircraft’s

Mathematics 2024, 12, 26. https://doi.org/10.3390/math12010026 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12010026
https://doi.org/10.3390/math12010026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12010026
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12010026?type=check_update&version=2

Mathematics 2024, 12, 26 2 of 25

unique characteristics of precise delivery, lower cost, and reduced noise have motivated
significant developments [7,8]. Conceptions under development can be categorized into a
few major aircraft types, including lift+cruise (such as Aurora Flight Sciences eVTOL [9])
and tilt-wing (such as Airbus A3 Vahana [10]).

Among the aforementioned eVTOL types, the tilt-wing configuration enables the
aircraft to combine the flexibility of a helicopter for vertical takeoff and landing with the
efficiency of airplanes during cruising. Thus, the transition optimization on tilt-wing
eVTOL aircraft attracts special interest since transition has major effects on the success of
flight tasks [11]. Pradeep and Wei [12,13] put an emphasis on the formulation of multiphase
optimal control problems with energy consumption index for tilt-wing and multirotor
eVTOL vehicles. The proposed multiphase optimal control problem formulation and the
numerical solution allowed an eVTOL air taxi to fulfill the specified required arrival time
while attaining the most energy-efficient trajectory for arrival. This capability played a vital
role in enabling safe and efficient future operations of eVTOL aircraft, facilitating passenger
transportation and cargo delivery. Chauhan and Martins [14] constructed an Airbus
A3 Vahana [10] model and optimized its takeoff-to-cruise trajectory with the objective
of minimizing energy consumption. They concluded that the optimal takeoff trajectory
involved stalling the wings or flying near the stall angle of attack. Moreover, in the
absence of acceleration constraints, the optimized trajectories involved a rapid transition to
forward flight, followed by climbing at a relatively constant speed, and then accelerating
to the desired cruising speed. When considering passenger comfort and incorporating
acceleration constraints, the transition, climb, and acceleration phases exhibited more
gradual and less distinct behavior, as expected. However, completed work on transition
optimization as well as conventional engineering design optimizations rely on iterative
simulation model evaluations, which prohibit real-time decision making.

Thus, surrogate models have emerged as an effective alternative for fast interactive
decision making in lieu of time-consuming simulation models [15,16]. Surrogate-based
design optimization is a methodology that leverages surrogate models to approximate the
behavior of design candidates. To elaborate, surrogate models are mathematical models
that are trained using a limited number of data points obtained from computationally
expensive simulations or physical experiments. These surrogate models are then used in
optimization algorithms to efficiently make predictions, explore design space, and find
optimal solutions. Surrogate-based design optimization is advantageous over conventional
simulation-based optimization for computational efficiency [17,18], the effective exploration
of high-dimensional design spaces [19,20], multi-objective optimization capabilities [21,22],
sensitivity analysis [23], and uncertainty analysis [24–26].

The Gaussian process (GP) [27] is one of the most commonly used surrogate models
due to its capability and flexibility for modeling and predicting unknown functions based
on observed data [28]. The concept of a multi-output GP (MOGP) has emerged to further
handle problems with multiple outputs [29,30]. By extending the concept of a GP, an
MOGP is a surrogate modeling technique that allows for the joint modeling of multiple
correlated outputs and the simultaneous capture of their dependencies. In particular,
by jointly modeling the outputs by estimating the covariance matrix (also known as the
correlation function), an MOGP leverages the shared information among the outputs,
which reduces the overall modeling complexity. For more mathematical and surrogate
modeling details, please refer to Section 2.3. Meanwhile, deep learning surrogates are going
through revolutionary developments and pushing forward cutting-edge research in the
design optimization community. Thelen et al. [31] computed design variable derivatives
by analytically linking objective definition, mesh, and geometry, and they demonstrated
the derivatives through the multi-fidelity Broyden–Fletcher–Goldfarb–Shannon algorithm
for high-dimensional aerodynamic and aeroelastic design optimizations. Tao and Sun [32]
developed a multi-fidelity surrogate-based optimization framework based on deep belief
networks. The results for airfoil and wing designs under uncertainty indicated that the
multi-fidelity surrogate model performed well by significantly improving optimization

Mathematics 2024, 12, 26 3 of 25

efficiency. Renganathan et al. [33] performed aerodynamic design optimization by fusing
deep neural networks (DNN) and GP as one surrogate to incorporate the predictive power
of DNN and the confidence interval of GP. Thus, the DNN-GP surrogate enabled relatively
high-dimensional Bayesian optimization on aerodynamic design and outperformed adjoint-
based optimization in terms of efficiency.

Even with these developments, surrogate modeling still cannot completely address
the “curse of dimensionality”, which necessitates dimensionality reduction techniques for
further improvements. O’Leary-Roseberry et al. [34] constructed adaptive residual net-
works on reduced-dimensional space exploited by principal component analysis to directly
predict optimal designs based on design requirements. They successfully demonstrated
outstanding performance over full-space feed-forward networks on aerodynamic wing
design cases. Meanwhile, a prosperous family of machine learning models, generative
adversarial networks (GAN), was developed as generative models [35] with the feature of
automatic design space reduction. The competition between a generator and a discrimina-
tor allows them to generate new data that follow the same patterns as the training data.
Therefore, when fed with realistic airfoil or wing design shapes, a GAN model enables
implicit design space dimensionality reduction by filtering out unrealistic shapes and gen-
erating only realistic designs [36]. Du et al. [37] developed the B-spline-based generative
adversarial networks (BSplineGAN) for intelligent airfoil parameterization with the UIUC
airfoil database as training data. BSplineGAN automatically reduced the design space
while maintaining sufficient shape variability, which was verified by fitting optimizations to
arbitrary UIUC airfoils. They constructed DNN surrogates on the reduced space exploited
by BSplineGAN and verified predictive performance on aerodynamic design cases in a fast,
interactive manner.

Derived from the original GAN, GAN variants also handle regression tasks. Du
and Martins [38] introduced a novel multi-fidelity surrogate modeling architecture, super-
resolution GAN (SRGAN), for predicting airfoil pressure distributions based on low-fidelity
counterparts. Specifically, the SRGAN generator generated super-resolution pressure
distributions, while the discriminator aimed to distinguish between pressure distributions
of the generated super-resolution shapes and the high-resolution data set. Thus, training the
generator minimized the difference between the super-resolution shapes and corresponding
high-fidelity (i.e., high-resolution) data and maximized the similarity of super-resolution
with the high-fidelity data. The results showed that the SRGAN outperformed low-fidelity
simulations and direct DNN by accurately capturing the locations and magnitudes of strong
high-fidelity shocks. A conditional generative adversarial networks (cGAN) incorporates
additional conditioning information into the generative process [39]. The goal of a cGAN
is to generate samples that not only resemble the real data but also adhere to specified
conditions. The conditioning information serves as a guide for the generator to generate
samples that align with the desired conditions. Aggarwal et al. [40] conducted experiments
demonstrating the effectiveness of a cGAN model for regression problems. The cGAN
was successfully demonstrated on a real-world ailerons data set for an F-16 airplane. The
cGAN managed to predict the control input on the aircraft’s ailerons, which was described
by 40 continuous inputs. Ye et al. [41] proposed a novel GAN-based regression model
(regGAN), adopting a combined loss function on a mean squared error (MSE) and a binary
cross-entropy (BC) loss, which showed outstanding predictive performance on frying oil
deterioration when provided with time and temperature as input parameters.

Prior research has demonstrated the potential of machine learning surrogates, in-
cluding GAN variants. The SRGAN and cGAN exhibited predictive potential, while the
regGAN realized predictions from physical input space to output space. We demonstrate
the regGAN performance in predicting optimal eVTOL takeoff trajectories directly based
on design requirements and compare results with the MOGP and cGAN surrogates. We
summarize the contribution of this paper as follows. First, we develop and introduce the
regGAN surrogate into the takeoff trajectory design area for the first time. Second, we
realize the surrogate-based optimal takeoff trajectory design for eVTOL aircraft to fill the

Mathematics 2024, 12, 26 4 of 25

lack of research study in this field. Third, we introduce the inverse mapping concept (from
design requirements, including design constraints and flight condition parameters, directly
into optimal designs) to eVTOL trajectory design for the first time.

We organize the rest of the paper as follows. Section 2 introduces the optimization
framework and simulation models used in this work, followed by MOGP, cGAN, and
regGAN setups for surrogate modeling. We demonstrate the regGAN as well as other
surrogates on eVTOL optimal takeoff trajectory predictions in Section 3. We end this paper
with conclusions in Section 4.

2. Methodology

In this section, we introduce the open-source optimization toolbox Dymos (https://gith
ub.com/OpenMDAO/RevHack2020/tree/master/problems/evtol_trajectory/evtol_dymo
s, accessed on 1 August 2022) [42] within OpenMDAO (https://github.com/OpenMDAO/Op
enMDAO, accessed on 1 August 2022) [43] and simulation models. Additionally, we detail
an MOGP toolkit (MOGPTK (https://github.com/GAMES-UChile/mogptk, accessed on 1
August 2022)) [44] followed by DNN and GAN series models (namely, GAN, cGAN, and
regGAN) within TensorFlow [45] for surrogate modeling.

2.1. Dymos Framework

OpenMDAO [43], an open-source framework for multidisciplinary design, analysis, and
optimization (MDAO), empowers engineers and scientists to efficiently analyze and opti-
mize complex engineering systems. It is primarily designed for gradient-based optimiza-
tion, which is based on efficient coupled derivative computation and problem sparsity
exploitation [43]. Its component-based architecture enables the integration of models from
diverse disciplines, facilitating seamless collaboration and reusability. OpenMDAO excels in
interdisciplinary coupling, managing data flow, solving systems of equations, and offering
efficient automatic differentiation for optimization and sensitivity analysis. Addition-
ally, OpenMDAO supports parallel computing, leveraging multiple cores and distributed
computing clusters for efficient analyses.

Dymos [42] is an advanced software toolkit built upon the OpenMDAO framework by
the National Aeronautics and Space Administration for optimizing complex aerospace
systems. Dymos expands OpenMDAO capabilities by offering specialized tools and algorithms
for dynamic optimization. With a primary focus on dynamic systems, Dymos transcends
solving problems that involve the evolution of systems over time. This is valuable for
trajectory optimizations, where various constraints and objectives need to be considered. By
employing numerical methods, such as direct transcription and indirect shooting methods,
Dymos can discretize and optimize the trajectory based on specified nodes or iteratively
refine initial guesses, respectively. The software also provides an intuitive interface and
visualization tools for easy problem formulation and manipulation while supporting
integration with external software and models. Dymos serves as a powerful and versatile
toolkit for dynamic optimization and multidisciplinary analysis, enabling enhanced design
and optimization of complex aerospace systems.

In this work, we utilize one of the implicit collocation techniques demonstrated in
Dymos: higher-order Gauss–Lobatto collocation (LGL). Implicit collocation techniques are
especially suitable for gradient-based optimization including analytic derivatives [42].
The equation of motion propagates explicitly through time-marching and requires a fixed
number of analysis points in time with enough density to capture the system dynamics
accurately. Implicit collocation schemes are able to attain this with fewer analysis points
in a grid fixed throughout an optimization. In Dymos, implicit collocation methods further
disintegrate each phase into one or more segments. For each segment, to ensure the
value in time can be modeled as a polynomial, each state or control variable is assumed
to be C1 continuous. Additionally, within each segment, state and control values are
allocated at specific points or nodes, indicated by the state discretization nodes and control
discretization nodes, respectively. Inside each phase, there are several variables described

https://github.com/OpenMDAO/RevHack2020/tree/master/problems/evtol_trajectory/evtol_dymos
https://github.com/OpenMDAO/RevHack2020/tree/master/problems/evtol_trajectory/evtol_dymos
https://github.com/OpenMDAO/RevHack2020/tree/master/problems/evtol_trajectory/evtol_dymos
https://github.com/OpenMDAO/OpenMDAO
https://github.com/OpenMDAO/OpenMDAO
https://github.com/GAMES-UChile/mogptk

Mathematics 2024, 12, 26 5 of 25

in the following, such as design variables (initial time t0, duration tp), state variables at
the state discretization nodes (x̄d), dynamic control variables at the control discretization
nodes (ūd), and the design parameters (d̄). Herman and Conway proposed the high-order
LGL method, which is the primary method used in OTIS [46] and is a general extension
of the Hermite-Simpson collocation to higher orders [47]. In a phase, the segments are
discretized at the LGL nodes so that, for each segment, the total number of nodes is an
odd value. The state discretization nodes are the nodes with an even index, where the
index starts at zero for the first node. Dynamic controls are provided at designated control
discretization nodes. In LGL collocation, all nodes within the phase are involved in the
control discretization subset. The evaluation of an LGL phase in Dymos progresses with the
following steps: Initially, the values of the design variables (t0, tp, x̄d, ūd, and d̄) are given
by the optimizer and user. Secondly, the OpenMDAO system offering the state dynamics is
assessed at the state discretization nodes, contributing the state time derivatives at the state
discretization nodes:

˙̄xd = fode(td, x̄d, ūd, d̄), (1)

where fode is the governing ordinary differential equation (ODE) for simulation models.
Then, using Hermite interpolation [48], the states and state rates are interpolated to

the collocation nodes:

x̄c = [Ai]xd +
tseg

2
[Bi] ˙̄xd, (2)

x̄′c =
2

seg
[Ad]xd + [Bd] ˙̄xd, (3)

where tseg is the duration of the segment where each nodes originates. At the collocation
nodes, the state system provided by the system at this point is evaluated and is given by

˙̄xc = fode(tc, x̂c, ûc, d). (4)

Consequently, there are two independent state rate values existing: one is the actual
value derived from the ODE, and the other is the approximate value calculated from the
slope of the interpolating polynomials. For each state in the phase, the “collocation defects,
∆”, normalized by segment time space, consists of the difference between two state rates.
Moreover, these values are constrained at zero for a nonlinear programming problem and
can be expressed as

∆̄ = x̄′c −
t̄seg

2
˙̄xcol. (5)

2.2. Simulation Models

We consider the verified simulation models covering aerodynamics, propulsion,
propeller–wing interaction, and dynamics developed by the Dymos team [42].

2.2.1. Aerodynamics

The aerodynamics model assumes that the forward and rear wings are equivalent and
have the same reference area for simplicity, and there is no flow interaction between the
two wings. The rotations of the two wings are assumed to be the same, so that the angles
of attack are equivalent as well as the lift and drag generated by the two wings. During the
transition from vertical to horizontal flight, separated-flow conditions are considered. A
model developed by Tangler and Ostowari [49] for wing aerodynamics is implemented to
predict the lift and drag beyond the linear-lift region. The poststall lift coefficient is

CL = A1sin2α + A2
cos2α

sinα
, (6)

Mathematics 2024, 12, 26 6 of 25

where
A1 =

C1

2
, (7)

A2 = (CLs − C1sinαscosαs)
sinαs

cos2αs
, (8)

and
C1 = 1.1 + 0.018AR, (9)

where α is the wing angle of attack (in radians), αs is the angle of attack at stall (in radians),
CLs is the lift coefficient at stall, and AR is the wing aspect ratio.

The drag coefficient at a wing angle of attack between 27.5 and 90 degrees is given by

CD = B1sinα + B2cosα, (10)

where
B1 = CDmax , (11)

B2 =
CDs − CDmax sinαs

cosαs
, (12)

and
CDmax =

1.0 + 0.065AR
0.9 + t/c

, (13)

where CDs is the drag coefficient at stall, and t/c is the airfoil thickness-to-chord ratio. For
the poststall drag coefficient at a wing angle of attack below 27.5 degrees, the equation is

CD = 0.008 + 1.107α2 + 1.792α4, (14)

where α is in radians.
The well-known finite wing corrections from lifting-line theory for unswept wings in

incompressible flow are utilized to modify the lift and drag of the airfoil prior to stalling,

αwing =
αairfoil

1 + (αairfoil/(π · AR · e))
, (15)

where αwing is the finite-wing lift–curve slope, αairfoil is the airfoil lift–curve slope, and e is
the span efficiency factor. The prestall lift curve is assumed to be linear, and the wing stall
angle of attack is 15 deg.

In order to obtain the total drag of the wing before stall, induced drag has been
added using the well-known formula based on the lifting-line theory for prestall parasite
drag coefficients,

CDi =
C2

L
π · AR · e

, (16)

where CDi is the induced drag coefficient, CL is the wing’s lift coefficient, and AR = 8 for
each wing of the configuration.

Additional drag on an assumed drag area for the fixed landing gear and the fuselage
is assumed to be independent of the freestream angle of attack. The induced drag for the
configuration can be expressed as

Dinduced = 2

(
1.4

L2
wing

πqb2 · 0.95

)
= 2

(
L2

wing

πqb2 · 0.68

)
, (17)

where Lwing is lift per wing, q is freestream dynamic pressure, b is wing span.

Mathematics 2024, 12, 26 7 of 25

2.2.2. Propulsion

Momentum theory [50] has been utilized to compute thrust from the propellers as a
function of power.

Pdisk = TV∞⊥ + κT

−V∞⊥
2

+

√
V2

∞⊥
4

+
T

2ρAdisk

, (18)

where Pdisk is the power supplied to the propeller disk excluding profile power, T is the
thrust, V∞⊥ is the freestream velocity component normal to the propeller disk, ρ is the
air density, Adisk is the disk area of the propeller, and κ is the correction factor utilized to
incorporate induced power losses associated with non-uniform flow, tip effects, and other
simplifications made in momentum theory (κ = 1 for ideal power). Power is used as a
design variable in the optimization problems, and the Newton–Raphson method [51] has
been chosen to solve the nonlinear equation for thrust with power as an input.

Applying blade-element theory to a rotor operating in nonaxial forward flight [52,53]
estimates the profile power coefficient CPp and profile power Pp

CPp =
σCd0p

8
(1 + 4.6µ2), (19)

and

CPp =
Pp

ρAdiskR3Ω3 , (20)

where R is the radius of the propeller, Ω is the angular speed, σ is the solidity, Cd0p is a
representative constant profile drag coefficient, and µ is defined as

µ =
V∞∥
ΩR

, (21)

where V∞∥ is the freestream velocity component parallel to the disk. For our cases, we
assume that Ω = 181 rad/s for R = 0.75 m, σ = 0.13, and Cd0p = 0.012.

With electrical power as an input, we use a factor kelec to account for electrical and me-
chanical losses related to batteries, electrical systems, and motors. Pdisk can be expressed as

Pdisk = kelecPelectrical − Pp, (22)

where Pelectrical is the power from the batteries. We set the limit on the maximum electrical
power available to 311 kW. The loss factor kelec ranges from 0.7 to 0.9 and is also one of our
design requirements considered as input parameters for surrogate modeling.

Furthermore, when the freestream flow is not completely normal to the propeller disks,
the normal force N is calculated as

N =
4.25σe sin(β + 8◦) f q⊥Adisk

1 + 2σe
tan αin, (23)

where q⊥ is the dynamic pressure based on the freestream velocity component normal to
the propeller disk, β is the blade pitch angle at 0.75R and is assumed to change linearly
from 10 deg at a flight speed of 0 m/s to 35 deg at a cruise speed of 67 m/s, Adisk is the
propeller area, and αin is the incidence angle. The remaining terms are calculated in the
following manner. The effective solidity σe is

σe =
2Bcb
3πR

, (24)

where B is the number of blades per propeller, cb is the average chord length of the blades,
and R is the propeller radius. The thruster factor f is

Mathematics 2024, 12, 26 8 of 25

f = 1 +
√

1 + Tc − 1
2

+
Tc

4(2 + Tc)
, (25)

where Tc is a thrust coefficient, defined as

Tc =
T

q⊥Adisk
, (26)

and T is the thrust.

2.2.3. Propeller–Wing Interaction

The momentum theory [50] is implemented for modeling the interaction between a
wing and the flow induced by propellers. The induced speed at the disk vi is given by

vi =

−V∞⊥
2

+

√
V2

∞⊥
4

+
T

2ρAdisk

. (27)

To explain the propeller–wing interaction in this work, the chordwise component
of the freestream velocity for the entire wing by a range of factors kin is varied between
0.3 and 1, multiplied by the induced speed at the disk vi. The effective kin for the wing
is anticipated to be close to 1 but slightly less than it, especially when the aircraft is at
low speed. Moreover, cases will become infeasible if kin is too low; therefore, we set the
range kin ∈ [0.3, 1.0] in this paper to make sure all cases are feasible under the design
requirements.

2.2.4. Dynamics

A two degrees of freedom (DOF) representation and the forward Euler method [54] are
used for simulating the trajectory of the aircraft. The horizontal and vertical components of
the aircraft velocity are solved as functions of time, considering the control variables, which
include the wing-tilt angle and electrical power. The horizontal component of velocity at
each time step is calculated as follows:

vxi+1 = vxi +
T sin θ − Dfuse sin(θ + α∞)− Dwings sin(θ + αEFS)− Lwings cos(θ + αEFS)− N cos θ

m
∆t, (28)

where i is index of a time step, ∆t is a time step length, θ is a wing angle relative to the
vertical, α∞ is a freestream angle of attack, αEFS is the effective freestream angle of attack
experienced by the wings due to the propeller influence, m is the mass of the aircraft, T is
the total thrust, Dfuse is the drag of the fuselage, Dwings is the total drag of the two wings,
Lwings is the total lift of the two wings, and N is the total normal force generated by the
propellers. Figure 1 displays the forces and the angles on the aircraft. Likewise, the vertical
component of velocity at each time step is calculated as follows:

vyi+1 = vyi +
T cos θ − Dfuse cos(θ + α∞)− Dwings cos(θ + αEFS) + Lwings sin(θ + αEFS) + N sin θ − mg

m
∆t, (29)

where g is the gravitational acceleration. To determine the time step length, ∆t, the total
takeoff time, which is a design variable in optimization problem formulation, is divided by
500. A convergence study concluded the optimized takeoff flight time would be typically
below 50 s, resulting in adequately small time steps of less than 0.1 s [14].

Mathematics 2024, 12, 26 9 of 25

V∞

mg

Dfuse

V∞

V∞

Dfwd

Drear

Trear

Tfwd

x

y

Lfwd

Lrear

Nrear

Nfwd

Veffective freestream

Veffective freestream

α∞
αEFS

θ

kinvi

kinvi

Figure 1. Definitions of angle and forces on the aircraft.

2.3. Multi-Output Gaussian Processes

A GP is a Bayesian nonparametric model that is designed by parameterizing a co-
variance kernel, meaning that constructing expressive kernels allows for an effective rep-
resentation of complex systems [44]. The GP assumes the function f (x) is distributed
as [55]

f (x) ∼ GP
(
m(x), k

(
x, x′

))
, (30)

where a Gaussian process is a distribution over functions and is characterized by a mean
function m(x) and a covariance function k(x, x′) between input parameters x and x′. The
mean function represents the expected function value at input x

m(x) = E[f (x)]. (31)

In other words, the mean function represents the average function value at input x across
all functions in the distribution. To simplify posterior computations and rely only on the
covariance function for inference, the prior mean function is frequently assumed to be a
constant. In this work, we apply the constant mean function (m(x) = b1) and the linear
mean function (m(x) = ax + b2), where a, b1, and b2 are arbitrary constant coefficients.
The covariance function k(x, x′) captures the relationship between the function values at
different input points x and x′:

k
(
x, x′

)
= E

[
(f (x)− m(x))

(
f
(
x′
)
− m

(
x′
))]

. (32)

The function k is commonly called the kernel of the Gaussian process. The kernel defines
the shape and characteristics of the GP model. We implement the Matérn kernel and the
square exponential kernel function in our study, and they are described as follows.

1. Matérn kernel
The Matérn covariance between two points with the distance τ = |x − x′| is

kν(τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

ρ

)
Kν

(√
2ν

τ

ρ

)
, (33)

where Γ is the gamma function, Kν is the modified Bessel function of the second kind,
and ρ and ν are non-negative covariance parameters. The Matérn kernel is stationary
since the covariance only depends on distances between points.

2. Squared exponential kernel

kSE = s2 exp
(
−1

2

(
|x − x′|

λ

))
, (34)

Mathematics 2024, 12, 26 10 of 25

where s is the scale factor. In the case where we use a single length scale parameter,
the squared exponential (SE) kernel is an example of a radial basis function.

The GP has been extended to multiple series (or channels), which are referred to
as MOGP. The key difference lies in their implementation and capabilities. The GP is
designed for single-output regression, predicting a single target variable given inputs,
while an MOGP extends the GP to handle multiple outputs simultaneously. An MOGP
is useful when dealing with correlated outputs, enabling the modeling of dependencies
between different target variables. The complexity of a GP relates to the number of data
points, while an MOGP introduces additional complexity due to modeling correlations
between multiple outputs, but the MOGP remains efficient and more capable compared
with training individual GPs for each output. Thus, a key feature of the MOGP is to harness
applicable information across outputs to provide more accurate predictions than separately
modeling correlated outputs [28].

In this study, the multi-output spectral mixture [56] kernel is used as the multivariate
kernel for the MOGP model, and can be expressed as

kij(τ) =
Q

∑
q=1

α
(q)
ij exp

(
−1

2

(
τ + θ

(q)
ij

)⊤
Σ(q)

ij

(
τ + θ

(q)
ij

))
cos
((

τ + θ
(q)
ij

)⊤
µ
(q)
ij + ϕ

(q)
ij

)
, (35)

where α
(q)
ij = w(q)

ij (2π)
n
2

∣∣∣Σ(q)
ij

∣∣∣1/2
and the superindex (·)(q) denotes the parameter of the qth

component of the spectral mixture. In addition, the cross-spectral density between channels
i and j is modeled as a complex-valued SE function with the following parameters:

• Covariance: Σij = 2Σi
(
Σi + Σj

)−1Σj;

• Mean: µij =
(
Σi + Σj

)−1(Σiµj + Σjµi
)
;

• Magnitude: wij = wiwj exp
(
− 1

4
(
µi − µj

)⊤(Σi + Σj
)−1(

µi − µj
))

;

• Delay: θij = θi − θj;
• Phase: ϕij = ϕi − ϕj;

where the so-constructed magnitudes wij ensure positive definiteness.
We use the MOGPTK [44] to establish MOGP models. MOGPTK is an open-source Python

package that provides a natural way to train and use the models. MOGPTK is built upon
GPflow [57], an extensive GP framework with a wide variety of implemented kernels,
likelihoods, and training strategies. The main components of MOGPTK include MOGP
modeling, data handling, parameter initialization, and parameter interpretation [44].

2.4. Deep Neural Networks

The DNN makes the core of deep learning. In this section, we introduce the DNN
model basic setup and the Adam optimizer used for model training.

2.4.1. DNN Model Setup

A DNN [58] consists of multiple layers of interconnected nodes, known as neurons,
to process input data and make predictions. A DNN starts with an input layer (reading
input data), followed by one or more hidden layers, each of which consists of multiple neu-
rons. The final hidden layer connects to the output layer, which produces the predictions.
Moreover, neurons in the same layers share a weight matrix (W) and a bias vector (b) to be
tuned. The equation within each neuron can be mathematically expressed as

o = σ(W · h + b), (36)

where h is a data vector from previous layers, σ(·) represents an activation function used
in the current layer, and o is an output vector of the current layer. During training, W
and b are adjusted to optimize the model’s performance. We utilize two commonly used
activation functions in this work to introduce nonlinearity into the DNN. The rectified

Mathematics 2024, 12, 26 11 of 25

linear unit (relu) [59] activation function follows the equation σrelu(h) = max(0, h), while
the sigmoid [60] activation function has an expression of σsigmoid(h) = 1/

(
1 + e−h).

In this work, we harness two types of loss functions for training DNN surrogates to
minimize the difference between predicted responses and corresponding actual values.
The MSE [61] loss function is formulated as

LMSE =
1
N

N

∑
i=1

(|vi − v̂i|2)
2, (37)

where N is the number of training data points in the data set, | · |2 is L2 norm, vi and v̂i
are actual values and predicted values for the ith training sample. Binary crossentropy
(BC) [62] is formulated as

LBC = − 1
N

N

∑
i=1

(vi · log v̂i + (1 − vi) · log(1 − v̂i)), (38)

where vi is the ith actual binary label (0 or 1), and v̂i is the predicted probability (between 0
and 1). The loss function penalizes the model more severely when it predicts the opposite
class with high confidence. In this work, the DNN unknown parameters are tuned by
minimizing loss functions through the gradient-based Adam optimizer (see the following
section) enabled by backpropagation within Tensorflow [45].

2.4.2. Adam Optimizer

The Adam optimizer combines the principles of gradient descent with momentum [63]
and root mean square propagation (RMSP) [64] algorithms [65]. The gradient descent
algorithm has been enhanced by the moment algorithm [63], with the updates as

wt+1 = wt − αmt, (39)

where

mt = βmt−1 + (1 − β)

[
∂L
∂wt

]
, (40)

where the subscripts t − 1, t, and t + 1 are the indices of previous, current, and next
optimization steps, respectively. Initially, m0 = 0, w is a weight to be determined, α
is learning rate, ∂L

∂wt
is the derivative of loss function with respect to weight at current

optimization step, and β is a constant moving average parameter.
RMSP [64] is an adaptive learning algorithm with a mathematical formulation as

wt+1 = wt −
α

(vt + ϵ)1/2

[
∂L
∂wt

]2
, (41)

where

vt = βvt−1 + (1 − β)

[
∂L
∂wt

]
. (42)

A small positive constant (ϵ = 10−7) is utilized. The remaining variables remain the same
as in Equation (40).

The Adam optimizer integrates the moment and RMSP algorithms as follows.

wt+1 = wt − m̂t

(
α√

v̂t + ϵ

)
, (43)

where
m̂t =

mt

1 − βt
1

, v̂t =
vt

1 − βt
2

, (44)

where mt and vt follow the updating process as described above.

Mathematics 2024, 12, 26 12 of 25

2.5. Generative Adversarial Network Models

A GAN is a novel DNN architecture that is leading in state-of-the-art generative
modeling strategies. This section introduces GAN setups along with their variations,
namely, cGAN and regGAN.

2.5.1. Generative Adversarial Networks

A GAN is in nature a type of generative model that consists of two neural networks:
a generator and a discriminator (Figure 2) [35]. The generator initially produces random
outputs based on random input variables, but as it receives feedback from the discriminator,
it learns to generate more realistic samples through training. The discriminator, on the other
hand, is trained on a data set of existing samples and the generated samples created by the
generator. The discriminator is to distinguish between existing and generated data and
provide feedback to the generator by assigning probabilities to the existing and generated
samples, indicating how likely they are to be real. During the training process, the generator
and the discriminator attempt to compete with each other in an adversarial manner. This
competition drives the improvement of both models through the model training process.
Thus, as the training proceeds, the generator is more capable of producing similar samples
as existing data that the discriminator cannot differentiate.

0 : z 1 : e

1 : Generator Neural Networks 2 : g

2 : Discriminator Neural Networks 3 : Pg, Pe

5 : wg 4 : wd 3 : 1 & 2 → 3 Model Training

Figure 2. GAN contains the discriminator to compete with the generator. The generator generates
shapes (g) based on random variables (z), typically following user-defined distributions (uniform
distribution in this work). The discriminator distinguishes between the existing data (e) and the
generated data (g). During training, the discriminator adjusts its weights (wd) to make the probability
pg of g approach zero’s while increasing the probability pe of e towards one’s. Conversely, during
training, the generator adjusts its weights (wg) to increase the probability of pg towards one’s. The
generator, after training, generates shapes similar to the existing data.

Mathematically, training a GAN model can be expressed as a minimax problem [35]
on the loss function as follows.

min
G

max
D

LGAN(D, G) = Ex∼Pdata [log D(x)] +Ez∼Pz [log(1 − D(G(z)))], (45)

where x is sampled from the existing data distribution Pdata, z is sampled from the noise
variable distribution Pz, and G and D are the generator and discriminator. Thus, a trained
GAN model generates reasonable designs with ample shape variability within prior noise
variable distributions.

2.5.2. Conditional Generative Adversarial Networks

A cGAN is an extension of the original GAN that incorporates additional conditioning
information into the generative process [39]. For the generator and the discriminator in
cGANs, both networks receive not only random noises as input but also additional condi-
tioning information y. This information offers extra guidance to the generator to produce
samples that align with specified conditions. Conditioning information y can be in several

Mathematics 2024, 12, 26 13 of 25

forms, such as text descriptions and class labels, depending on the utilization. The condi-
tioning is achieved by providing y as an additional input layer to both the discriminator
and generator. Within the generator, the prior input noise Pz(z) and y are combined in a
joint hidden representation, benefiting from the adversarial training framework’s flexibility
in composing this hidden representation. In addition, the discriminator takes as inputs
x and y pairs as well as shapes generated by the generator to complete the adversarial
competition with the generator. Similarly, as a GAN loss function (Equation (45)), the
training on loss functions could also be expressed as a minimax problem,

min
G

max
D

LcGAN(D, G) = Ex∼Pdata(x)[log D(x|y)] +Ez∼Pz(z)[log(1 − D(G(z|y)))]. (46)

In addition, cGANs can be adapted for regression tasks by encoding the regression
labels (i.e., model observations) as additional conditioning information (Figure 3). The
cGAN generator takes random noise variables as the original GAN, together with arbitrary
model observations as an additional input group. The goal is to generate data samples
that correspond to the model observations. The discriminator, which tries to distinguish
between real and generated data samples, will now take both real data samples x and
generated data samples g as input. During training, the cGAN generator learns to map
the random noise variables and model observations to corresponding data samples, which
helps in regression tasks by generating samples consistent with the given target values.
This approach offers a way to tackle problems with complex relationships between inputs
and targets, and incorporate the adversarial feature of GANs into regression processes. In
this work, x represents the eVTOL optimal takeoff trajectory control points to be predicted,
y includes design requirements, and we set z with only one element and assign a Uniform
(0, 1) distribution to z. During regression tasks, an average of predictions over a fixed set
of y and 100 randomly sampled z is used as the predicted model response [39], which in
this work, is the optimal takeoff trajectory (x). The network architecture settings for the
generator and discriminator within the cGAN follow the same architecture as the regGAN,
which will be discussed in Section 2.5.3.

0 : z, y 1 : x, y

1: Generator Neural Networks 2 : g

2: Discriminator Neural Networks 3 : Px, Pg

5 : wg 4 : wd 3: 1 & 2 → Model Training

Figure 3. cGAN has similar structures to GAN (shown in Figure 2). cGANs take design requirements
(y) and random noise variables (z) as input for the generator network. The time-sequence optimal
takeoff trajectories (x) and generated data g are considered inputs for the discriminator.

2.5.3. Regression Generative Adversarial Networks

To further investigate GAN models for regression tasks, we developed the regGAN
for surrogate modeling. The regGAN (Figure 4) shares a similar structure as the cGAN
(Figure 3), but the regGAN has only design requirements (y) as the generator input. More-
over, training regGAN incorporates a combined loss function of MSE (Equation (37)) and
BC (Equation (38)), such that the regGAN couples a predictive feature of surrogate mod-
els and a generative feature of GAN models. The combined loss function is applied in
model training.

Mathematics 2024, 12, 26 14 of 25

min
G

max
D

LregGAN(D, G) = min(Lcontext + Ladversarial) (47)

= wBC ·
(

min
G

max
D

LBC(D, G)

)
+ wMSE ·

(
min

G
LMSE(G)

)
(48)

= wBC · min
G

max
D

(
Ex∼Pdata [log D(x)] +Ey∼Py [log(1 − D(G(y)))]

)
(49)

+ wMSE · min
G

1
N

N

∑
i=1

(|xi − G(y)i|2)
2. (50)

where wBC and wMSE are constant weights on BC and MSE loss functions; we conduct a
parametric study in Section 3 for the best predictive performance.

The MSE loss (also known as context loss) guides the regGAN predictions to match
model observations in a similar way as traditional surrogates, while the BC loss (also known
as adversarial loss due to the competitive training on GAN models) on the discriminator
engenders similar patterns between predicted results and observations. In this work, we
leverage the regGAN for eVTOL takeoff trajectory inverse mapping, i.e., directly from
design requirements to optimal takeoff trajectories. Thus, the regGAN generator reads
the design requirements (y) and predicts the corresponding optimal takeoff trajectories
(x). Meanwhile, the discriminator attempts to distinguish between predicted/generated
trajectories and actual optimal takeoff trajectories. Thus, the nature of the eVTOL optimal
takeoff trajectory prediction makes it necessary to develop and introduce the regGAN
surrogate. First, the regGAN makes use of the predictive capability of the DNN via
the generator. Second, the optimal takeoff trajectory profiles typically follow realistic
patterns. For instance, optimal power and wing angle profiles follow ascending trends in
general, meaning that the battery provides more and more power to balance the weight
and gradually moves forward by turning the wing from vertical to horizontal positions. In
this way, the BC loss based on the GAN architecture facilitates the training by automatically
filtering out unrealistic trajectory profiles.

Generator Neural
Networks

Discriminator Neural
Networks

TrainingGen,BC

TrainingGen,MSE LMSE

LBC

Time-sequence
design variables

Design
requirements

Generated
design variables

TrainingDis,BC

Figure 4. regGAN includes a generator and a discriminator as the original GAN and cGAN. The
generator generates time-sequence design variables based on corresponding design requirements
through DNN. The discriminator takes generated optimal designs and true time-sequence optimal
trajectories in order to distinguish the differences. This results in adversarial competition, which
causes an adversarial loss function (using binary crossentropy, LBC) to train the generator and the
discriminator. Additionally, we minimize the mean square error between generated and true design
variables (LMSE) to explicitly train the generator for regression tasks.

The regGAN generator architecture setting is as follows (Table 1). The generator
consists of one input layer, two hidden layers, and one output layer. Five neurons in the
input layer correspond to five different design requirements. Both hidden layers have
100 neurons, followed by relu activation functions. The output layer has twenty-one

Mathematics 2024, 12, 26 15 of 25

neurons corresponding to the twenty-one time-sequence optimal design variables or one
neuron for time prediction, followed by sigmoid activation functions. The discriminator
includes one input layer, two hidden layers, and one output layer. The input layer has
21 neurons corresponding to the time-sequence optimal design variables. Both hidden
layers have 100 neurons with relu activation functions. The output layer has only one
neuron followed by sigmoid activation functions in order to distinguish between generated
and true optimal design variables. The observations in training data sets by the generator
are scaled within the range of [0, 1] via the MinMaxScaler within Scikit-learn. We finish
training the regGAN using the Adam optimizer (Section 2.4.2) within Tensorflow with the
momentum coefficients of β1 = 0.9 and β2 = 0.999. The learning rates for the generator
and the discriminator networks are both 0.001. The batch size is 20 and the maximum
number of training iterations is 1000. We use the same architectures and setups to train
three separate regGAN surrogates to predict the power profile, wing angle profile, and
total takeoff time. The same architectures and setups also apply to cGAN surrogates for
fair comparisons.

Table 1. Neural architectures and training setups of the generator and the discriminator within
regGAN.

Generator Discriminator

Input layer 5 neurons, no activation 21 neurons, no activation
Hidden layer 1 100 neurons, relu activation 100 neurons, relu activation
Hidden layer 2 100 neurons, relu activation 100 neurons, relu activation
Output layer 21 neurons/1 neuron, sigmoid activation 1 neurons, sigmoid activation

Training algorithm Adam optimizer Adam optimizer
Training parameters β1 = 0.9, β2 = 0.999 β1 = 0.9, β2 = 0.999
Learning rate 0.001 0.001
Batch size 20 20
Epochs 1000 1000

2.6. Verification Metric

In this work, we implement the mean L1 relative error (ϵ̄L1) to evaluate the surrogate
predictive performance. The L1 relative error, also known as the mean absolute percentage
error, is a metric used to measure the relative L1 norm difference between predictions
compared with actual values.

ϵ̄L1 =
1

Ntest

Ntest

∑
i=1

∣∣∣ypred,i − ytrue,i

∣∣∣
|ytrue,i|

× 100%, (51)

where Ntest is the number of testing samples, ytrue,i and ypred,i are the true observations and
predicted values of the ith set of design requirements. The relative accuracy is calculated as

ACCL1 = 1 − ϵ̄L1 . (52)

The L1 relative accuracy measures the average relative match between predicted
values and true observations, expressed in percentage. It gives an indication of to what
extend surrogate predictions agree with true observations relative to true observations.
The percentage exhibits deeper insights through the errors relative to model response
magnitudes.

3. Results and Discussion

In this section, we formulate the optimization problem and vary the operating pa-
rameter bounds to consider various takeoff scenarios. We showcase and compare the
optimal takeoff trajectory predictions by MOGP, cGAN, and regGAN surrogates with

Mathematics 2024, 12, 26 16 of 25

simulation-based optimal counterparts. The MOGP represents the traditional surrogates
(such as polynomial chaos expansions) and shows promising capability in handling mul-
tiple outputs. The cGAN makes use of the GAN architecture for regression tasks that
share similar principles as the regGAN. Note that the training and testing data sets are
generated by simulation-based optimal designs, and the testing accuracy was calculated
based on the testing data set. In addition, we do not consider buildings, although the
application scenario is set up for UAM, since we mainly focus on the UAM scope of precise
transportation/delivery through optimal energy-efficient takeoff designs.

Table 2 formulates the trajectory optimization problem. The objective is to minimize
the electrical power consumed to reach a minimum vertical displacement of 305 m and a
minimum horizontal speed of 67 m/s. The design requirements (i.e., design constraints
and flight condition parameters) include an angle of attack constraint αlim ∈ [10, 15]
deg, maximum acceleration magnitude amax ∈ [0.2, 0.4]g (g is gravitational acceleration),
propeller-induced velocity factor kin ∈ [0.3, 1.0], electrical and mechanical loss factor
kelec ∈ [0.7, 0.9], and wing size factor Sref ∈ [0.9, 1.0]. Note that the amax constraint is a
concept to consider for passenger comfort for future real-world transportation, although
eVTOL aircraft currently have not been widely applied for such tasks yet. The design
variables are the time-sequence electrical power (P) and wing angle to vertical (θ), both of
which have 21 cubic curve control points and a total takeoff time (tflight). As mentioned
in Section 2, we use the open-source Dymos package within OpenMDAO. Figure 5 shows the
optimal takeoff trajectory profiles, which verify the Dymos package in terms of the time
history of design variables and takeoff conditions.

Table 2. Trajectory optimization problem formulation.

Function or Variable Description Quantity

minimize E Electrical energy consumed

w.r.t. P Electric power using 21 cubic curve control points 21
θ Wing angle to vertical using 21 cubic curve control points 21
tflight Takeoff time 1

Total design variables 43

subject to yfinal ≥ 305 m Final vertical displacement constraint 1
xfinal ≤ 1400 m Final horizontal displacement constraint 1
vx = 67 m/s Final horizontal speed constraint 1
y ≥ 0 m Vertical displacement constraint 1
a ≤ amax Acceleration constraint 1
α ≤ αlim Positive stall-angle constraint 1
α ≥ −αlim Negative stall-angle constraint 1

Total constraints 7

Conditions kin Propeller-induced velocity factor
αlim Angle of attack constraint value
amax Maximum acceleration magnitude
kelec Electrical and mechanical loses factor
Sref Wing size factor

Mathematics 2024, 12, 26 17 of 25

0 5 10 15 20 25
time

2.25

2.50

2.75

po
we

r (
10

5)

0 5 10 15 20 25
time

0.5

1.0

1.5

th
et

a

0 200 400 600 800
x

0

100

200

300

y

0 5 10 15 20 25
time

0

2

4

6

en
er

gy
 (1

06)

0 5 10 15 20 25 30
time

0.0

0.1

0.2

ao
a

0 5 10 15 20 25
time

4

6

8

th
ru

st
 (1

03)

0 5 10 15 20 25 30
time

0.15

0.20

0.25

0.30

ac
c

0 5 10 15 20 25
time

0.0

0.5

1.0
cl

0 5 10 15 20 25
time

0.00

0.05cd

Dymos simulation Verify

Figure 5. We verified results with Dymos package. The blue line represents the direct result of the
outputs from the Dymos optimization data by NASA, and the black dot line presents the results by
Chauhan and Martins [14] as verification data. The units for each y axis are given by the following:
power (W), theta (rad), y (m), energy (J), aoa (rad), thrust (N), acc (g), cl (-), cd (-).

3.1. MOGP Surrogate Modeling

We use 1000 random Latin hypercube sampling (LHS) points as training data for
MOGP surrogate modeling and 300 LHS testing samples to verify predictive performance.
Table 3 shows the mean testing accuracy for each design variable group using different
kernel and mean functions. The results show that the SE kernel function has better overall
predictive performance than the Matérn kernel. The SE-based MOGP predicts the tflight, P,
and θ at mean testing accuracies of 99.5%, 92.5%, and 94.7%, respectively. The prediction
difference between the constant and linear mean functions is negligible.

Table 3. MOGP model conditions and mean ± standard deviation of testing accuracy on testing data
set. SE stands for SE kernel function.

Model Kernel
Function

Mean
Function

ϵ̄L1 , tflight
(%) ϵ̄L1 , P (%) ϵ̄L1 , θ (%)

M1 SE Constant 99.6 ± 0.313 92.5 ± 2.93 94.7 ± 2.30
M2 SE Linear 99.5 ± 0.372 92.5 ± 2.89 94.7 ± 2.32
M3 Matérn Constant 96.7 ± 2.65 88.7 ± 4.85 94.6 ± 2.20
M4 Matérn Linear 96.7 ± 2.61 91.4 ± 2.73 94.6 ± 2.20

We chose an arbitrary case to further reveal the predictive performance of each MOGP
surrogate. Table 4 shows the design requirements for the visualization case. Table 5 shows
the testing accuracy on design variables for MOGP models 1–4. We compare the predicted
optimal trajectory profiles by MOGP models 1–4 in Figure 6, where all models achieve simi-
lar predictive accuracies. The testing accuracies, shown in Table 5, are all over 90%; however,
visualization exhibits obvious discrepancies between surrogate-based and simulation-based
optimal trajectories. The results indicate that MOGP surrogates intend to use higher power
early but not the maximum power. The early power usage results in higher thrust and
greater acceleration in the early takeoff phase by MOGP surrogates than by the simulation-
based optimal design. The acceleration by the surrogate-based optimal design in the early
phase even violates the maximum acceleration constraint. So, we conclude that the MOGP
cannot realize a sufficient accuracy level using 1000 training samples.

Mathematics 2024, 12, 26 18 of 25

Table 4. Design requirements for visualized case.

Design Requirements Values

Propeller-induced velocity factor, kin 87.75 (%)
Angle of attack constraint, αlim ±12.25833333 (deg)
Acceleration, amax 0.38766667 (g)
Electrical and mechanical loses factor, kelec 0.761
Wing size, Sref 0.9285

Table 5. Testing accuracy of visualized case for MOGP models 1–4.

Model ϵ̄L1 , tflight (%) ϵ̄L1 , P (%) ϵ̄L1 , θ (%)

M1 99.9 94.4 91.0
M2 99.8 94.7 91.0
M3 95.9 91.5 90.7
M4 95.7 94.3 90.5

0 5 10 15 20 25
time

2.6

2.8

3.0

po
we

r (
10

5)

0 5 10 15 20 25
time

0.5

1.0

1.5

th
et

a

0 200 400 600 800
x

0

200y

0 5 10 15 20 25
time

0.0

2.5

5.0

7.5

en
er

gy
 (1

06)

0 5 10 15 20 25
time

0.0

0.1

0.2

ao
a

0 5 10 15 20 25
time

5.0

7.5

10.0

th
ru

st
 (1

03)

0 5 10 15 20 25
time

0.2

0.4

0.6

ac
c

0 5 10 15 20 25
time

0.0

0.5

1.0

cl

0 5 10 15 20 25
time

0.02

0.04

0.06

cd

True value, Dymos SE, const SE, linear Matern, const Matern, linear

Figure 6. Optimized takeoff trajectory profile for MOGP models 1–4 verified against simulation-based
ground truth.

3.2. cGAN Surrogate Modeling

We implement one single-noise cGAN model and compare the predictive performance
of this model against the Dymos simulation-based optimal trajectory as well as the MOGP
predictions shown in Section 3.1. The model architecture and hyperparameter settings are
as mentioned in Section 2.5.3. Here, we train the model with MSE and BC loss functions
separately. To enable the regression feature with the cGAN, we take the mean value of
100 random noise inputs for each set of design requirements. Table 6 displays the mean
and standard deviation of the testing accuracy for cGAN models. The mean of both cGAN
models shows that the cGAN has an overall 98% accuracy. The low standard deviation
of the cGAN model represents the robustness of the cGAN model. Both BC-based and
MSE-based cGAN surrogates outperform the MOGP in terms of accuracy.

We compare and visualize an arbitrary set of predicted results among MSE-based
cGAN, BC-based cGAN, and MOGP surrogates using the same design requirements as
Table 4. Table 7 presents the testing accuracy of the cGAN models for the visualization case.
Figure 7 shows the optimal takeoff trajectory profiles for the cGAN models, with BC and
MSE having similar predictive accuracy. The results indicate that the cGAN outperforms
the MOGP’s predictive accuracy in this visualization case. Specifically, the cGAN captures
the general trend of ground truth well due to the predictive power of the DNN surrogate

Mathematics 2024, 12, 26 19 of 25

as well as the addition of the discriminator to drive prediction matching training data set
shapes. However, there are still some unexpected wiggles when we look at the acceleration
profile. In addition, the cGAN approximates ground truth based on an average of a number
of predictions (100 predictions in this work) over the same set of input parameters (design
requirements in this work), where the prediction may vary slightly due to Monte Carlo
properties. Hence, we develop and introduce the regGAN surrogate for further predictive
improvement as follows.

Table 6. cGAN models exhibit better predictive performance over MOGP in terms of mean ± standard
deviation in testing accuracy of design variables.

Model Loss Function ϵ̄L1 , tflight
(%) ϵ̄L1 , P (%) ϵ̄L1 , θ (%)

cGANBC BC 98.4 ± 0.858 99.0 ± 0.653 98.6 ± 0.424
cGANMSE MSE 98.3 ± 0.843 98.8 ± 0.745 98.7 ± 0.426

Table 7. Testing accuracy of visualized case for cGAN model BC and MSE.

Model Loss Function ϵ̄L1 , tflight (%) ϵ̄L1 , P (%) ϵ̄L1 , θ (%)

cGANBC BC 98.8 99.8 98.7
cGANMSE MSE 98.9 99.7 98.7

0 5 10 15 20 25
time

2.6

2.8

3.0

po
we

r (
10

5)

0 5 10 15 20 25
time

0.5

1.0

1.5

th
et

a

0 200 400 600 800
x

0

200y

0 5 10 15 20 25
time

0.0

2.5

5.0

7.5

en
er

gy
 (1

06)

0 5 10 15 20 25
time

0.0

0.1

0.2

ao
a

0 5 10 15 20 25
time

5.0

7.5

10.0

th
ru

st
 (1

03)

0 5 10 15 20 25
time

0.2

0.4

0.6

ac
c

0 5 10 15 20 25
time

0.0

0.5

1.0

cl

0 5 10 15 20 25
time

0.02

0.04

0.06

cd

True value, Dymos MOGP, Model 2 cGAN, Model BC cGAN, Model MSE

Figure 7. Optimal takeoff trajectory profile comparison on cGAN model BC and MSE and MOGP
model 2 with simulation-based ground truth.

3.3. regGAN Surrogate Modeling

The predictive performance of the regGAN surrogates is compared against Dymos
simulation-based optimal trajectory predictions as well as MOGP and cGAN surrogates.
The same 1000 training samples and 300 testing samples are used for regGAN model
training and verification, respectively. The architecture and the hyperparameters are
introduced in Section 2.5.3. We first focus on the regGAN surrogate with a single MSE loss
function by setting a zero weight on BC in the combined loss (CL1) (Table 8). The table
shows that the regGAN CL1 model reaches 99.5% accuracy with robust predicted results,
which can be recognized by the low standard deviation of testing accuracy. To further
compare results, we implement regGAN on the same visualization case in Table 4. Table 9
shows that the regGAN has a mean testing accuracy of over 99.5% in the visualization case.
Figure 8 shows that the optimal takeoff trajectory profiles predicted by regGAN match
Dymos results closer than the cGAN model BC and MSE and MOGP model 2, as expected.

Mathematics 2024, 12, 26 20 of 25

Table 8. Mean ± standard deviation of testing accuracy for regGAN model CL1.

Model wMSE wBC
ϵ̄L1 , tflight

(%) ϵ̄L1 , P (%) ϵ̄L1 , θ (%)

CL1 1 0 99.5 ± 0.246 99.7 ± 0.196 99.7 ± 0.117

Table 9. Testing accuracy of visualization case for regGAN model BC and MSE.

Model wMSE wBC
ϵ̄L1 , tflight

(%) ϵ̄L1 , P (%) ϵ̄L1 , θ (%)

CL1 1 0 99.4 99.8 99.8

0 5 10 15 20 25
time

2.6

2.8

3.0

po
we

r (
10

5)

0 5 10 15 20 25
time

0.5

1.0

1.5

th
et

a

0 200 400 600 800
x

0

200y

0 5 10 15 20 25
time

0.0

2.5

5.0

7.5

en
er

gy
 (1

06)

0 5 10 15 20 25
time

0.0

0.1

0.2

ao
a

0 5 10 15 20 25
time

5.0

7.5

10.0

th
ru

st
 (1

03)

0 5 10 15 20 25
time

0.2

0.4

0.6

ac
c

0 5 10 15 20 25
time

0.0

0.5

1.0

cl

0 5 10 15 20 25
time

0.02

0.04

0.06

cd

True value, Dymos MOGP, Model 2 cGAN, Model BC cGAN, Model MSE regGAN, Model CL1

Figure 8. Optimal takeoff trajectory profile for regGAN model CL1 matches the ground truth and
outperforms cGAN models BC and MSE and MOGP model 2.

To investigate the regGAN surrogate’s performance, we utilized a combination of
two loss functions during the model training. Table 10 shows the loss weights together
with the mean and standard deviation of testing accuracy for each regGAN model. The
results indicate that all regGAN CL models have over 99.6% mean testing accuracy and
high predictive robustness, as revealed by the low standard deviations. Table 11 shows that
the testing accuracy by regGAN models CL2–4 on the visualization case agrees well with
the corresponding mean testing accuracy. Figure 9 shows that all predicted trajectories by
regGAN models CL2–4 match the reference profiles, meaning that an accuracy of 99.6% is
reliable in lieu of simulation models. regGAN models CL2–4 slightly outperform regGAN
model CL1, but the matches towards reference profiles are at a comparable level.

Table 10. regGAN model conditions and mean ± standard deviation of testing accuracy for design
variables.

Model wMSE wBC
ϵ̄L1 , tflight

(%) ϵ̄L1 , P (%) ϵ̄L1 , θ (%)

CL2 1 0.01 99.7 ± 2.388 99.7 ± 0.118 99.7 ± 0.123
CL3 1 0.001 99.7 ± 0.193 99.7 ± 0.160 99.7 ± 0.124
CL4 1 0.0001 99.6 ± 0.216 99.7 ± 0.145 99.7 ± 0.128

Mathematics 2024, 12, 26 21 of 25

Table 11. Testing accuracy for visualization case of regGAN model CL2–4.

Model wMSE wBC
ϵ̄L1 , tflight

(%) ϵ̄L1 , P (%) ϵ̄L1 , θ (%)

CL2 1 0.01 99.6 99.9 99.8
CL3 1 0.001 99.9 99.8 99.8
CL4 1 0.0001 99.9 99.9 99.5

0 5 10 15 20 25
time

2.6

2.8

3.0

po
we

r (
10

5)

0 5 10 15 20 25
time

0.5

1.0

1.5

th
et

a

0 100 200 300 400 500 600 700 800
x

0

100

200

300

y

0 5 10 15 20 25
time

0.0

2.5

5.0

7.5

en
er

gy
 (1

06)

0 5 10 15 20 25
time

0.0

0.1

0.2

ao
a

0 5 10 15 20 25
time

4

6

8

th
ru

st
 (1

03)

0 5 10 15 20 25
time

0.1

0.2

0.3

0.4

ac
c

0 5 10 15 20 25
time

0.0

0.5

1.0

cl

0 5 10 15 20 25
time

0.02

0.04

0.06

cd
True value, Dymos regGAN, Model CL1 regGAN, Model CL2 regGAN, Model CL3 regGAN, Model CL4

Figure 9. Optimal takeoff trajectory profiles predicted by regGAN models CL1–4 match well with
simulation-based ground truth.

We also conducted a parametric study for different combined loss weights to further
investigate regGAN performance. We use a different number of training samples, ranging
from 50, 100, 200, 400, 600, 800, to 1000. Table 12 indicates that using 100 and 200 training
samples is able to obtain the above with an overall 97% accuracy. Note that when provided
with 50 training samples, CL1 has the lowest mean testing accuracy and highest standard
deviation time tflight prediction, while CL2, CL3, and CL4 have better overall predictive
performance. Moreover, regGAN model CL2 (wMSE = 1 and wBC = 0.01) achieves over
99.5% accuracy starting with 400 training samples, while all the other regGAN surrogates
require at least 800 training samples. In addition, regGAN model CL2 consistently shows
lower predictive standard deviations (such as 0.251%, 0.257%, and 0.145% on tflight, P,
and θ) on the testing data set, further confirming a better and more robust predictive
performance. Based on the visualization case, a mean testing accuracy of over 99.5% can be
considered sufficiently accurate with negligible differences.

In sum, the MOGP surrogates could not match ground truths or capture the general
trend of optimal takeoff trajectories well using 1000 training samples, which may be due
to the Gaussian assumption of GP series models. The cGAN surrogates achieve better
performance over MOGP using the 1000 training samples, with a closer match towards the
general trend of ground truth labels, mainly because of the guidance of the discriminator
for generating similar data patterns as the training data set. The regGAN surrogates
outperform MOGP and cGAN since regGAN is trained with a combined loss function of
MSE and BC adversarial losses. The BC adversarial loss leads regGAN to handle the general
trend of observations, while the MSE loss directly drives the match between predictions
and observations.

Mathematics 2024, 12, 26 22 of 25

Table 12. Parametric study for regGAN models exhibits deeper insights on mean ± standard
deviation of testing accuracy with respect to the number of training samples for each design variable
group. Note that we only vary wBC while keeping wMSE as 1.

Model wBC Samples ϵ̄L1 , tflight (%) ϵ̄L1 , P (%) ϵ̄L1 , θ (%)

CL1 0 50 95.2 ± 0.279 97.4 ± 1.58 98.3 ± 0.758
100 98.6 ± 0.906 98.5 ± 1.05 98.9 ± 0.414
200 99.3 ± 0.368 99.2 ± 0.461 99.4 ± 0.212
400 99.5 ± 0.314 99.5 ± 0.389 99.6 ± 0.167
600 99.2 ± 0.477 99.4 ± 0.294 99.6 ± 0.148
800 99.7 ± 0.281 99.7 ± 0.146 99.7 ± 0.119
1000 99.5 ± 0.246 99.7 ± 0.196 99.7 ± 0.117

CL2 0.01 50 97.4 ± 1.51 97.7 ± 0.852 97.6 ± 0.955
100 97.4 ± 0.732 98.6 ± 0.829 98.9 ± 0.434
200 99.3 ± 0.443 97.8 ± 0.980 98.9 ± 0.427
400 99.6 ± 0.251 99.6 ± 0.257 99.6 ± 0.145
600 99.6 ± 0.204 99.7 ± 0.215 99.6 ± 0.153
800 99.5 ± 0.314 99.7 ± 0.158 99.6 ± 0.147
1000 99.7 ± 0.239 99.7 ± 0.118 99.7 ± 0.123

CL3 0.001 50 95.3 ± 2.77 97.7 ± 1.29 98.0 ± 0.759
100 97.2 ± 1.72 96.4 ± 2.08 96.6 ± 1.31
200 99.3 ± 0.380 99.0 ± 0.557 99.1 ± 0.308
400 99.6 ± 0.343 99.4 ± 0.378 99.4 ± 0.230
600 99.7 ± 0.228 98.9 ± 0.767 99.4 ± 0.239
800 99.5 ± 0.228 99.7 ± 0.194 99.7 ± 0.127
1000 99.7 ± 0.193 99.7 ± 0.160 99.7 ± 0.124

CL4 0.0001 50 97.1 ± 1.64 98.5 ± 1.11 96.4 ± 1.78
100 98.5 ± 0.757 98.9 ± 0.648 97.7 ± 0.847
200 99.2 ± 0.384 98.8 ± 0.706 98.9 ± 0.494
400 99.4 ± 0.346 99.4 ± 0.358 99.3 ± 0.249
600 99.2 ± 0.611 99.3 ± 0.509 99.4 ± 0.195
800 99.6 ± 0.287 99.5 ± 0.363 99.5 ± 0.182
1000 99.6 ± 0.216 99.7 ± 0.145 99.7 ± 0.128

4. Conclusions

In this paper, we investigated surrogate-based optimal takeoff trajectory predictions
for electric vertical takeoff and landing (eVTOL) drones within the scope of urban air
mobility. We developed the regression generative adversarial network (regGAN), which
outperformed the Gaussian process (MOGP) and the conditional generative adversarial
network (cGAN) by achieving over 99.5% accuracy. We summarize the main contribution
of this work as follows.

First, we implemented the surrogate-based inverse mapping concept into eVTOL
optimal trajectory design for the first time. Specifically, surrogate models took design
requirements as input and predicted optimal trajectories. We realized fast interactive eVTOL
takeoff trajectory design without running any optimizations since the trained surrogates
directly predicted optimal trajectories. However, reducing training costs is essential since
each training sample requires a simulation-based trajectory design optimization.

Second, we introduced the MOGP, a representative traditional surrogate model, into
the eVTOL takeoff trajectory design for rapid predictions. The results showed that the
MOGP with a square exponential kernel function could accurately capture the inverse
mapping using 1000 training samples. We then implemented a cGAN for eVTOL inverse
mapping since cGAN also makes use of the GAN architecture for regression tasks. The
results revealed that the cGAN achieved over 98% generalization accuracy in predicting
optimal designs using the same 1000 training samples as the MOGP, which means the
cGAN outperformed the MOGP on predictive performance (around 92% accuracy). In
addition, the visualization case verified that the cGAN could match the general trend of
optimal designs well with actual observations from Dymos but missed detailed features.

Mathematics 2024, 12, 26 23 of 25

Third, we introduced the regGAN into takeoff trajectory design for the first time
and achieved over 99.6% accuracy in predicting optimal design variables with the same
1000 training samples as the MOGP and cGAN. By varying the weights of different loss
functions, the regGAN could achieve over 99.6% accuracy. Moreover, results indicated
that the best regGAN surrogate architecture consistently achieved over 99.5% accuracy
if provided with 400 or more random training samples. This confirmed the outstanding
predictive performance and potential generality of the regGAN.

In future work, we are planning to explore and develop other novel deep learning
architectures in regGAN. In addition, the simulation models used in this work are not
high-fidelity models but effective for describing the physics; we will increase the fidelity of
simulation models in future work, which may lead to a higher training cost for surrogate
modeling. Moreover, we will consider takeoff time as another constraint to make sure the
total takeoff will not take unreasonable time.

Author Contributions: Conceptualization, X.D.; methodology, X.D.; software, S.-T.Y.; validation,
S.-T.Y.; investigation, S.-T.Y.; resources, X.D.; data curation, S.-T.Y.; writing—original draft prepa-
ration, S.-T.Y.; writing—review and editing, X.D.; visualization, S.-T.Y.; supervision, X.D.; project
administration, X.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available because the authors currently have
continuous research to conduct on these data.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wikipedia. EHang. 2023. Available online: https://en.wikipedia.org/wiki/EHang (accessed on 27 June 2023).
2. Wisk Aero LLC. Advanced Air Mobility Presents Opportunity to Bring Economic, Social, and Environmental Benefits to South

East Queensland. Tech. Rep. 2023. Available online: https://wisk.aero/news/press-release/advanced-air-mobility-presents-op
portunity-to-bring-economic-social-and-environmental-benefits-to-south-east-queensland/ (accessed on 15 January 2022).

3. Johnson, W.; Silva, C.; Solis, E. Concept Vehicles for VTOL Air Taxi Operations. In Proceedings of the AHS Technical Conference
on Aeromechanics Design for Transformative Vertical Flight, San Francisco, CA, USA, 16–18 January 2018.

4. Bacchini, A.; Cestino, E. Electric VTOL Configurations Comparison. Aerospace 2019, 6, 26. [CrossRef]
5. Na, Z.; Liu, Y.; Shi, J.; Liu, C.; Gao, Z. UAV-Supported Clustered NOMA for 6G-Enabled Internet of Things: Trajectory Planning

and Resource Allocation. IEEE Internet Things J. 2021, 8, 15041–15048. [CrossRef]
6. Hua, B.; Ni, H.; Zhu, Q.; Wang, C.-X.; Zhou, T.; Mao, K.; Bao, J.; Zhang, X. Channel Modeling for UAV-to-Ground Communications

With Posture Variation and Fuselage Scattering Effect. IEEE Trans. Commun. 2023, 71, 3103–3116. [CrossRef]
7. Boelens, J.-H. Pioneering the Urban Air Taxi Revolution. Tech. Rep. 2019. Available online: https://www.volocopter.com/urban

-air-mobility/ (accessed on 15 January 2022).
8. Electric VTOL News. Joby Aviation S4 2.0 (prototype). 2023 Available online: https://evtol.news/joby-s4 (accessed on 27

June 2023).
9. Electric VTOL News. Aurora Flight Sciences Pegasus PAV. 2019. Available online: https://evtol.news/aurora/ (accessed on 27

June 2023).
10. Wikipedia. Airbus A³ Vahana. 2022. Available online: https://en.wikipedia.org/wiki/Airbus_A%C2%B3_Vahana (accessed on

27 June 2023).
11. Yeh, S.-T.; Yan, G.; Du, X. Inverse Machine Learning Prediction for Optimal Tilt-Wing eVTOL Takeoff Trajectory. Aiaa Aviat. 2023

Forum 2023, 2023, 3593. [CrossRef]
12. Pradeep, P.; Wei, P. Energy Optimal Speed Profile for Arrival of Tandem Tilt-Wing eVTOL Aircraft with RTA Constraint. In

Proceedings of the IEEE/CSAA Guidance, Navigation and Control Conference (GNCC), Xiamen, China, 10–12 August 2018.
13. Pradeep, P.; Wei, P. Energy Efficient Arrival with RTA Constraint for Urban eVTOL Operations. In Proceedings of the 2018 AIAA

Aerospace Sciences Meeting, Kissimmee, FL, USA, 8–12 January 2018.
14. Chauhan, S.S.; Martins, J.R.R.A. Tilt-wing eVTOL takeoff trajectory optimization. J. Aircr. 2020, 57, 93–112. [CrossRef]
15. Li, J.; Du, X.; Martins, J.R. Machine learning in aerodynamic shape optimization. Prog. Aerosp. Sci. 2022, 134, 100849. [CrossRef]
16. Koziel, S.; Leifsson, L. Surrogate-Based Aerodynamic Shape Optimization by Variable-Resolution Models. AIAA J. 2013, 51,

94–106. [CrossRef]

https://en.wikipedia.org/wiki/EHang
https://wisk.aero/news/press-release/advanced-air-mobility-presents-opportunity-to-bring-economic-social-and-environmental-benefits-to-south-east-queensland/
https://wisk.aero/news/press-release/advanced-air-mobility-presents-opportunity-to-bring-economic-social-and-environmental-benefits-to-south-east-queensland/
http://doi.org/10.3390/aerospace6030026
http://dx.doi.org/10.1109/JIOT.2020.3004432
http://dx.doi.org/10.1109/TCOMM.2023.3255900
https://www.volocopter.com/urban-air-mobility/
https://www.volocopter.com/urban-air-mobility/
https://evtol.news/joby-s4
https://evtol.news/aurora/
https://en.wikipedia.org/wiki/Airbus_A%C2%B3_Vahana
http://dx.doi.org/10.2514/6.2023-3593
http://dx.doi.org/10.2514/1.C035476
http://dx.doi.org/10.1016/j.paerosci.2022.100849
http://dx.doi.org/10.2514/1.J051583

Mathematics 2024, 12, 26 24 of 25

17. Nagawkar, J.; Leifsson, L. Applications of Polynomial Chaos-Based Cokriging to Simulation-Based Analysis and Design Under
Uncertainty. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Online, 17–19 August 2020.

18. Lobo do Vale, J.; Sohst, M.; Crawford, C.; Suleman, A.; Potter, G.; Banerjee, S. On the multi-fidelity approach in surrogate-based
multidisciplinary design optimisation of high-aspect-ratio wing aircraft. Aeronaut. J. 2023, 127, 2–23. [CrossRef]

19. Iuliano, E.; Quagliarella, D. Aerodynamic shape optimization via non-intrusive POD-based surrogate modelling. In Proceedings
of the 2013 IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1467–1474. [CrossRef]

20. Li, S.; Trevelyan, J.; Wu, Z.; Lian, H.; Wang, D.; Zhang, W. An adaptive SVD–Krylov reduced order model for surrogate based
structural shape optimization through isogeometric boundary element method. Comput. Methods Appl. Mech. Eng. 2019, 349,
312–338. [CrossRef]

21. Singh, P.; Couckuyt, I.; Ferranti, F.; Dhaene, T. A constrained multi-objective surrogate-based optimization algorithm. In
Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 3080–3087.
[CrossRef]

22. Shen, Y.; Huang, W.; Yan, L.; Zhang, T.-T. Constraint-based parameterization using FFD and multi-objective design optimization
of a hypersonic vehicle. Aerosp. Sci. Technol. 2020, 100, 105788. [CrossRef]

23. Li, M.; Wang, Z. Surrogate model uncertainty quantification for reliability-based design optimization. Reliab. Eng. System Saf.
2019, 192, 106432. [CrossRef]

24. Du, X.; Leifsson, L.; Koziel, S.; Bekasiewicz, A. Airfoil Design Under Uncertainty Using Non-Intrusive Polynomial Chaos Theory
and Utility Functions. Procedia Comput. Sci. 2017, 108, 1493–1499. [CrossRef]

25. Shao, J.; Shi, L.; Cheng, Y.; Li, T. Asynchronous Tracking Control of Leader–Follower Multiagent Systems With Input Uncertainties
Over Switching Signed Digraphs. IEEE Trans. Cybern. 2022, 52, 6379–6390. [CrossRef] [PubMed]

26. Li, W.; Qin, K.; Li, G.; Shi, M.; Zhang, X. Robust bipartite tracking consensus of multi-agent systems via neural network combined
with extended high-gain observer. ISA Trans. 2023, 136, 31–45. [CrossRef] [PubMed]

27. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; Adaptive Computation and Machine Learning; MIT
Press: Cambridge, MA, USA, 2006.

28. Liu, M.; Chowdhary, G.; Castra da Silva, B.; Liu, S.-Y.; How, J.P. Gaussian Processes for Learning and Control: A Tutorial with
Examples. IEEE Control Syst. Mag. 2018, 38, 53–86. [CrossRef]

29. Ver Hoef, J.M.; Barry, R.P. Constructing and fitting models for cokriging and multivariable spatial prediction. J. Stat. Plan. Inference
1998, 69, 275–294. [CrossRef]

30. Chiles, J.-P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 713.
31. Thelen, A.S.; Bryson, D.E.; Stanford, B.K.; Beran, P.S. Multi-Fidelity Gradient-Based Optimization for High-Dimensional Aeroelas-

tic Configurations. Algorithms 2022, 15, 131. [CrossRef]
32. Tao, J.; Sun, G. Application of Deep Learning Based Multi-Fidelity Surrogate Model to Robust Aerodynamic Design Optimization.

Aerosp. Sci. Technol. 2019, 92, 722–737. [CrossRef]
33. Renganathan, S.A.; Maulik, R.; Ahuja, J. Enhanced data efficiency using deep neural networks and Gaussian processes for

aerodynamic design optimization. Aerosp. Sci. Technol. 2021, 111, 106522. [CrossRef]
34. O’Leary-Roseberry, T.; Du, X.; Chaudhuri, A.; Martins, J. R.; Willcox, K.; Ghattas, O. Learning high-dimensional parametric maps

via reduced basis adaptive residual networks. Comput. Methods Appl. Mech. Eng. 2022, 402, 115730. [CrossRef]
35. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. In Advances in Neural Information Processing Systems 27; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,
K.Q., Eds.; MIT Press: Cambridge, MA, USA, 2014; pp. 2672–2680.

36. Chen, W.; Chiu, K.; Fuge, M.D. Airfoil design parameterization and optimization using bézier generative adversarial networks.
AIAA J. 2020, 58, 4723–4735. [CrossRef]

37. Du, X.; He, P.; Martins, J.R.R.A. A B-Spline-based Generative Adversarial Network Model for Fast Interactive Airfoil Aerodynamic
Optimization. In AIAA SciTech Forum; AIAA: Orlando, FL, USA, 2020. [CrossRef]

38. Du, X.; Martins, J.R. Super Resolution Generative Adversarial Networks for Multi-Fidelity Pressure Distribution Prediction. In
AIAA SCITECH 2023 Forum; AIAA: Orlando, FL, USA, 2023; p. 0533.

39. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. 2014.
40. Aggarwal, K.; Kirchmeyer, M.; Yadav, P.; Keerthi, S.S.; Gallinari, P. Regression with conditional gan. arXiv 2019,

arXiv:1905.12868v1.
41. Ye, K.; Wang, Z.; Chen, P.; Piao, Y.; Zhang, K.; Wang, S.; Jiang, X.; Cui, X. A novel GAN-based regression model for predicting

frying oil deterioration. Sci. Rep. 2022, 12, 10424. [CrossRef]
42. Falck, R.; Gray, J.S.; Ponnapalli, K.; Wright, T. dymos: A Python package for optimal control of multidisciplinary systems. J. Open

Source Softw. 2021, 6, 2809. [CrossRef]
43. Gray, J.S.; Hwang, J.T.; Martins, J.R.R.A.; Moore, K.T.; Naylor, B.A. OpenMDAO: An open-source framework for multidisciplinary

design, analysis, and optimization. Struct. Multidiscip. 2019, 59, 1075–1104. [CrossRef]
44. de Wolff, T. Cuevas, A.; Tobar, F. MOGPTK: The Multi-Output Gaussian Process Toolkit. Neurocomputing 2020, 424, 49–53.

[CrossRef]

http://dx.doi.org/10.1017/aer.2022.49
http://dx.doi.org/10.1109/CEC.2013.6557736
http://dx.doi.org/10.1016/j.cma.2019.02.023
http://dx.doi.org/10.1109/CEC.2014.6900581
http://dx.doi.org/10.1016/j.ast.2020.105788
http://dx.doi.org/10.1016/j.ress.2019.03.039
http://dx.doi.org/10.1016/j.procs.2017.05.079
http://dx.doi.org/10.1109/TCYB.2020.3044627
http://www.ncbi.nlm.nih.gov/pubmed/33476279
http://dx.doi.org/10.1016/j.isatra.2022.10.015
http://www.ncbi.nlm.nih.gov/pubmed/36344356
http://dx.doi.org/10.1109/MCS.2018.2851010
http://dx.doi.org/10.1016/S0378-3758(97)00162-6
http://dx.doi.org/10.3390/a15040131
http://dx.doi.org/10.1016/j.ast.2019.07.002
http://dx.doi.org/10.1016/j.ast.2021.106522
http://dx.doi.org/10.1016/j.cma.2022.115730
http://dx.doi.org/10.2514/1.J059317
http://dx.doi.org/10.2514/6.2020-2128
http://dx.doi.org/10.1038/s41598-022-13762-5
http://dx.doi.org/10.21105/joss.02809
http://dx.doi.org/10.1007/s00158-019-02211-z
http://dx.doi.org/10.1016/j.neucom.2020.09.085

Mathematics 2024, 12, 26 25 of 25

45. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467.

46. Paris, S.; Riehl, J.; Sjauw, W. Enhanced procedures for direct trajectory optimization using nonlinear programming and implicit
integration. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, CO, USA, 21–24
August 2006; p. 6309.

47. Hargraves, C.R.; Paris, S.W. Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Dyn. 1987, 10,
338–342. [CrossRef]

48. Schubert, G.R. Algorithm 211: Hermite Interpolation. Commun. ACM 1963, 6, 617. [CrossRef]
49. Tangler, J.L.; Ostowari, C. Horizontal axis wind turbine post stall airfoil characteristics synthesization. In Proceedings of the

DOE/NASA Wind Turbine Technology Workshop, Cleveland, OH, USA, 8–10 May 1984.
50. Glauert, H. Airplane propellers. Aerodyn. Theory 1935, 169–360. [CrossRef]
51. Ypma, T.J. Historical development of the Newton–Raphson method. SIAM Rev. 1995, 37, 531–551. [CrossRef]
52. McCormick, B.W. Aerodynamics of V/STOL Flight, 1st ed.; Academic Press: Cambridge, MA, USA, 1967.
53. Leishman, J.G. Principles of Helicopter Aerodynamics, 1st ed.; The Press Syndicate of the University of Cambridge: New York, NY,

USA, 2000.
54. Biswas, B.; Chatterjee, S.; Mukherjee, S.; Pal, S. A discussion on Euler method: A review. Electron. J. Math. Anal. Appl. 2013, 1,

2090–2792.
55. Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions.

J. Math. Psychol. 2018, 85, 1–16. [CrossRef]
56. Parra, G.; Tobar, F. Spectral Mixture Kernels for Multi-Output Gaussian Processes. In Advances in Neural Information Processing

Systems; Guyon, I., Luxburg, U.V.,Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.:
Red Hook, NY, USA, 2017; Volume 30. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/333cb763
facc6ce398ff83845f224d62-Paper.pdf (accessed on 10 January 2022).

57. de G. Matthews, A.G.; van der Wilk, M.; Nickson, T.; Fujii, K.; Boukouvalas, A.; León-Villagrá, P.; Ghahramani, Z.; Hensman, J.
GPflow: A Gaussian Process Library using TensorFlow. J. Mach. Learn. 2017, 18, 1–6.

58. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
59. Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375.
60. Han, J.; Moraga, C. The influence of the sigmoid function parameters on the speed of backpropagation learning. In International

Workshop on Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 1995; pp. 195–201.
61. Allen, D.M. Mean square error of prediction as a criterion for selecting variables. Technometrics 1971, 13, 469–475. [CrossRef]
62. Ho, Y.; Wookey, S. The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling. IEEE Access 2019, 8,

4806–4813. [CrossRef]
63. Qian, N. On the Momentum Term in Gradient Descent Learning Algorithms. Neural Netw. 1999, 12, 145–151. [CrossRef] [PubMed]
64. Tieleman, S.; Hinton, G. Lecture 6.5—RMSProp: Neural Networks for Machine Learning. Coursera Tech. Rep. 2012, 6. Available

online: https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf (accessed on 10 June 2022).
65. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2514/3.20223
http://dx.doi.org/10.1145/367651.367666
http://dx.doi.org/10.1007/978-3-642-91487-43
http://dx.doi.org/10.1137/1037125
http://dx.doi.org/10.1016/j.jmp.2018.03.001
https://proceedings.neurips.cc/paper_files/paper/2017/file/333cb763facc6ce398ff83845f224d62-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/333cb763facc6ce398ff83845f224d62-Paper.pdf
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1080/00401706.1971.10488811
http://dx.doi.org/10.1109/ACCESS.2019.2962617
http://dx.doi.org/10.1016/S0893-6080(98)00116-6
http://www.ncbi.nlm.nih.gov/pubmed/12662723
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

	Introduction
	Methodology
	Dymos Framework
	Simulation Models
	Aerodynamics
	Propulsion
	Propeller–Wing Interaction
	Dynamics

	Multi-Output Gaussian Processes
	Deep Neural Networks
	DNN Model Setup
	Adam Optimizer

	Generative Adversarial Network Models
	Generative Adversarial Networks
	Conditional Generative Adversarial Networks
	Regression Generative Adversarial Networks

	Verification Metric

	Results and Discussion
	MOGP Surrogate Modeling
	cGAN Surrogate Modeling
	regGAN Surrogate Modeling

	Conclusions
	References

