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Abstract: In this paper, we introduce the concepts of Harary Laplacian-energy-like for a simple
undirected and connected graph G with order n. We also establish novel matrix results in this regard.
Furthermore, by employing matrix order reduction techniques, we derive upper and lower bounds
utilizing existing graph invariants and vertex connectivity. Finally, we characterize the graphs that
achieve the aforementioned bounds by considering the generalized join operation of graphs.
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1. Introduction and Preliminaries

Throughout the paper, let G = (V, E) be a connected simple undirected graph with
vertex set V and edge set E. The order of a graph is the cardinality of its vertex set, |V|,
the size of a graph is the cardinality of its edge set, |E|, and A(G) is the adjacency matrix
associated with the graph G of order n with eigenvalues λi(A(G)), for all i = 1, . . . , n.

The energy of a graph is a concept that comes from theoretical chemistry and is studied
in mathematical chemistry to approximate the total π-electron energy of a molecule [1–3].
In 1978, Ivan Gutman defined the energy of a graph through the eigenvalues of the adja-
cency matrix of a graph [4] as

E(G) =
n

∑
i=1

|λi(A(G))|.

It should be noted that the interest for this graph invariant goes far beyond chem-
istry; for example, it is used for minimum and maximum energy for certain families of
graphs [5–7], on upper and lower bounds for the energy of graphs [8–11], and the extension
of energy to the Laplacian energy of graphs [12]. Additionally, in [13], the authors list
various papers published in 2019 on graph energies, and summarize their main collective
characteristics, but an interesting motivation is that the authors cite articles that show
applications of graph energy outside the field of mathematics. For example, in [14], a topic
related to climate change is addressed; the authors identify the vertices of a graph with the
terms “soil”, “climate”, “hydrogeomorphic features”, “biotic features”, and similar, con-
nected by directed or undirected edges, and, in this case, the respective energy “indicates
the overall strength of positive and negative feedbacks present”.

In 2008, Liu and Liu defined the Laplacian-energy-like of a graph [15] as

LEL(G) =
n

∑
i=1

√
µi
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where µ1(G) ≥ µ2(G) ≥ . . . ≥ µn(G) = 0 are the Laplacian eigenvalues of G.
The authors in [15] have shown that this invariant has similar features to molecular

graph energy, see [4]. In [16], it was demonstrated that LEL can be used both in graph
discriminating analysis and in correlating studies for modeling a variety of physical and
chemical properties and biological activities. This motivates us to extend the results of LEL
by considering other matrices associated with graphs that can be representations of various
physical or chemical phenomena.

The distance between the vertices vi and vj of G, denoted by d
(
vi, vj

)
= di,j, is equal

to the length of (number of edges in) the shortest path that connects vi and vj. The Harary
matrix of graph G, which is also called the reciprocal distance matrix, and is denoted by
RD(G), was defined in 1993, independently in [17,18], as a matrix of order n, given by

RD(G)i,j =

{
1

d(vi ,vj)
if i ̸= j

0 if i = j.

Henceforth, we consider i ̸= j for d
(
vi, vj

)
.

The reciprocal distance degree of a vertex v, denoted by RT(v), is given by

RT(v) = ∑
u∈V(G)

u ̸=v

1
d(u, v)

.

Let RT(G) be the diagonal Harary degree matrix of order n defined by RTi,i = RTi =
RT(vi) for i = 1, . . . , n.

The Harary index of a graph G, denoted by H(G), is defined in [17,18] as

H(G) =
1
2

n

∑
i=1

n

∑
j=1

RD(G)i,j =
1
2 ∑

u,v∈V(G)
u ̸=v

1
d(u, v)

.

Clearly,

H(G) =
1
2 ∑

v∈V(G)

RT(v).

In 2018, the authors defined the reciprocal distance Laplacian matrix [19] as

RL(G) = RT(G)− RD(G).

Since RL(G) is a real symmetric matrix, we can write its eigenvalues in decreasing
order

λ1(RL(G)) ≥ λ2(RL(G)) ≥ . . . ≥ λn−1(RL(G)) ≥ λn(RL(G)).

We observe that RL(G) is a positive semi-definite matrix. The following result is
fundamental in matrix theory, and will help us to show that the smallest eigenvalue of
RL(G) is simple, i.e., their algebraic multiplicity is one.

Theorem 1 ([3] Eigenvalue Interlacing Theorem). Let A be the symmetric matrix of order n.
Let B be a principal sub-matrix of order m, obtained by deleting both i-th row and i-th column of
A, for some values of i. Suppose A has eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and B has eigenvalues
β1 ≥ β2 ≥ . . . ≥ βm. Then

λn−m+k ≤ βk ≤ λk,

for k = 1, 2, . . . , m.

A fundamental spectral result of the Laplacian matrix associated with a graph is that
its smallest eigenvalue is zero. The following result shows that for the extension RL(G),
zero is also an eigenvalue.
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Lemma 1. Let G be a connected graph on n vertices and let e be the all one vector. Then, (0, e) is
an eigenpair of RL(G) and 0 is a simple eigenvalue.

Proof. Clearly, each row sum of RL(G) is 0. Thus, (0, e) is an eigenpair of RL(G). Now,
we show that 0 has multiplicity equal to 1.

If n = 1, the result is immediate.
If n ≥ 2, then let RLi be the (n − 1)× (n − 1) matrix obtained from RL(G) by elimi-

nating the i-th row and column. Using Theorem 1, we have that

λn(RL(G)) ≤ λn−1(RLi) ≤ λn−1(RL(G)).

On the other hand, by construction, we can see that the matrix RLi is strictly diagonal
dominant, so RLi is a positive definite matrix. Therefore, λn−1(RL(G)) > 0.

In [20], the authors established bounds for the spectral radius of reciprocal distance
Laplacian matrix, and in [21] gave bounds on the reciprocal distance Laplacian energy and
characterized the graphs that attained some of those bounds.

Since RL(G) is a positive semi-definite matrix, then the spectral radius ρ(RL(G)) =
λ1(RL(G)).

We recall that the notation λ[p] means that the eigenvalue λ has an algebraic multiplic-
ity equal to p.

Remark 1. We can see that for the complete graph Kn, RL(Kn) = (n − 1)In − (Jn − In), where
Jn is a matrix with all its entries equal to one and In denotes the identity matrix of order n. Then,
the RL(Kn)-spectrum is {0, n[n−1]}.

Theorem 2 ([19]). If G is aconnected graph on n > 2 vertices, then the multiplicity of ρ(RL(G))
is p ≤ n − 1 with equality if and only if G is the complete graph.

Theorem 3 ([19]). Let G be a connected graph on n vertices and m ≥ n edges. Consider the
connected graph G̃ obtained from G by the deletion of an edge. Let

λ1(RL(G)), λ2(RL(G)), . . . , λn(RL(G))

and
λ1(RL(G̃)), λ2(RL(G̃)), . . . , λn(RL(G̃))

be the reciprocal distance Laplacian spectra of G and G̃, respectively. Then, for all i = 1, . . . , n,

λi(RL(G̃)) ≤ λi(RL(G)).

An immediate consequence of Theorem 3 is the following result.

Corollary 1. Let G be a connected graph on n vertices. Then

ρ(RL(G)) ≤ n.

At least to the authors’ knowledge, there are several upper bounds, but we only found
one lower bound, which is the below theorem

Theorem 4 ([20]). Let G be a connected graph on n ≥ 4 vertices. Then

ρ(RL(G)) ≥ 2H(G)− n(n − 2).

Clearly, when n increases, the bound is not adjusted, so in this work we will propose
a more appropriate bound. For this, it is necessary to remember the definition of the
Frobenius norm of a matrix.
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The Frobenius norm of an n × n matrix M = (mi,j) is

||M||F =

√√√√ n

∑
i=1

n

∑
j=1

|mi,j|2.

In particular,

||RL(G)||2F =
n

∑
i=1

(λi(RL(G))2.

Finally, we give the definition of the equitable quotient matrix and its respective
spectral result, which will be a fundamental tool in the development of this work.

Definition 1 ([22]). Let X be a complex matrix of order n described in the following block form

X =


X1,1 X1,2 . . . X1,r
X2,1 X2,2 . . . X2,r

...
...

. . .
...

Xr,1 Xr,2 . . . Xr,r


where the blocks Xi,j are ni × nj matrices for any 1 ≤ i, j ≤ r and n = n1 + n2 + · · · + nr.
For 1 ≤ i, j ≤ r, let bi,j denote the average row sum of Xi,j, i.e., bi,j is the sum of all entries in Xi,j
divided by the number of rows. Then B(X) = (bi,j) is called the quotient matrix of X. If for each
pair i, j, Xi,j has a constant row sum, then B(X) is called the equitable quotient matrix of X.

Theorem 5 ([23]). Let B(X) be the equitable quotient matrix of X as defined in Definition 1. Then,
the spectrum of B(X) is contained in the spectrum of X.

In this paper, applying the block division matrix technique and using the quotient
matrix, new spectral results are obtained from the reciprocal Laplacian matrix. Additionally,
we obtain the eigenvalues of certain graphs and in particular obtain eigenvalues of the
generalized join product of regular graphs. Finally, we apply these results to obtain
extreme graphs, among all the connected graphs of prescribed order in terms of the vertex
connectivity, for the energy that we define as Harary Laplacian-like energy, denoted by
HLEL(G) as

HLEL(G) =
n−1

∑
i=1

√
λi(RL(G)).

2. Main Spectral Results

In this section, we give some spectral results about the RL(G) matrix. In particular,
we give a new lower bound for the spectral radius and we characterize the spectrum of
certain types of graphs. Our result is more appropriate than the one given by Theorem 4,
since for any value of n it is positive and we also characterize when this bound is obtained.

Theorem 6. Let G be a connected graph on n ≥ 2 vertices. Then

ρ(RL(G)) ≥
||RL(G)||2F

2H(G)
.

The equality holds if and only if G = Kn.

Proof. Since G is a connected graph of order n ≥ 2, then, from Lemma 1, for i = 1, . . . , n− 1

λi(RL(G)) > 0
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and
ρ(RL(G))λi(RL(G)) ≥ (λi(RL(G)))2.

Thus

ρ(RL(G))

(
n−1

∑
i=1

λi(RL(G))

)
≥ λ1(RL(G))2 + . . . + λn−1(RL(G))2. (1)

Therefore

ρ(RL(G)) ≥
||RL(G)||2F

2H(G)
.

The equality holds if and only if the equality (1) holds, and this is

ρ(RL(G)) = λ2(RL(G)) = . . . = λn−1(RL(G)).

Therefore, the multiplicity of ρ(RL(G)) is n − 1. Using Theorem 2, we conclude that
G = Kn.

A pair of vertices u and v in G are called twins if they have the same neighborhood,
and the same edge weights in the case of a weighted graph. Twin vertices in graphs have
proven very useful in the study of the spectra. Motivated by the study of eigenvalues of
the adjacency and Laplacian matrices when there are twin vertices in a graph, we study the
eigenvalues for the matrix RL(G).

If uv is an edge in G, they are called adjacent twins, and if uv is not an edge in G, they
are called non-adjacent twins.

Theorem 7. Let G be a connected graph of order n and U be a subset of V(G) such that U is a set
of non-adjacent twins, with |U| = t. Then RT(v) = h is constant for each v ∈ U and

(
h + 1

2

)
is

an eigenvalue of RL(G) with a multiplicity of at least t − 1.

Proof. Without loss of generality, we can label the vertices of U as v1, . . . , vt. Then
d(vi, vk) = d

(
vj, vk

)
for all vi, vj ∈ U and for all vk ∈ V(G), in particular d

(
vi, vj

)
= 2

for all vi, vj ∈ U. We note that RT(vi) = RT
(
vj
)

for all vi, vj ∈ U. Let h = RT(vi) for all
vi ∈ U and let Xi = e1 − ei+1 for i = 1, 2, . . . , t− 1 where ei is the i-th canonical vector. Then

RL(G)Xi =

[
h +

1
2

, 0, . . . , 0,−1
2
− h, 0, . . . , 0

]T
=

(
h +

1
2

)
Xi.

Since X1, X2, . . . , Xt−1 are linearly independent,
(

h + 1
2

)
is an eigenvalue of RL(G)

with a multiplicity of at least t − 1.

Proposition 1. Let Ta,b be a tree of diameter 3 and order n = a + b + 2 ≥ 4. Then the RL-

eigenvalues are
{(

3a+2b+9
6

)[a−1]
,
(

2a+3b+9
6

)[b−1]
}

and the eigenvalues of the matrix


2b+9

6 −1 − 1
2 − b

3

−a 2a+b+2
2 −1 − b

2

− a
2 −1 − a+2b+2

2 b

− a
3 − 1

2 −1 2a+9
6

.

Proof. Let u, v be the central vertices of a tree of diameter 3 (see Figure 1). Consider the
following partition of the graph Ta,b

{V1, {u}, {v}, V2}.
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Clearly, V1 and V2 are independent sets to Ta,b such that for any x, y ∈ V1, N(x) =
N(y) = u and for any x, y ∈ V2, N(x) = N(y) = v, where N(v) denotes the neighboring
vertices of v ∈ V(G).

Figure 1. A tree T3,4 of diameter 3 and order n = 9 is shown in the above image.

We observe that for all vertex vi in V1 we have RTi = a−1
2 + 1 + 1

2 + b
3 = 3a+2b+6

6 ,
analogously for all vertex vj in V2, and RTj = 2a+3b+6

6 . Then, using Theorem 7, we
have that 3a+2b+9

6 and 2a+3b+9
6 are eigenvalues of RL(Ta,b) with multiplicities a − 1 and

b − 1, respectively.
Let RTa = 3a+2b+6

6 and RTb = 2a+3b+6
6 . Then, RL(Ta,b) has the following block

matrix form

RL(Ta,b) =


RTa I − 1

2 [Ja − Ia] −[Ja×1] − 1
2 [Ja×1] − 1

3 [Ja×b]

−[J1×a]
2a+b+2

2 −1 − 1
2 [J1×b]

− 1
2 [J1×a] −1 a+2b+2

2 −[J1×b]

− 1
3 [Jb×a] − 1

2 − [Jb×1] [Jb×1] RTb I − 1
2 [Jb − Ib]

.

Let M(Ta,b) be the equitable quotient matrix of RL(Ta,b), considering that each block
has a constant row sum, an then we can write

M(Ta,b) =


RTa − a−1

2 −1 − 1
2 − b

3

−a RTu −1 − b
2

− a
2 −1 RTv −b

− a
3 − 1

2 −1 RTb − b−1
2

.

Applying Theorem 5, the eigenvalues of M(Ta,b) are eigenvalues of RL(Ta,b). Finally,
replacing RTa = 3a+2b+6

6 , RTb = 2a+3b+6
6 , RTu = 2a+b+2

2 and RTv = a+2b+2
2 , the matrix

given in Theorem is obtained.

A set of vertices that induces a subgraph with no edges is called an independent
set. A bipartite graph is a graph whose vertex set can be partitioned into two disjoint
and independent sets V1 and V2, that is, every edge connects a vertex in V1 to one in V2.
A complete bipartite graph is a special kind of bipartite graph where every vertex of the first
set is adjacent to every vertex of the second set. A complete bipartite graph with partitions
of size |V1| = a and |V2| = b is denoted by Ka,b. A star graph is a complete bipartite graph
with partitions of size |V1| = 1 and |V2| = n − 1. The star graph of order n is denoted either
by K1,n−1 or Sn.

The following proposition gives us the eigenvalues of a complete bipartite graph
associated to the reciprocal distance Laplacian matrix.

Proposition 2. Let Ka,b be a complete bipartite graph on n = a + b vertices. Then, the spectrum of
RL(Ka,b) is

σ(RL(Ka,b)) =

{
n,
(

a+2b
2

)[a−1]
,
(

2a+b
2

)[b−1]
, 0
}

.

Proof. Since V1 and V2 are independent sets to Ka,b such that for any x, y ∈ V1, N(x) =
N(y) = V2 and for any x, y ∈ V2, N(x) = N(y) = V1, then for all vi ∈ V1, we obtain that
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RTi =
a+2b−1

2 and for all vertex vj ∈ V2 we have that RTj =
2a+b−1

2 . Now, using Theorem 7,
we have that a+2b

2 is an eigenvalue with multiplicity a − 1 and 2a+b
2 is an eigenvalue with

multiplicity b − 1.
From Lemma 1, we have that zero is always an eigenvalue of the matrix RL(G).

We observe that a+2b
2 and 2a+b

2 are non-zero. Therefore, we have n − 1 eigenvalues. We
obtain the other eigenvalue by applying the fact that the trace of the matrix is equal to
the sum of its eigenvalues and the trace of RL(G) is equal to the sum of its reciprocal
distance degrees.

Corollary 2. Let Sn be the star graph on n ≥ 3 vertices. Then the spectrum of the reciprocal
distance Laplacian matrix of Sn is

σ(RL(Sn)) =

{
n,
(

n + 1
2

)[n−2]
, 0

}
.

Theorem 8. Let G be a connected graph of order n and U be a subset of V(G) such that U is a set
of adjacent twins, with |U| = t. Then, RT(v) = h′ is constant for each v ∈ U and (h′ + 1) is an
eigenvalue of RL(G) with multiplicity at least t − 1.

Proof. Without loss of generality, we can label the vertices of U as v1, . . . , vt. Then
d(vi, vk) = d

(
vj, vk

)
for all vi, vj ∈ U and for all vk ∈ V(G), and in particular d

(
vi, vj

)
= 1

for all vi, vj ∈ U. Thus, RT(vi) = RT
(
vj
)

for all vi, vj ∈ U. Let h′ = RT(vi) for all vi ∈ U
and let Xi = e1 − ei+1 for i = 1, 2, . . . , t − 1. Then,

RL(G)Xi =
[
h′ + 1, 0, . . . , 0,−1 − h′, 0, . . . , 0

]T
=
(
h′ + 1

)
Xi.

Since X1, X2, . . . , Xt−1 are linearly independent, (h′ + 1) is an eigenvalue of RL(G)
with a multiplicity of at least t − 1.

A clique of a graph is a subset of vertices in which every two vertices are adjacent. A
complete split graph, denoted by CSa,n−a, is a graph consisting of a clique of a vertices and
an independent set of the remaining n − a vertices, such that each vertex in the clique is
adjacent to every vertex in the independent set.

Proposition 3. Let CSa,n−a be a complete split graph on n vertices. Then

σ(RL(CSa,n−a)) =

{
n[a];

(
n + a

2

)[n−a−1]
; 0

}
.

Proof. Notice that for the clique of order a, we have that

h′ = 1(a − 1) + 1(n − a) = n − 1.

Applying Theorem 8, we obtain that n is an RL-eigenvalue of CSa,n−a with a multi-
plicity of at least a − 1.

Analogously, for the independent set of order n − a, we have that

h =
1
2
(n − a − 1) + 1(a) =

(n + a − 1)
2

.

Applying Theorem 7, we obtain that

(n + a − 1)
2

+
1
2
=

n + a
2

is an RL-eigenvalue of CSa,n−a with a multiplicity of at least n − a − 1.
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From Lemma 1, we have that zero is always an eigenvalue of the matrix RL(G). Since
n+a

2 ̸= 0, we have n − 1 eigenvalues. We obtain the other eigenvalue by applying the fact
that the trace of the matrix is equal to the sum of its eigenvalues, and the trace of RL(G) is
equal to the sum of its reciprocal distance degrees.

Finally, in this section, we study the spectrum for the generalized join graph operation.
In particular, we characterize the spectrum of the reciprocal distance Laplacian matrix
for the generalized join of regular graphs. We study this operation between graphs since
certain graphs can be expressed as a join product of graphs of a much lower order, reducing
the process of obtaining their eigenvalues. Furthermore, in the final part of the next
section, we use the join product of certain types of graphs to obtain bounds for the Harary
Laplacian-energy-like.

Let G1 = (V1, E1) and G2 = (V2, E2) be two vertex disjoint graphs. The join graph
operation of G1 and G2 is the graph G = G1 ∨ G2 such that V(G) = V(G1) ∪ V(G2)
and E(G) = E(G1) ∪ E(G2) ∪ {xy : x ∈ V(G1), y ∈ V(G2)}. This join operation can be
generalized as follows [24]: Let H be a graph of order s. Let V(H) = {v1, . . . , vs}. Let
{G1, . . . , Gs} be a set of pairwise vertex disjoint graphs. For 1 ≤ i ≤ s, the vertex vi ∈ V(H)
is assigned to the graph Gi. Let G be the graph obtained from the graphs G1, . . . , Gs and the
edges connecting each vertex of Gi with all the vertices of Gj if and only if vi, vj ∈ E(H).
That is, G is the graph with vertex set V(G) =

⋃s
i=1 V(Gi) and edge set

E(G) =

(
s⋃

i=1

E(Gi)

)⋃ ⋃
vi ,vj∈E(H)

{uv : u ∈ V(Gi), v ∈ V(Gj)}

.

This graph operation is denoted by

G =
∨
H
{Gi : 1 ≤ i ≤ s}.

Consider the vertices of G with the labels 1, . . . , ∑s
i=1 ni starting with the vertices of

G1, continuing with the vertices of G2, G3, . . . , Gs−1 and finally with the vertices of Gs.

Let H be a connected graph of order s and for i = 1, . . . , s, let Gi be a δi-degree regular
connected graph of order ni. Let dHi,j be the distance between vi, vj ∈ V(H). Here, with the
above mentioned labeling, we obtain that the reciprocal distance Laplacian matrix of the
H-join G =

∨
H
{Gi : 1 ≤ i ≤ s} has the form

RL(G) =



L1
−1
dH1,2

Jn1×n2 . . . −1
dH1,s

Jn1×ns

−1
dH1,2

Jn2×n1 L2
. . .

...

...
. . . . . . −1

dH
(s−1),s

Jns−1×ns

−1
dH1,s

Jns×n1 . . . −1
dH
(s−1),s

Jns×ns−1 Ls


(2)

where
Li = ki Ini +

−1
2

(Jni − Ini + A(Gi)), (3)

with
ki =

δi + ni − 1
2

+ ∑
j ̸=i

nj

dHi,j
.

Notice that the matrices Li defined in (3) are not necessarily the reciprocal distance
Laplacian matrices L(Gi).
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Now, using the results of the partitioned quotient matrix, we will obtain the spectrum
of the reciprocal distance Laplacian of the graph G =

∨
H
{Gi : 1 ≤ i ≤ s}, where {Gi, . . . Gs}

is a family of a regular graph.

Lemma 2. Let Li be the diagonal blocks of the matrix defined in (2) such that, for i = 1, . . . , s, Gi
is a δi-regular graph with adjacency eigenvalues {δi, λ2, . . . , λni}. Then, the spectrum of Li is

σ(Li) =

{
∑
j ̸=i

nj

dHi,j
, ki +

1
2
− 1

2
λni (A(Gi)), . . . , ki +

1
2
− 1

2
λ2(A(Gi))

}
,

with ki =
δi+ni−1

2 + ∑
j ̸=i

nj

dHi,j
.

Proof. Since
Li = ki Ini +

−1
2

(Jni − Ini + A(Gi))

has constant row sum equal to ki − ni−1+δi
2 where ki =

δi+ni−1
2 + ∑

j ̸=i

nj

dHi,j
, and there is l such

that
Lieni = λl(Li)eni ,

with
λl(Li) = ∑

j ̸=i

nj

dHi,j
.

Let
{

eni , ui,2, . . . , ui,ni

}
be the set of eigenvectors corresponding to the adjacency

eigenvalues of regular graph Gi, {δi, λ2, . . . , λni}, respectively. We observe that, for j =
2, . . . , ni, Jni ui,j = 0ui,j and A(Gi)ui,j = λjui,j. Then

Liui,j =

(
ki Ini +

−1
2

(Jni − Ini + A(Gi))

)
ui,j

=

(
ki +

1
2
− 1

2
λi

)
ui,j.

Therefore, for i = 1, . . . , s the spectrum of Li is

σ(Li) =

{
∑
j ̸=i

nj

dHi,j
, ki +

1
2
− 1

2
λni (A(Gi)), . . . , ki +

1
2
− 1

2
λ2(A(Gi))

}
, (4)

with ki =
δi+ni−1

2 + ∑
j ̸=i

nj

dHi,j
.

The following result allows us to know the spectrum of new families of regular graphs
obtained using the generalized graph join operation.

Theorem 9. Let H be a connected graph of order s and G =
∨
H
{Gi : 1 ≤ i ≤ s} where, for each

i ∈ {1, . . . , s}, Gi is a regular graph. Then, the spectrum of RL(G) is

σ(RL(G)) =
s⋃

i=1

(σ(Li)∖ {λl(Li)}) ∪ σ(Fs),

where λl(Li) = ∑
j ̸=i

nj

dHi,j
and Fs is the s × s matrix
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Fs =



λl(L1)
−1
dH1,2

n2
−1
dH1,3

n3 . . . −1
dH1,(s−1)

ns−1
−1
dH1,s

ns

−1
dH1,2

n1 λl(L2)
−1
dH2,3

n3 . . . −1
dH2,(s−1)

ns−1
−1
dH2,s

ns

−1
dH1,3

n1
−1
dH2,3

n2 λl(L3) . . . 1
dH3,(s−1)

ns−1
−1
dH3,s

ns

...
...

. . .
...

−1
dH1,(s−1)

n1
−1

dH2,(s−1)
n2

−1
dH3,(s−1)

n3 . . . λl(Ls−1)
1

dH
(s−1),s

ns

−1
dH1,s

n1
−1
dH2,s

n2
−1
dH3,s

n3 . . . −1
dHs−1,s

ns−1 λl(Ls)


.

Proof. Let Gi be a δi-regular graph such that {ui,1 = eni , ui,2, . . . , ui,ni} is a set of eigenvec-
tors corresponding to the adjacency eigenvalues {δi, λi,2, . . . , λi,ni}. Then, using Lemma 2
we have that, for j = 2, . . . , ni,

RL(G)



0
...
0

ui,j
0
...
0


=



L1
−1
dH1,2

Jn1×n2 . . . −1
dH1,s

Jn1×ns

−1
dH1,2

Jn2×n1 L2
. . .

...

...
. . . . . . −1

dH
(s−1),s

Jns−1×ns

−1
dH1,s

Jns×n1 . . . −1
dH
(s−1),s

Jns×ns−1 Ls





0
...
0

ui,j
0
...
0



=

(
ki +

1
2
− 1

2
λj

)


0
...
0

ui,j
0
...
0


.

Therefore, for i = 1, . . . , s and for j = 2, . . . , ni,

(σ(Li)∖ {λ1(Li)}) ⊂ σ(RL(G)).

The remaining eigenvalues will be obtained from the quotient matrix associated with
the matrix RL(G) given in Equation (2). The matrix RL(G) is a matrix partitioned into
blocks such that each block has a constant row sum. Then, the equitable quotient matrix of
RL(G) is

Fs =



λl(L1)
−1
dH1,2

n2
−1
dH1,3

n3 . . . −1
dH1,(s−1)

ns−1
−1
dH1,s

ns

−1
dH1,2

n1 λl(L2)
−1
dH2,3

n3 . . . −1
dH2,(s−1)

ns−1
−1
dH2,s

ns

−1
dH1,3

n1
−1
dH2,3

n2 λl(L3) . . . 1
dH3,(s−1)

ns−1
−1
dH3,s

ns

...
...

. . .
...

−1
dH1,(s−1)

n1
−1

dH2,(s−1)
n2

−1
dH3,(s−1)

n3 . . . λl(Ls−1)
1

dH
(s−1),s

ns

−1
dH1,s

n1
−1
dH2,s

n2
−1
dH3,s

n3 . . . −1
dHs−1,s

ns−1 λl(Ls)


.

So, applying Theorem 5, we obtain that

σ(Fs) ⊂ σ(RL(G)).
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Corollary 3. Let H be a connected graph of order s and G =
∨
H
{Gi : 1 ≤ i ≤ s} where, for each

i ∈ {1, . . . , s}, Gi is a regular graph. Then,

{0, ρ(RL(G))} ∈ σ(Fs).

Proof. From Equation (2), we can see that the eigenvalues of the matrices Li interlace the
eigenvalues of RL(G). Then, from Theorem 9, the largest and smallest eigenvalues of
RL(G) are the largest and smallest eigenvalues of Fs, respectively.

Example 1. For H = P3, G1 = C4, G2 = K2 and G3 = K3, the graph G =
∨
P3

{G1, G2, G3} is

given in the following Figure 2.

1

2 3

4

5

6

7

8

9

Figure 2. G =
∨
P3

{C4, K2, K3}.

In this example, we have that k1 = 6, k2 = 8, k3 = 6 and

L1 =


6 −1 − 1

2 −1
−1 6 −1 − 1

2
− 1

2 −1 6 −1
−1 − 1

2 −1 6

 L2 =

[
8 −1

−1 8

]
L3 =

 6 −1 −1
−1 6 −1
−1 −1 6

.

Thus, σ(RL1) = { 7
2 , 13

2
[2]

, 15
2 }, σ(RL2) = {7, 9}, σ(RL3) = {4, 7[2]} where λ[t] denotes

that λ is an eigenvalue with multiplicity t. Moreover

F3 =

 7
2 −2 − 3

2
−4 7 −3
−2 −2 4


and σ(F3) = {9, 11

2 , 0}. Applying Theorem 9, we obtain

σ(RL(G)) =

{
9[2],

15
2

, 7[2],
13
2

[2]
,

11
2

, 0

}
.

A wheel graph on n ≥ 4 vertices, denoted by Wn, is a graph formed by connecting a
single vertex to all vertices of a cycle of order n − 1. We observe that Wn = K1 ∨ Cn−1.

A generalized wheel graph on n vertices, denoted by GWa,n−a, is a graph consisting of
an independent set of order a and a cycle of the remaining n − a vertices, such that each
vertex in the cycle is adjacent to every vertex in the independent set. We can write this
graph as

GWa,n−a = Ka
∨

Cn−a =
∨

Sa+1

{Cn−a, K1, K1, . . . , K1}.

The Ka is not a connected graph, and since we define the join product for connected
graphs, so that the distance between the components is not indeterminate, then we will use
the following notation
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GWa,n−a =
∨

Sa+1

{Cn−a, K1, K1, . . . , K1}.

Proposition 4. Let GWa,n−a be a generalized wheel graph on n vertices. Then the eigenvalues of

RL(GWa,n−a) are n, 0, 2n−a
2

[a−1] and the eigenvalues of the form
(

n+a+2
2 − cos

(
2π(n−a+1−j)

n−a

))
for j = 2, . . . , n − a.

Proof. In the generalized join operation

GWa,n−a =
∨

Sa+1

{Cn−a, K1, K1, . . . , K1},

we associate the cycle to the central vertex of the star and each vertex K1 is associated to
the pending vertices of the star. Considering the labeling in this same order, we have that
the expressions given in (2) and (3), for the graph GWa,n−a, are

RL(GWa,n−a) =



L1 −Jn−a×1 −Jn−a×1 . . . −Jn−a×1
−J1×n−a L2 − 1

2 . . . − 1
2

−J1×n−a − 1
2 L3

. . .
...

...
...

. . . . . . − 1
2

−J1×n−a − 1
2 . . . − 1

2 La+1


where

L1 =
n + a + 1

2
In−a +−(Jn−a − In−a + A(Cn−a)),

and
L2 = . . . = La+1 =

[
2n − a − 1

2

]
are matrices of order 1 × 1. Now, expression (4) for L1 becomes

σ(L1) =

{
a,

n + a + 2
2

− 1
2

λn−a(A(Cn−a)), . . . ,
n + a + 2

2
− 1

2
λ2(A(Cn−a))

}
,

Since the adjacency eigenvalues of the cycle of order p have the form cos
(

2π(p+1−j)
p

)
,

then, from Theorem 9, for j = 2, . . . , n − a, we have that
(

n+a+2
2 − cos

(
2π(n−a+1−j)

n−a

))
are

eigenvalues of RL(GWa,n−a).
Now, the matrix Fs given in Theorem 9 has the form

Fa+1 =



a −1 −1 . . . −1 −1
−(n − a) 2n−a−1

2 − 1
2 . . . − 1

2 − 1
2

−(n − a) − 1
2

2n−a−1
2 . . . − 1

2 − 1
2

...
...

. . .
...

−(n − a) − 1
2 − 1

2 . . . 2n−a−1
2 − 1

2
−(n − a) − 1

2 − 1
2 . . . − 1

2
2n−a−1

2


. (5)

We recall that ei denotes the i-th canonical vector. Then, for i = 3, . . . , a + 1

Fa+1[e2 − e2+i] =
2n − a

2
[e2 − e2+i].

Thus, 2n−a
2 is an eigenvalue of Fa+1 with multiplicity a − 1. From Theorem 9, we

have that 2n−a
2 is an eigenvalue of RL(GWa,n−a) with multiplicity a − 1. From Corollary 3,

we have that the largest and smallest eigenvalues of RL(G) are the largest and smallest
eigenvalues of Fa+1 matrix given in (5). Then, we obtain the spectral radius applying the
fact that the trace of the matrix is equal to the sum of its eigenvalues. This fact, applied to
the matrix Fa+1, gives us that ρ(RL(GWa,n−a)) = n.
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An immediate consequence is the following result.

Corollary 4. Let Wn be a wheel graph on n vertices. Then, the eigenvalues of RL(Wn) are n, 0
and the eigenvalues of the form

(
n+3

2 − cos
(

2π(n−j)
n−1

))
for j = 2, . . . , n − 1.

Example 2. Consider the wheel graph W7 = K1 ∨ C6 (see Figure 3). The spectrum σ(RL(W7)) =

{7, 6,
( 9

2
)[2]

,
( 9

11
)[2]

, 0}. In fact, verifying the expressions given in Corollary 4, we see that

λ1 = 7, λ7 = 0

and, for j = 2, . . . , 6, so we apply the expression

λj =
n + 3

2
− cos

(
2π(n − j)

n − 1

)
.

Thus, we have
λ2 = 7+3

2 − cos
(

2π(7−2)
7−1

)
= 9

2

λ3 = 7+3
2 − cos

(
2π(7−2)

7−3

)
= 11

2

λ4 = 7+3
2 − cos

(
2π(7−4)

7−1

)
= 6

λ5 = 7+3
2 − cos

(
2π(7−5)

7−1

)
= 11

2

λ6 = 7+3
2 − cos

(
2π(7−6)

7−1

)
= 9

2 .

Example 3. Consider the following generalized wheel graph with a = 3, GW3,3 =
∨
S4

{C3, K1, K1, K1}

(see Figure 3). The spectrum σ(RL(GW3,3)) = {6[3],
( 9

2
)[2]

, 0}. Verifying the expressions given in
Proposition 4, we obtain

λ1 = 6, λ4 = 9
2 , λ5 = 9

2 and λ6 = 0.

For j = 2, 3 applying the expression

λj =
n + a + 2

2
− cos

(
2π(n − a + 1 − j)

n − a

)
we have

λ2 = 6+3+2
2 − cos

(
2π(6−3+1−2)

6−3

)
= 6

λ3 = 6+3+2
2 − cos

(
2π(6−3+1−3)

6−3

)
= 6.

Figure 3. The image shows on the left side the wheel graph of order 7, denoted by W7, and on the
right side it shows the generalized wheel graph of order 6 and with a = 3, denoted by GW3,3 (where
the vertices of C3 are highlighted in blue).
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3. Bounds for Harary Laplacian-Energy-like

In this section, we obtain upper and lower bounds of Harary Laplacian-energy-like of
a graph, in terms of the other invariants of the graph.

Remark 2. If G̃ is the connected graph obtained from G by the deletion of an edge, then from defini-
tion of the reciprocal distance Laplacian matrix, we obtain that trace(RL(G̃)) < trace(RL(G)).

An immediate consequence due to the Theorem 3 is the following result.

Corollary 5. If G and G̃ are connected graphs such that G̃ is obtained from G by the deletion of an
edge, then

HLEL(G̃) < HLEL(G).

From Corollary 5 and Remark 1, we obtain the following result.

Corollary 6. Among the all connected graphs on n vertices and m ≥ n edges, the complete graph
Kn has the largest Harary Laplacian-energy-like. Thus

HLEL(G) ≤ (n − 1)
√

n

with equality if and only if G = Kn.

In the following Theorem, we obtain an upper bound of Harary Laplacian-energy-like
in terms of the number of vertices and the Harary index.

Theorem 10. Let G be a connected graph of order n ≥ 2 and Harary index H(G). Then

HLEL(G) ≤
√

2H(G) + n(n − 1)(n − 2),

with equality if and only if G = Kn.

Proof. Let G be a connected graph of order n ≥ 2. We have

(HLEL(G))2 =
( n−1

∑
i=1

√
λi(RL(G))

)2

=
n−1

∑
i=1

λi(RL(G)) + 2 ∑
i ̸=j

√
λi(RL(G))

√
λj(RL(G)). (6)

From Theorem 3 and Remark 1, we obtain

ρ(RL(G)) ≤ ρ(RL(Kn)) = n, λi(RL(G)) ≤ λi(RL(Kn)) = n, i ≥ 2.

Now,

∑
i ̸=j

√
λi(RL(G))

√
λj(RL(G)) =

√
λ1(RL(G))(

√
λ2(RL(G)) + · · ·+

√
λn−1(RL(G)))

+
√

λ2(RL(G))(
√

λ3(RL(G)) + · · ·+
√

λn−1(RL(G)))

+ · · ·+
√

λn−2(RL(G))
√

λn−1(RL(G))

≤
√

n((n − 2)
√

n) +
√

n((n − 3)
√

n) + · · ·+
√

n
√

n

=n
n−2

∑
i=1

i =
n(n − 1)(n − 2)

2
.
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Replacing Equation (6), we obtain

HLEL(G) ≤
√

2H(G) + n(n − 1)(n − 2).

We observe that the equality occurs if and only if ρ1(G) = n and λi(RL(G)) = n,
for all 2 ≤ i ≤ n − 1. Applying Theorem 2, we obtain that G = Kn.

An upper bound of Harary Laplacian-energy-like in terms of the number of vertices,
Harary index and the Frobenius norm of reciprocal distance Laplacian matrix of graph G
are obtained.

Theorem 11. Let G be a graph of order n ≥ 2. Then

HLEL(G) ≤

√
||RL(G)||2F

2H(G)
+

√√√√(n − 2)

(
2H(G)−

||RL(G)||2F
2H(G)

)
.

The equality holds if and only if G = Kn.

Proof. We observe that HLEL(G) =
√

ρ(RL(G)) +
n−1
∑

i=2

√
λi(RL(G)). Using the Cauchy–

Schwartz’s inequality, we obtain(
HLEL(G)−

√
ρ(RL(G))

)2
≤ (n − 2)

n−1

∑
i=2

λi(RL(G)). (7)

Thus

HLEL(G) ≤
√

ρ(RL(G)) +
√
(n − 2)(2H(G)− ρ(RL(G))).

Let m(x) =
√

x +
√
(n − 2)(2H(G)− x) be a real function. We recall that m(x) is a

strictly decreasing function in the interval
[

2H(G)
n−1 , 2H(G)

]
.

We observe that ρ(RL(G)) < 2H(G) and

2H(G)

n − 1
=

(2H(G))2

(n − 1)2H(G)
≤

n−1
∑

i=1
λi(RL(G))2

2H(G)
=

||RL(G)||2F
2H(G)

.

Then, using Theorem 6, we have

2H(G)

n − 1
≤

||RL(G)||2F
2H(G)

≤ ρ(RL(G)) < 2H(G).

Therefore

HLEL(G) ≤

√
||RL(G)||2F

2H(G)
+

√√√√(n − 2)

(
2H(G)−

||RL(G)||2F
2H(G)

)
.

Now, we observe that the equality holds whenever the equality (7) and the bound
given in Theorem 6 hold. In the first case, the equality occurs if

ρ(RL(G)) = λ2(RL(G)) = . . . = λn−1(RL(G)),

and thus the multiplicity of ρ(RL(G)) is n − 1 and, using Theorem 2, we conclude that
G = Kn. In the second case, the equality in Theorem 6 occurs if G = Kn. Reciprocally,
if G = Kn with n ≥ 2, then
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√
||RL(G)||2F

2H(G)
+

√√√√(n − 2)

(
2H(G)−

||RL(G)||2F
2H(G)

)
= (n − 1)

√
n.

The following example shows a comparison of the bounds obtained with the real
HLEL values considering various known graphs.

Example 4. We consider the graphs G1, G2 given by Figure 4. Let G3 be the Petersen graph and
let G4 = S7, G5 = P7 and G6 = C7 be the star, path and cycle on seven vertices, respectively.

G1 G2 G3

Figure 4. Examples of connected simple undirected graphs.

Using four decimal places, in Table 1 we show the upper bounds obtained for Harary Laplacian-
energy-like for the given graphs.

Table 1. Examples of the upper bounds obtained for Harary Laplacian-energy-like.

G1 G2 G3 S7 P7 C7

HLEL(G) 20.3256 10.5869 23.2019 11.5900 11.4529 12.3590
Corollary 6 24.0000 12.2475 28.4605 15.8745 15.8745 15.8745
Theorem 10 23.5797 11.9443 27.9285 15.3948 15.2414 15.3514
Theorem 11 20.3958 10.6452 23.2378 12.7267 11.5658 12.4094

Lemma 3 ([25]). Let m and n be natural numbers such that m ≥ n > 2. Let a1, a2, . . . , am be
positive real numbers. Then,

2
n

(
m

∑
i=1

ai

)2

>
m

∑
i=1

a2
i .

Theorem 12. Let G be a graph of order n > 2. Then

HLEL(G) >
√
(n − 1)H(G).

Proof. Applying Lemma 3 to the definition of HLEL(G), we obtain

(HLEL(G))2 >
n − 1

2

n−1

∑
i=1

λi(RL(G)) = (n − 1)H(G).

Therefore,

HLEL(G) >
√
(n − 1)H(G).

Example 5. The Table 2 shows, to four decimal places, the lower bound obtained for Harary
Laplacian-energy-like for the graphs given in Example 4.
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Table 2. Examples of the lower bounds obtained for Harary Laplacian-energy-like.

G1 G2 G3 S7 P7 C7

HLEL(G) 20.3256 10.5869 23.2019 11.5900 11.4529 12.3590
Theorem 12 14.4222 7.5277 16.4317 9 8.1792 8.7750

Now, to begin the end of this section, we recall that the vertex connectivity of a
graph G, denoted by κ(G), is the minimum number of vertices of G, the deletion of which
disconnects G. Clearly, κ(Kn) = n − 1. Applying the results of the previous section, we
find upper bounds on Harary Laplacian-energy-like among all the connected graphs of
prescribed order in terms of the vertex connectivity.

Let V(n, k) be the family of connected graphs G of order n such that κ(G) ≤ k.
For i = 1, 2, 3, let Gi be a δi-regular graph of order ni. Then G = G1 ∨ (G2 ∪ G3) is a

graph of order n = n1 + n2 + n3. Observe that

G1 ∨ (G2 ∪ G3) ≡
∨
P3

{G2, G1, G3}

and
G1 ∨ (G2 ∪ G3) ∈ V(n, n1).

Labeling the vertices of G = G1 ∨ (G2 ∪ G3) starting with the vertices of G1, continuing
with the vertices of G2 and finishing with the vertices of G3, and using the results obtained
in the previous subsection, the reciprocal distance Laplacian matrix RL(G) becomes

RL(G) =

 L1 −Jn1×n2 −Jn1×n3

−Jn2×n1 L2
−1
2 Jn2×n3

−Jn3×n1
−1
2 Jn3×n2 L3


where for i = 1, 2, 3,

Li = ki Ini −
1
2
(Jni − Ini + A(Gi)) (8)

and

k1 =
1
2
(n1 − 1) +

1
2

δ1 + n2 + n3

k2 =
1
2
(n2 − 1) +

1
2

δ2 + n1 +
1
2

n3

k3 =
1
2
(n3 − 1) +

1
2

δ3 + n1 +
1
2

n2.

The eigenvalues of L1, L2 and L3 associated to en1 , en2 and en3 , respectively, are

λl(L1) = n2 + n3, λl(L2) = n1 +
1
2

n3 and λl(L3) = n1 +
1
2

n2 (9)

Using these observations, the following result is due to applying Theorem 9.

Proposition 5. If G = G1 ∨ (G2 ∪ G3) and, for i = 1, 2, 3, Gi is a δi-regular graph then

σ(L(G)) = (σ(L1) ∪ σ(L2) ∪ σ(L3)− {λl(L1), λl(L2), λl(L3)}) ∪ σ(F3)

where L1, L2, L3 are as in (8), λl(L1), λl(L2), λl L3) are as in (9) and

F3 =

λl(L1) −n2 −n3
−n1 λl(L2) − 1

2 n3
−n1 − 1

2 n2 λl(L3)

 (10)
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Let n and k be positive integers, with k ≤ n − 1 and consider the graph

G(j) = Kk ∨ (Kj ∪ Kn−k−j)

where, without loss of generality, we assume 1 ≤ j ≤ ⌊ n−k
2 ⌋. The following result is

obtained by applying Proposition 5 to RL(G(j)).

Proposition 6. Let G(j) = Kk ∨ (Kj ∪ Kn−k−j) such that 1 ≤ j ≤ ⌊ n−k
2 ⌋. Then

σ(RL(G(i))) =

{
n[k],

n + k
2

,
(

n + k + j
2

)[j−1]
,
(

2n − j
2

)[n−k−j−1]
, 0

}

In particular,

HLEL(Kk ∨ (K1 ∪ Kn−k−1)) = k
√

n +

√
n + k

2
+ (n − k − 2)

√
2n − 1

2
.

Proof. We observe that for the graph G(j) = Kk ∨ (Kj ∪ Kn−k−j), the matrices L1, L2 and
L3 in (8) are

L1 = (n − 1)Ik − A(Kk)

L2 =

(
n + k + j − 2

2

)
Ii − A(Kj)

L3 =

(
2n − j − 2

2

)
In−k−j − A(Kn−k−j),

respectively, and the matrix F3(G(j)) in (10) becomes

F3 =

n − k −j −(n − k − j)
−k n+k−j

2 − n−k−j
2

−k − j
2

k+j
2

.

Then,

σ(L1) =
{

n[k−1], n − k
}

σ(L2) =

{(
n + k + j

2

)[j−1]
,

n + k − j
2

}

σ(L3) =

{(
2n − j

2

)[n−k−j−1]
,

2k + j
2

}

and the spectrum of F3(G(j)) is

σ(F3(G(j))) =
{

n,
n + k

2
, 0
}

.

Since

HLEL(G) =
n−1

∑
i=1

√
λi(RL(G)).

The result is obtained.

Let
W(n, k) = {G ∈ V(n, k) : |E(G)| ≥ n}.
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and let

c(n, k) = k
√

n +

√
n + k

2
+ (n − k − 2)

√
2n − 1

2
.

If, K0 denotes the empty graph, i.e., the graph without edges and without vertices,
then we have the following results.

Lemma 4. Let G(j) = Kk ∨ (Kj ∪ Kn−k−j) for 1 ≤ j ≤ ⌊ n−k
2 ⌋. Then

HLEL
(

G
(⌊

n − k
2

⌋))
≤ HLEL(G(j)) ≤ HLEL(G(1)).

Proof. From Proposition 6, we have

HLEL(G(j)) = k
√

n +

√
n + k

2
+ (j − 1)

√
n + k + j

2
+ (n − k − j − 1)

√
2n − j

2
.

We define the function

f (x) = (x − 1)

√
n + k + x

2
+ (n − k − x − 1)

√
2n − x

2
.

We observe that f (x) = f (n − k − x) for x ∈ [0, n − k] and f is a strictly decreasing
function in the interval[

n − k
2

−
√
(k + 7n − 2)(5k + 11n + 2)

6
,

n − k
2

]
⊃
[

1,
n − k

2

]
.

Thus, the result is obtained.

Theorem 13. If G ∈ W(n, k), then

HLEL(G) ≤ c(n, k), f or k = 1, . . . , n − 1. (11)

Additionally, the equality in (11) holds if and only is G = Kk ∨ (K1 ∪ Kn−k−1).

Proof. Let G ∈ W(n, k). We first consider k = n − 1. From Corollary 6, HLEL(G) ≤
HLEL(Kn) with equality if and only if G = Kn. Furthermore

c(n, n − 1) = (n − 1)
√

n = HLEL(Kn).

Then, the result is true for k = n − 1. Now, let 1 ≤ k ≤ n − 2 and let G ∈ W(n, k) such
that HLEL(G) is a maximum.

Let S ⊆ V(G) such that G ∖ S is a disconnected graph and |S| = κ(G). We denote by
C1, C2, . . . , Cr the r connected components of G ∖ S. Clearly r ≥ 2. Suppose that r > 2, then
we can construct a new graph G ∪ {e} where e is an edge connecting a vertex in C1 with a
vertex in C2. We can see that G ∪ {e} ∈ W(n, k). Using Corollary 5, we have

HLEL(G) < HLEL(G ∪ {e}).

It is a contradiction because G is the graph with maximum HLEL. Therefore r = 2, that is,
G ∖ S = C1 ∪ C2.

By definition |S| ≤ k. Now, we claim that |S| = k.
Suppose |S| < k. Since G ∖ S = C1 ∪ C2, we may construct a graph H = G ∪ {e}

where e is an edge joining a vertex u ∈ V(C1) with a vertex v ∈ V(C2). We see that
H ∖ S is a connected graph and the deletion of the vertex u disconnected it, and then
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H ∈ W(n, k). Using Corollary 5, HLEL(G) < HLEL(H), which is also a contradiction.
Hence, G ∖ S = C1 ∪ C2 and |S| = k. Let |C1| = j. Then |C2| = n − k − j. Through the
repeated application of Corollary 5, we can conclude that

G = Kk ∨ (Kj ∪ Kn−k−j) = G(j)

for some 1 ≤ i ≤ ⌊ n−k
2 ⌋. We have proved HLEL(G) ≤ HLEL(G(i)) for all G ∈ W(n, k).

From Lemma 4, we have that HLEL(G(i)) ≤ HLEL(G(1)). Since HLEL(G(1)) = c(n, k),
for k = 1, . . . , n − 1, the equality holds if and only if G = Kk ∨ (K1 ∪ Kn−k−1).

Example 6. For n = 10 and k = 2, the graphs with minimum and maximum Harary Laplacian-
energy-like are G1 = K2 ∨ (K4 ∪K4) and G2 = K2 ∨ (K1 ∪K7), respectively (see Figure 5). In fact,
using four decimal places,

HLEL(K2 ∨ (K4 ∪ K4)) = 25.7446 and HLEL(K2 ∨ (K1 ∪ K7)) = 27.2673.

Figure 5. The graphs G1 = K2 ∨ (K4 ∪ K4) and G2 = K2 ∨ (K1 ∪ K7).

4. Conclusions

We obtain new spectral results from the Laplacian version of the Harary matrix, known
as the Laplacian matrix of the reciprocal of the distance, reducing the order of the matrices
from which the eigenvalues are obtained and, in several cases, all the eigenvalues are
explicitly provided. We introduce the concept of Harary Laplacian-energy-like, we obtain
bounds for this energy and we find extreme graphs for the minimum and maximum values
that this energy has for certain families of graphs.
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