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Abstract: In this paper, we establish the cohomology of relative Rota–Baxter operators on Lie-
Yamaguti algebras via the Yamaguti cohomology. Then, we use this type of cohomology to char-
acterize deformations of relative Rota–Baxter operators on Lie-Yamaguti algebras. We show that
if two linear or formal deformations of a relative Rota–Baxter operator are equivalent, then their
infinitesimals are in the same cohomology class in the first cohomology group. Moreover, an order n
deformation of a relative Rota–Baxter operator can be extended to an order n + 1 deformation if and
only if the obstruction class in the second cohomology group is trivial.
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1. Introduction

Lie-Yamaguti algebras are a generalization of Lie algebras and Lie triple systems,
which can be traced back to Nomizu’s work on the invariant affine connections on ho-
mogeneous spaces in the 1950s [1] and Yamaguti’s work on general Lie triple systems
and Lie triple algebras [2,3]. Kinyon and Weinstein first called this object a Lie-Yamaguti
algebra when studying Courant algebroids in the earlier 21st century [4]. Since then, this
system has been called a Lie-Yamaguti algebra, which has attracted much attention and
has recently been widely investigated. For instance, Benito and his collaborators deeply
explored irreducible Lie-Yamaguti algebras and their relations with orthogonal Lie alge-
bras [5–8]. Deformations and extensions of Lie-Yamaguti algebras were examined in [9–11].
Sheng, the first author, and Zhou analyzed product structures and complex structures on
Lie-Yamaguti algebras by means of Nijenhuis operators in [12]. Takahashi studied modules
over quandles using representations of Lie-Yamaguti algebras in [13].

Another two topics of the present paper are deformation theory and Rota–Baxter
operators, which play important roles in both mathematics and mathematical physics. In
mathematics, informally speaking, a deformation of an object is another object that shares
the same structure of the original object after a perturbation. Motivated by the foundational
work of Kodaira and Spencer [14] for complex analytic structures, the generalization in
the algebraic geometry of deformation theory was founded [15]. As an application in
algebra, Gerstenhaber first studied the deformation theory on associative algebras [16].
Then, Nijenhuis and Richardson extended this idea and established similar results on Lie
algebras [17,18]. Deformations of other algebraic structures such as pre-Lie algebras have
also been developed [19]. In general, deformation theory was set up for binary quadratic
operads by Balavoine [20]. Deformations are closely connected with cohomology in that
the infinitesimal of a formal deformation is characterized by the cohomology class in the
first cohomology group.

Rota–Baxter operators on associative algebras can be traced back to a study on fluc-
tuation theory by G. Baxter [21]. In the context of Lie algebras, a Rota–Baxter of weight 0
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was determined as the form of operators in the 1980s, which is the solution to the classical
Yang–Baxter equation, named after Yang and Baxter [22,23]. Then, Kupershmidt introduced
the notion of O-operators (called relative Rota–Baxter operators in the present paper) on Lie
algebras in [24]. For more details about the classical Yang–Baxter equation and Rota–Baxter
operators, see [25,26].

Since deformation theory and Rota–Baxter operators have important applications in
mathematics and mathematical physics, Sheng and his collaborators established cohomol-
ogy and the deformation theory of relative Rota–Baxter operators on Lie algebras using
Chevalley–Eilenberg cohomology [27]. See [28,29] for more details about cohomology and
deformations of relative Rota–Baxter operators on 3-Lie algebras and Leibniz algebras,
respectively. Furthermore, Sheng and the first author introduced the notion of relative Rota–
Baxter operators on Lie-Yamaguti algebras and revealed the fact that a pre-Lie-Yamaguti
algebra is the underlying algebraic structure of relative Rota–Baxter operators [30].

By the virtue of Lie-Yamaguti algebras and relative Rota–Baxter operators, it is natural
to ask the following question: Does an appropriate cohomology theory of relative Rota–
Baxter operators on Lie-Yamaguti algebras which can be used to classify certain types of
deformations exist? We tackle this problem as follows.

The most important step is to construct a suitable cohomology theory for relative
Rota–Baxter operators on Lie-Yamaguti algebras. Let (g, [·, ·]J·, ·, ·K) denote a Lie-Yamaguti
algebra and (V; ρ, µ) a representation of g. It has been proven that in [30], if T : V → g is a
relative Rota–Baxter operator on g with respect to (V; ρ, µ), then there is a Lie-Yamaguti
algebra structure ([·, ·]T , J·, ·, ·KT) on V. The key role played in this step is to construct a
representation of this Lie-Yamaguti algebra (V, [·, ·]T , J·, ·, ·KT) on g (viewed as the repre-
sentation space), that is, we shall present the explicit formulas of linear maps ϱ : V → gl(g),
ϖ : ⊗2V → gl(g) and Dϱ,ϖ, which are linked with the representation (V; ρ, µ) and the
relative Rota–Baxter operator T, such that the triple (g; ϱ, ϖ) becomes a representation
of Lie-Yamaguti algebra V (see Lemma 1 and Theorem 1). Consequently, we obtain the
corresponding Yamaguti cohomology of (V, [·, ·]T , J·, ·, ·KT) with coefficients in the rep-
resentation (g; ϱ, ϖ). However, note that the cochain complex of Yamaguti cohomology
starts only from 1-cochain, not from 0-cochain. The main difficulty is to choose 0-cochain
appropriately and build a proper coboundary map from the set of 0-cochains to that of
1-cochains. Our strategy is to define the set of 0-cochains to be ∧2g, then construct the
coboundary map explicitly (see Proposition 4).

In this way, we obtain a cochain complex (associated to V) starting from 0-cochains,
which gives rise to the cohomology of the relative Rota–Baxter operator T on Lie-Yamaguti
algebras (g, [·, ·], J·, ·, ·K) (see Definition 6). A Lie-Yamaguti algebra owns two algebraic
operations, which makes its cochain complex much more complicated than others, while
other algebras such as Lie algebras, pre-Lie algebras, Leibniz algebras or even 3-Lie algebras
own only one structure map. As a result, the computation is technical in defining the
cohomology of relative Rota–Baxter operators.

The next step is to make use of the cohomology theory to investigate deformations of
relative Rota–Baxter operators on Lie-Yamaguti algebras. We consider three kinds of defor-
mations: linear, formal and higher-order deformations. It turns out that our cohomology
theory satisfies the rule that is mentioned above and works well (see Theorems 2, 4 and 5).

As was stated before, a Lie triple system is a spacial case of a Lie-Yamaguti algebra, so
the conclusions in the present paper can also be adapted to the Lie triple system context.
See [31] for more details about cohomology and deformations of relative Rota–Baxter
operators on Lie triple systems. However, unlike other algebras such as Lie algebras or
Leibniz algebras, a suitable graded Lie algebra whose Maurer–Cartan elements are only
the Lie-Yamaguri algebra structure does not exist; thus, we did not find a suitable algebra
that controls the deformations of relative Rota–Baxter operators. We will overcome this
problem in the future and also expect new findings in this direction.

The paper is structured as follows. In Section 2, we recall some basic concepts, in-
cluding those of Lie-Yamaguti algebras, representations and cohomology. In Section 3,
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the cohomology theory of relative Rota–Baxter operators on Lie-Yamaguti algebras is
constructed by using that of Lie-Yamaguti algebras. Finally, we utilize our established coho-
mology theory to analyze three kinds of deformations of relative Rota–Baxter operators on
Lie-Yamaguti algebras, namely linear, formal and higher-order deformations, in Section 4.

In this paper, all vector spaces are assumed to be over a field K of characteristic 0 and
finite-dimensional.

2. Preliminaries: Lie-Yamaguti Algebras, Representations and Cohomology

In this section, we recall some basic notions such as Lie-Yamaguti algebras, representa-
tions and their cohomology theories. The notion of Lie-Yamaguti algebras was first defined
by Yamaguti in [2,3].

Definition 1 ([4]). A Lie-Yamaguti algebra is a vector space g equipped with a bilinear bracket
[·, ·] : ∧2g → g and a trilinear bracket J·, ·, ·K : ∧2g⊗ g → g, which meet the following conditions:
for all x, y, z, w, t ∈ g,

[[x, y], z] + [[y, z], x] + [[z, x], y] + Jx, y, zK+ Jy, z, xK+ Jz, x, yK = 0, (1)

J[x, y], z, wK+ J[y, z], x, wK+ J[z, x], y, wK = 0, (2)

Jx, y, [z, w]K = [Jx, y, zK, w] + [z, Jx, y, wK], (3)

Jx, y, Jz, w, tKK = JJx, y, zK, w, tK+ Jz, Jx, y, wK, tK+ Jz, w, Jx, y, tKK. (4)

In the sequel, we denote a Lie-Yamaguti algebra by (g, [·, ·]J·, ·, ·K).

Example 1. Let (g, [·, ·]) be a Lie algebra. Define a trilinear bracket

J·, ·, ·K : ∧2g⊗ g → g

by
Jx, y, zK := [[x, y], z], ∀x, y, z ∈ g.

Then, via direct computation, we know that (g, [·, ·]J·, ·, ·K) forms a Lie-Yamaguti algebra.

The following example is even more interesting.

Example 2. Let M be a closed manifold with an affine connection, and denote by X(M) the set of
vector fields on M. For all x, y, z ∈ X(M), set

[x, y] := −T(x, y),

Jx, y, zK := −R(x, y)z,

where T and R are the torsion tensor and curvature tensor, respectively. It is found that the triple
(X(M), [·, ·], J·, ·, ·K) forms a Lie-Yamaguti algebra. See [1] for more details.

The following two notions are standard.

Definition 2 ([12,13]). Suppose that (g, [·, ·]g, J·, ·, ·Kg) and (h, [·, ·]h, J·, ·, ·Kh) are two Lie-Yamaguti
algebras. A homomorphism from (g, [·, ·]g, J·, ·, ·Kg) to (h, [·, ·]h, J·, ·, ·Kh) is a linear map ϕ :
g → h that preserves the Lie-Yamaguti algebra structures, that is, for all x, y, z ∈ g,

ϕ([x, y]g) = [ϕ(x), ϕ(y)]h,

ϕ(Jx, y, zKg) = Jϕ(x), ϕ(y), ϕ(z)Kh.

If, moreover, ϕ is a bijection, it is then called an isomorphism.
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Definition 3 ([3]). Let (g, [·, ·], J·, ·, ·K) be a Lie-Yamaguti algebra. A representation of g is a
vector space V equipped with a linear map ρ : g → gl(V) and a bilinear map µ : ⊗2g → gl(V),
which meet the following conditions: for all x, y, z, w ∈ g,

µ([x, y], z)− µ(x, z)ρ(y) + µ(y, z)ρ(x) = 0, (5)

µ(x, [y, z])− ρ(y)µ(x, z) + ρ(z)µ(x, y) = 0, (6)

ρ(Jx, y, zK) = [Dρ,µ(x, y), ρ(z)], (7)

µ(z, w)µ(x, y)− µ(y, w)µ(x, z)− µ(x, Jy, z, wK) + Dρ,µ(y, z)µ(x, w) = 0, (8)

µ(Jx, y, zK, w) + µ(z, Jx, y, wK) = [Dρ,µ(x, y), µ(z, w)], (9)

where the bilinear map Dρ,µ : ⊗2g → gl(V) is given by

Dρ,µ(x, y) := µ(y, x)− µ(x, y) + [ρ(x), ρ(y)]− ρ([x, y]), ∀x, y ∈ g. (10)

It is obvious that Dρ,µ is skew-symmetric. We denote a representation of g by (V; ρ, µ).

Notice that the notion of representation on Lie-Yamaguti algebras can be reduced
to that on Lie algebras or Lie triple systems when the original Lie-Yamaguti algebra is
correspondingly reduced to a Lie algebra or a Lie triple system.

Example 3. Let (g, [·, ·], J·, ·, ·K) be a Lie-Yamaguti algebra. We define linear maps ad : g → gl(g)
and R : ⊗2g → gl(g) by x 7→ adx and (x, y) 7→ Rx,y, respectively, where adxz = [x, z]
and Rx,yz = Jz, x, yK for all z ∈ g. Then, (ad,R) forms a representation of g on itself, where
L := Dad,R is given by

Lx,y = Ry,x −Rx,y + [adx, ady]− ad[x,y], ∀x, y ∈ g.

By (1), we have

Lx,yz = Jx, y, zK, ∀z ∈ g. (11)

In this case, (g; ad,R) is called the adjoint representation of g.

The representations of Lie-Yamaguti algebras can be characterized by the semidirect
Lie-Yamaguti algebras. This fact is revealed via the following proposition.

Proposition 1 ([11]). Let (g, [·, ·], J·, ·, ·K) be a Lie-Yamaguti algebra and V a vector space. Let
ρ : g → gl(V) and µ : ⊗2g → gl(V) be linear maps. Then, (V; ρ, µ) is a representation of
(g, [·, ·], J·, ·, ·K) if and only if there is a Lie-Yamaguti algebra structure ([·, ·]ρ,µ, J·, ·, ·Kρ,µ) on the
direct sum g⊕ V, which is defined for all x, y, z ∈ g, u, v, w ∈ V as

[x + u, y + v]ρ,µ = [x, y] + ρ(x)v − ρ(y)u, (12)

Jx + u, y + v, z + wKρ,µ = Jx, y, zK+ Dρ,µ(x, y)w + µ(y, z)u − µ(x, z)v, (13)

where Dρ,µ is given by (10). This Lie-Yamaguti algebra (g⊕ V, [·, ·]ρ,µ, J·, ·, ·Kρ,µ) is called the
semidirect product Lie-Yamaguti algebra, and is denoted by g⋉ρ,µ V.

Let us recall the cohomology theory on Lie-Yamaguti algebras given in [3]. Let
(g, [·, ·], J·, ·, ·K) be a Lie-Yamaguti algebra and (V; ρ, µ) a representation of g. We denote the
set of p-cochains by Cp

LieY(g, V) (p ⩾ 1), where

Cn+1
LieY(g, V) ≜


Hom(∧2g⊗ · · · ⊗ ∧2g︸ ︷︷ ︸

n

, V)× Hom(∧2g⊗ · · · ⊗ ∧2g︸ ︷︷ ︸
n

⊗g, V), ∀n ⩾ 1,

Hom(g, V), n = 0.
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In the sequel, we recall the coboundary map of p-cochains:

• If n ⩾ 1, for any ( f , g) ∈ Cn+1
LieY(g, V), the coboundary map

δ = (δI, δII) : Cn+1
LieY(g, V) → Cn+2

LieY(g, V),

( f , g) 7→
(

δI( f , g), δII( f , g)
)

,

is given as follows:(
δI( f , g)

)
(X1, · · · ,Xn+1)

= (−1)n
(

ρ(xn+1)g(X1, · · · ,Xn, yn+1)− ρ(yn+1)g(X1, · · · ,Xn, xn+1)

−g(X1, · · · ,Xn, [xn+1, yn+1])
)

+
n

∑
k=1

(−1)k+1Dρ,µ(Xk) f (X1, · · · , X̂k, · · · ,Xn+1)

+ ∑
1⩽k<l⩽n+1

(−1)k f (X1, · · · , X̂k, · · · ,Xk ◦Xl , · · · ,Xn+1),

and (
δII( f , g)

)
(X1, · · · ,Xn+1, z)

= (−1)n
(

µ(yn+1, z)g(X1, · · · ,Xn, xn+1)− µ(xn+1, z)g(X1, · · · ,Xn, yn+1)
)

+
n+1

∑
k=1

(−1)k+1Dρ,µ(Xk)g(X1, · · · , X̂k, · · · ,Xn+1, z)

+ ∑
1⩽k<l⩽n+1

(−1)kg(X1, · · · , X̂k, · · · ,Xk ◦Xl , · · · ,Xn+1, z)

+
n+1

∑
k=1

(−1)kg(X1, · · · , X̂k, · · · ,Xn+1, Jxk, yk, zK),

where Xi = xi ∧ yi ∈ ∧2g (i = 1, · · · , n + 1), z ∈ g and the operation ◦ on ∧2g

means that
Xk ◦Xl := Jxk, yk, xlK∧ yl + xl ∧ Jxk, yk, ylK.

• if n = 0, for any f ∈ C1
LieY(g, V), the coboundary map

δ : C1
LieY(g, V) → C2

LieY(g, V),

f 7→
(

δI( f ), δII( f )
)

,

is defined by(
δI( f )

)
(x, y) = ρ(x) f (y)− ρ(y) f (x)− f ([x, y]),(

δII( f )
)
(x, y, z) = Dρ,µ(x, y) f (z) + µ(y, z) f (x)− µ(x, z) f (y)− f (Jx, y, zK), ∀x, y, z ∈ g.

Yamaguti showed the following fact.

Proposition 2 ([3]). With the notations above, for any f ∈ C1
LieY(g, V), we have

δI

(
δI( f )), δII( f )

)
= 0 and δII

(
δI( f )), δII( f )

)
= 0.
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Moreover, for all ( f , g) ∈ Cp
LieY(g, V), (p ⩾ 2), we have

δI

(
δI( f , g)), δII( f , g)

)
= 0 and δII

(
δI( f , g)), δII( f , g)

)
= 0.

Thus, the cochain complex (C•
LieY(g, V) =

∞⊕
p=1

Cp
LieY(g, V), δ) is well defined. For convenience,

the cohomology of the cochain complex (C•
LieY(g, V), δ) is called the Yamaguti cohomology in

this paper.

Definition 4. With the above notations, let ( f , g) in Cp
LieY(g, V)) (resp. f ∈ C1

LieY(g, V) for
p = 1) be a p-cochain. If it satisfies δ( f , g) = 0 (resp. δ( f ) = 0), then it is called a p-cocycle. If
there exists (h, s) ∈ Cp−1

LieY(g, V), (resp. t ∈ C1(g, V), if p = 2) such that ( f , g) = δ(h, s) (resp.
( f , g) = δ(t)), then it is called a p-coboundary (p ⩾ 2). The set of p-cocycles and that of p-
coboundaries is denoted by Zp

LieY(g, V) and Bp
LieY(g, V), respectively. The resulting p-cohomology

group is defined to be the factor space:

Hp
LieY(g, V) = Zp

LieY(g, V)/Bp
LieY(g, V) (p ⩾ 2).

3. Cohomology of Relative Rota–Baxter Operators on Lie-Yamaguti Algebras

In this section, we build the cohomology of relative Rota–Baxter operators on Lie-
Yamaguti algebras. Once a relative Rota–Baxter operator on a Lie-Yamaguti algebra is
given, we obtain a Lie-Yamaguti algebra structure on the representation space. Then, we
construct a representation of the representation space (viewed as a Lie-Yamaguti algebra)
on the Lie-Yamaguti algebra as a vector space. At the beginning, we recall some notions
and conclusions in [30] about relative Rota–Baxter operators on Lie-Yamaguti algebras.

Definition 5 ([30]). Let (g, [·, ·], J·, ·, ·K) be a Lie-Yamaguti algebra and (V; ρ, µ) a representation
of g. A linear map T : V → g is called a relative Rota–Baxter operator on g with respect to
(V; ρ, µ) if T satisfies

[Tu, Tv] = T
(

ρ(Tu)v − ρ(Tv)u
)

, (14)

JTu, Tv, TwK = T
(

Dρ,µ(Tu, Tv)w + µ(Tv, Tw)u − µ(Tu, Tw)v
)

, ∀u, v, w ∈ V. (15)

Proposition 3 ([30]). Let T : V −→ g be a relative Rota–Baxter operator on a Lie-Yamaguti
algebra (g, [·, ·], J·, ·, ·K) with respect to (V; ρ, µ). Define

[u, v]T = ρ(Tu)v − ρ(Tv)u,

Ju, v, wKT = Dρ,µ(Tu, Tv)w + µ(Tv, Tw)u − µ(Tu, Tw)v, ∀u, v, w ∈ V.

Then, (V, [·, ·]T , J·, ·, ·KT) is a Lie-Yamaguti algebra, which is the sub-adjacent Lie-Yamaguti
algebra of T. Thus, T is a homomorphism from (V, [·, ·]T , J·, ·, ·KT) to (g, [·, ·], J·, ·, ·K).

In the sequel, we present a representation of the sub-adjacent Lie-Yamaguti algebra
VT on g (viewed as a vectors space). Define two linear maps ϱ : V → gl(g) and ϖ : ⊗2V →
gl(g) by

ϱ(u)x := [Tu, x] + T
(

ρ(x)u
)

, (16)

ϖ(u, v)x := Jx, Tu, TvK− T
(

Dρ,µ(x, Tu)v − µ(x, Tv)u
)

, ∀x ∈ g, u, v ∈ V. (17)

The following lemma gives the explicit formula of Dϱ,ϖ.
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Lemma 1. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to (V; ρ, µ). Then, with the above notations, we have

Dϱ,ϖ(u, v)x = JTu, Tv, xK− T
(

µ(Tv, x)u − µ(Tu, x)v
)

, ∀u, v ∈ V, x ∈ g. (18)

Proof. Since T is a relative Rota–Baxter operator, via direct computation, we have

Dϱ,ϖ(u, v)x
(10)
= ϖ(v, u)x − ϖ(u, v)x + [ϱ(u), ϱ(v)]x − ϱ([u, v]T)x

(16),(17)
= Jx, Tv, TuK− T

(
Dρ,µ(x, Tv)u − µ(x, Tu)v

)
− Jx, Tu, TvK+ T

(
Dρ,µ(x, Tu)v − µ(x, Tv)u

)
+[Tu, [Tv, x]] + [Tu, T(ρ(x)v)] + T(ρ([Tv, x])u) + T(ρ(T(ρ(x)v)u))

−[Tv, [Tu, x]]− [Tv, T(ρ(x)u)]− T(ρ([Tu, x])v)− T(ρ(T(ρ(x)u)v))

−[T(ρ(Tu)v − ρ(Tv)u), x]− T(ρ(x)ρ(Tu)v) + T(ρ(x)ρ(Tv)u)
(14)
= Jx, Tv, TuK− Jx, Tu, TvK+ [Tu, [Tv, x]]− [Tv, [Tu, x]]− [[Tu, Tv], x]

−T
(

Dρ,µ(x, Tv)u − µ(x, Tu)v
)
+ T

(
Dρ,µ(x, Tu)v − µ(x, Tv)u

)
+T(ρ(Tu)ρ(x)v − ρ(T(ρ(x)v)u)− T(ρ(Tv)ρ(x)u − ρ(T(ρ(x)u)v)

+T(ρ([Tv, x])u) + T(ρ(T(ρ(x)v)u))− T(ρ([Tu, x])v)− T(ρ(T(ρ(x)u)v))

−T(ρ(x)ρ(Tu)v) + T(ρ(x)ρ(Tv)u)
(1),(10)
= JTu, Tv, xK− T

(
µ(Tv, x)u − µ(Tu, x)v

)
.

The conclusion thus follows.

Theorem 1. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to (V; ρ, µ). Then, (g; ϱ, ϖ) is a representation of the sub-adjacent Lie-Yamaguti
algebra (V, [·, ·]T , J·, ·, ·KT), where ϱ, ϖ and Dϱ,ϖ are given by (16)–(18), respectively.

Proof. It is evident that if T : V → g is a relative Rota–Baxter operator on a Lie-Yamaguti al-
gebra (g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ), then

NT =

(
0 T
0 0

)
is a Nijenhuis operator. See [12] for more details about Nijenhuis oper-

ators on Lie-Yamaguti algebras on the semidirect product Lie-Yamaguti algebra g⋉ρ,µ V.
Then, we deduce that there is a Lie-Yamaguti algebra structure on V ⊕ g ∼= g⊕ V for all
x, y, z ∈ g, u, v, w ∈ V, given by

[x + u, y + v]NT

= [NT(x + u), y + v]ρ,µ + [x + u, NT(y + v)]ρ,µ − NT [x + u, y + v]ρ,µ

= [Tu, y + v]ρ,µ + [x + u, Tv]ρ,µ − NT([x, y] + ρ(x)v − ρ(y)u)

= [Tu, y] + ρ(Tu)v + [x, Tv]− ρ(Tv)u − T(ρ(x)v − ρ(y)u)

= [u, v]T + ϱ(u)y − ϱ(v)x,

and
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Jx + u, y + v, z + wKNT

= JNT(x + u), NT(y + v), z + wKρ,µ + JNT(x + u), y + v, NT(z + w)Kρ,µ

+Jx + u, NT(y + v), NT(z + w)Kρ,µ

−NT

(
JNT(x + u), y + v, z + wKρ,µ + Jx + u, NT(y + v), z + wKρ,µ

+Jx + u, y + v, NT(z + w)Kρ,µ

)
= JTu, Tv, z + wKρ,µ + JTu, y + v, TwKρ,µ + Jx + u, Tv, TwKρ,µ

−NT

(
JTu, y + v, z + wKρ,µ + Jx + u, Tv, z + wKρ,µ + Jx + u, y + v, TwKρ,µ

)
= JTu, Tv, zK+ Dρ,µ(Tu, Tv)w + JTu, y, TwK− µ(Tu, Tw)v + Jx, Tv, TwK+ µ(Tv, Tw)u

−T
(

Dρ,µ(Tu, y)w − µ(Tu, z)v + Dρ,µ(x, Tv)w + µ(Tv, z)u + µ(y, Tw)u − µ(x, Tw)v
)

= Ju, v, wKT + Dϱ,ϖ(u, v)z + ϖ(v, w)x − ϖ(u, w)y,

which implies that (g; ϱ, ϖ) is a representation of Lie-Yamaguti algebra (V, [·, ·]T , J·, ·, ·KT).
This finishes the proof.

Having endowed the vector space V with a Lie-Yamaguti algebra structure
([·, ·]T , J·, ·, ·KT) and established a representation (g; ϱ, ϖ) of (V, [·, ·]T , J·, ·, ·KT), which gives
rise to the corresponding Yamaguti cohomology of (V, [·, ·]T , J·, ·, ·KT), with coefficients in
the representation (g; ϱ, ϖ):(

⊕∞
p=1 Cp

LieY(V, g), δT = (δT
I , δT

II)
)

.

More precisely, if n ⩾ 1, δT : Cn+1
LieY(V, g) → Cn+2

LieY(V, g) for any
( f , g) ∈ Cn+1

LieY(V, g) is given by(
δT

I ( f , g)
)
(V1, · · · ,Vn+1)

= (−1)n
(
[Tun+1, g(V1, · · · ,Vn, vn+1)]− [Tvn+1, g(V1, · · · ,Vn, un+1)]

−g(V1, · · · ,Vn, ρ(Tun+1)vn+1 − ρ(Tvn+1)un+1) + T
(
ρ(g(V1, · · · ,Vn, vn+1))un+1

)
−T

(
ρ(g(V1, · · · ,Vn, un+1))vn+1

))
+

n+1

∑
k=1

(−1)k+1
(q

Tuk, Tvk, f (V1, · · · , V̂k, · · · ,Vn+1)
y

+T
(

µ(Tvk, f (V1, · · · , V̂k, · · · ,Vn+1))uk
)
− µ(Tuk, f (V1, · · · , V̂k, · · · ,Vn+1))vk

))
+ ∑

1⩽k<l⩽n+1
(−1)k f (V1, · · · , V̂k, · · · ,Vk ◦ Vl , · · · ,Vn+1),

and
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(
δT

II( f , g)
)
(V1, · · · ,Vn+1, w)

= (−1)n
(
Jg(V1, · · · ,Vn, un+1), Tvn+1, TwK− Jg(V1, · · · ,Vn, vn+1), Tun+1, TwK

+T
(

Dρ,µ(g(V1, · · · ,Vn, un+1), Tvn+1)w − µ(g(V1, · · · ,Vn, un+1), Tw)vn+1

+Dρ,µ(g(V1, · · · ,Vn, vn+1), Tun+1)w − µ(g(V1, · · · ,Vn, vn+1), Tw)un+1
))

+
n+1

∑
k=1

(−1)k
(q

Tuk, Tvk, g(V1, · · · , V̂k, · · · ,Vn+1, w)
y

+T
(

µ(Tvk, g(V1, · · · , V̂k, · · · ,Vn+1, w))uk − µ(Tuk, g(V1, · · · , V̂k, · · · ,Vn+1, w))vk

))
+ ∑

1⩽k<l⩽n+1
(−1)kg(V1, · · · , V̂k, · · · ,Vk ◦ Vl , · · · ,Vn+1, w)

+
n+1

∑
k=1

(−1)kg(V1, · · · , V̂k, · · · ,Vn+1, Juk, vk, wKT),

where Vi = ui ∧ vi ∈ ∧2V (1 ⩽ i ⩽ n + 1), w ∈ V and Vk ◦ Vl = Juk, vk, ulKT ∧ vl + ul ∧
Juk, vk, vlKT .

In particular, for any f ∈ C1
LieY(V, g) = Hom(V, g),

δT : C1
LieY(V, g) → C2

LieY(V, g), f 7→ (δT
I ( f ), δT

II( f ))

is given by(
δT

I ( f )
)
(u, v) = [Tu, f (v)]− [Tv, f (u)] + T

(
ρ( f (v)u)− ρ( f (u)v)

)
− f ([u, v]T),(

δT
II( f )

)
(u, v, w) = JTu, Tv, f (w)K+ J f (u), Tv, TwK− J f (v), Tu, TwK− f (Ju, v, wKT)

−T
(

Dρ,µ( f (u), Tv)w − Dρ,µ( f (v), Tu)w + µ(Tv, f (w))u − µ(Tu, f (w))v

−µ( f (u), Tw)v + µ( f (v), Tw)u
)

, ∀u, v, w ∈ V.

In the following, we present the set of 0-cochains and the corresponding explicit
coboundary map. For all X ∈ ∧2g, define δ(X) : V → g by

δ(X)v := TDρ,µ(X)v − JX, TvK, ∀v ∈ V. (19)

Proposition 4. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·]J·, ·, ·K)
with respect to a representation (V; ρ, µ). Then, δ(X) is a 1-cocycle of the Lie-Yamaguti algebra
(V, [·, ·]T , J·, ·, ·KT) with the coefficients in the representation (g; ϱ, ϖ).
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Proof. It is sufficient to show that both δT
I (δ(X)) and δT

II(δ(X)) all vanish. Indeed, for any
u, v, w ∈ V, we have

δT
I

(
δ(X)

)
(u, v)

(14)
= ϱ(u)δ(X)(v)− ϱ(v)δ(X)(u)− δ(X)([u, v]T)

(16)
= [Tu, δ(X)(v)] + T(ρ(δ(X)(v))u)− [Tv, δ(X)(u)]− T(ρ(δ(X)(u))v)

−T(Dρ,µ(X)[u, v]T) + JX, T[u, v]TK
(19)
= [Tu, TDρ,µ(X)v]− [Tu, JX, TvK] + T(ρ(T(Dρ,µ(X)v))u)− T(ρ(JX, TvK)u)

−[Tv, TDρ,µ(X)u] + [Tv, JX, TuK]− T(ρ(T(Dρ,µ(X)u))v) + T(ρ(JX, TuK)v)
−T(Dρ,µ(X)[u, v]T) + JX, T[u, v]TK

(14)
= T(ρ(Tu)Dρ,µ(X)v)− T(ρ(T(Dρ,µ(X)v))u)− [Tu, JX, TvK] + T(ρ(T(Dρ,µ(X)v))u)

−T(ρ(JX, TvK)u)− T(ρ(Tv)Dρ,µ(X)u) + T(ρ(T(Dρ,µ(X)u))v) + [Tv, JX, TuK]
−T(ρ(T(Dρ,µ(X)u))v) + T(ρ(JX, TuK)v)
−T(Dρ,µ(X)(ρ(Tu)v − ρ(Tv)u)) + JX, [Tu, Tv]K

(3),(7)
= 0.

Similarly, we also deduce that

δT
II(δ(X))(u, v, w) = 0, ∀u, v, w ∈ V.

This finishes the proof.

Thus far, we have constructed a new complex starting from 0-cochains, whose coho-
mology is defined to be that of relative Rota–Baxter operators.

Definition 6. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ). Define the set of n-cochains by

Cn
T(V, g) :=

{
Cn

LieY(V, g), n ⩾ 1,
∧2g, n = 0.

(20)

Define the coboundary map d : Cn
T(V, g) → Cn+1

T (V, g) by

d :=

{
δT = (δT

I , δT
II), n ⩾ 1,

δ, n = 0.
(21)

Thus, we obtain a well-defined cochain complex (C•
T(V, g) =

∞⊕
n=0

Cn
T(V, g), d), whose cohomology

is called the cohomology of relative Rota–Baxter operator T on the Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to the representation (V; ρ, µ). Denote the set of n-cocycles and n-
coboundaries by Zn(V, g) and Bn(V, g), respectively. The n-th cohomology group of relative
Rota–Baxter operator T is taken to be

Hn
T(V, g) := Zn

T(V, g)/Bn
T(V, g), n ⩾ 1. (22)

4. Deformatons of Relative Rota–Baxter Operators on Lie-Yamaguti Algebras

In this section, we use the cohomology theory constructed in the former section to
characterize deformations of relative Rota–Baxter operators on Lie-Yamaguti algebras.
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4.1. Linear Deformations of Relative Rota–Baxter Operators on Lie-Yamaguti Algebras

In this subsection, we aim to perform linear deformations of relative Rota–Baxter
operators on Lie-Yamaguti algebras, and we show that the infinitesimals of two equivalent
linear deformations of a relative Rota–Baxter operator on Lie-Yamaguti algebra are in the
same cohomology class of the first cohomology group.

Definition 7. Let T and T′ be two relative Rota–Baxter operators on a Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ). A homomorphism from T′ to T is a
pair (ϕg, ϕV), where ϕg : g → g is a Lie-Yamaguti algebra homomorphism and ϕV : V → V is a
linear map satisfying

T ◦ ϕV = ϕg ◦ T′ (23)

ϕV(ρ(x)v) = ρ(ϕg(x))ϕV(v), (24)

ϕVµ(x, y)(v) = µ(ϕg(x), ϕg(y))(ϕV(v)), ∀x, y ∈ g, v ∈ V. (25)

In particular, if ϕg and ϕV are invertible, then (ϕg, ϕV) is called an isomorphism from T′ to T.

Through direct computation, we have the following lemma.

Lemma 2. Let T and T′ be two relative Rota–Baxter operators on a Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ), and (ϕg, ϕV) a homomorphism from T′

to T; then, we have

ϕV Dρ,µ(x, y)(v) = Dρ,µ(ϕg(x), ϕg(y))(ϕV(v)), ∀x, y ∈ g, v ∈ V. (26)

Let T : V −→ g be a relative Rota–Baxter operator on a Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ); then a pre-Lie-Yamaguti alge-
bra structure induces (∗T , {·, ·, ·}T) on V, which is defined to be

u ∗T v = ρ(Tu)v,

{u, v, w}T = µ(Tv, Tw)u, ∀u, v, w ∈ V.

For more details about pre-Lie-Yamaguti algebras, see [30]. In the sequel, we would write
D for Dρ,µ without ambiguity.

Proposition 5. Let T and T′ be two relative Rota–Baxter operators on a Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ), and (ϕg, ϕV) a homomorphism from T′

to T. Then, ϕV is a homomorphism from a pre-Lie-Yamaguti algebra from (V, ∗T′ , {·, ·, ·}T′) to
(V, ∗T , {·, ·, ·}T).

Proof. For all u, v, w ∈ V, we have

ϕV(u ∗T′ v) = ϕV(ρ(T′u)v) = ρ(ϕg(T′u)ϕV(v))

= ρ(T(ϕV(u))ϕV(v)) = ϕV(u) ∗T ϕV(v),

ϕV({u, v, w}T′) = ϕV(µ(T′v, T′w)u) = µ(ϕg(T′v), ϕg(T′w))(ϕV(u))

= µ(T(ϕV(v)), T(ϕV(w)))(ϕV(u)) = {ϕV(u), ϕV(v), ϕV(w)}T .

This finishes the proof.

The notion of linear deformations of relative Rota–Baxter operators is given as follows.

Definition 8. Let (g, [·, ·], J·, ·, ·K) be a Lie-Yamaguti algebra, and (V; ρ, µ) a representation of g.
Suppose that T, T : V → g are two linear maps, where T is a relative Rota–Baxter operator on g

with respect to (V; ρ, µ). If Tt = T + tT are still relative Rota–Baxter operators on g with respect
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to (V; ρ, µ) for all t, we say that T generates a linear deformation of the relative Rota–Baxter
operator T.

Remark 1. It is easy to see that if T generates a linear deformation of the relative Rota–Baxter
operator T, then T satisfies the following conditions:

(i) T ∈ C1(V, g) is a 1-cocycle of δT ;
(ii) T is a relative Rota–Baxter operator on the Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K) with respect

to the representation (V; ρ, µ).

Let (A, ∗, {·, ·, ·}) be a pre-Lie-Yamaguti algebra, and let ϕ : ⊗2 A → A and ω1, ω2 :
⊗3 A → A be linear maps. If the linear operations (∗t, {·, ·, ·}t) defined by

x ∗t y = x ∗ y + tϕ(x, y), (27)

{x, y, z}t = {x, y, z}+ tω1(x, y, z) + t2ω2(x, y, z), ∀x, y, z ∈ A, (28)

are still pre-Lie-Yamaguti algebra structures for all t, we say that (ϕ, ω1, ω2) generates a
linear deformation of the pre-Lie-Yamaguti algebra A.

Thanks to the relationship between relative Rota–Baxter operators on Lie-Yamaguti
algebras and pre-Lie-Yamaguti algebra, we have the following proposition.

Proposition 6. If T generates a linear deformation of the relative Rota–Baxter operator T on a
Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ), then the triple
(ϕT, ω1

T, ω2
T) generates a linear deformation of the underlying pre-Lie-Yamaguti algebra

(V, ∗, {·, ·, ·}T), where

ϕT(u, v) = ρ(T(u))v, (29)

ω1
T(u, v, w) = µ(Tv,Tw)u + µ(Tv, Tw)u, (30)

ω2
T(u, v, w) = µ(Tv,Tw)u, ∀u, v, w ∈ V. (31)

Proof. Denote the corresponding pre-Lie-Yamaguti algebra structure induced by the rel-
ative Rota–Baxter operator Tt := T + tT by (∗t, {·, ·, ·}t). Indeed, for all u, v, w ∈ V, we
have that

u ∗t v = ρ((T + tT)u)v = ρ(Tu)v + tρ(Tu)v = u ∗T v + tϕT(u, v),

{u, v, w}t = µ((T + tT)v, (T + tT)w)u

= µ(Tv, Tw)u + t
(

µ(Tv,Tw)u + µ(Tv, Tw)u
)
+ t2µ(Tv,Tw)u

= {u, v, w}T + tω1
T(u, v, w) + t2ω2

T(u, v, w).

This finishes the proof.

Definition 9. Let T : V → g be a relative Rota–Baxter operator on a Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ):

(i) Two linear deformations T1
t = T + tT1 and T2

t = T + tT2 are said to be equivalent if there
exists an element X ∈ ∧2g such that (Idg + tLX, IdV + tD(X)) is a homomorphism from T2

t
to T1

t .
(ii) A linear deformation Tt = T + tT of a relative Rota–Baxter operator T is said to be trivial if

there exists an element X ∈ ∧2g such that (Idg + tLX, IdV + tD(X)) is a homomorphism
from Tt to T.
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Let (Idg + tLX, IdV + tD(X)) be a homomorphism from T2
t to T1

t . Then, Idg + tLX

is a Lie-Yamaguti algebra homomorphism of g, i.e., the following equalities hold: for all
x, y, z ∈ g,

[JX, xK, JX, yK] = 0, (32)

JJX, xK, JX, yK, zK+ JJX, xK, y, JX, zKK+ Jx, JX, yK, JX, zKK = 0, (33)

JJX, xK, JX, yK, JX, zKK = 0. (34)

By T1
t
(
(IdV + tD(X))v

)
=

(
Idg + tLX

)
T2

t (v), we have

(T2 − T1)(v) = T
(

D(X)v
)
− JX, TvK, (35)

T1

(
D(X)v

)
= JX,T2(v)K. (36)

By
(

IdV + tD(X)
)
(ρ(x)v) = ρ

(
(Idg + tLX)(x)

)
(IdV + tD(X))(v), we have

ρ(JX, xK)D(X) = 0. (37)

Finally, by
(

IdV + tD(X)
)

µ(z, w)v = µ
(
(Idg+ tLX)z, (Idg+ tLX)w

)
(IdV + tD(X))v,

we have

µ(z, JX, wK)D(X) + µ(JX, zK, w)D(X) + µ(JX, zK, JX, wK) = 0, (38)

µ(JX, zK, JX, wK)D(X) = 0. (39)

Note that (35) means that there exists X ∈ ∧2g, such that T2 − T1 = δ(X). Thus, we
have the following key conclusion in this section.

Theorem 2. Let T : V → g be a relative Rota–Baxter operator on a Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ). If two linear deformations T1

t = T + tT1
and T2

t = T + tT2 of T are equivalent, then T1 and T2 are in the same class of the cohomology
group H1

T(V, g).

Definition 10. Let T : V → g be a relative Rota–Baxter operator on a Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ). An element X ∈ ∧2g is called a Nijen-
huis element with respect to T if X satisfies (32)–(34), (38), (39) and the following equation

JX, T(D(X)v)− JX, TvKK = 0, ∀v ∈ V. (40)

We denote the set of Nijenhuis elements with respect to T by Nij(T).

It is obvious that a trivial deformation of a relative Rota–Baxter operator on a Lie-
Yamaguti algebra gives rise to a Nijenhuis element. Indeed, the converse is also true. Let
us first present the following lemma.

Lemma 3. Let T : V → g be a relative Rota–Baxter operator on a Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ). Let ϕg : g → g be a Lie-Yamaguti algebra iso-
morphism and ϕV : V → V an isomorphism between vector spaces such that Equations (24) and (25)
hold. Then, ϕ−1

g ◦ T ◦ ϕV : V → g is a relative Rota–Baxter operator on the Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to the representation (V; ρ, µ).

Theorem 3. Let T : V → g be a relative Rota–Baxter operator on a Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ). Then, for any Nijenhuis element X ∈
∧2g, Tt := T + tT with T := δ(X) is a trivial linear deformation of the relative Rota–Baxter
operator T.
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Proof. For any Nijenhuis element X ∈ Nij(T) ⊂ ∧2g, we define

T = δX. (41)

Since X is a Nijenhuis element, for all t, Tt = T + tT satisfies

(Idg + tLX) ◦ Tt = T ◦ (IdV + tD(X)),

(IdV + tD(X))ρ(x)v = ρ((Idg + tLX)(x))(IdV + tD(X))(v),

(IdV + tD(X))µ(x, y)v = µ(Idg + tLX)(x), Idg + tLX)(y))(IdV + tD(X))(v), ∀x, y ∈ g, v ∈ V.

For a sufficently small t, we see that Idg + tLX is a Lie-Yamaguti algebra isomorphism and
that IdV + tD(X) is an isomorphism between vector spaces. Thus, we have

Tt = (Idg + tLX)
−1 ◦ T ◦ (IdV + tD(X)).

By Lemma 3, we see that Tt is a relative Rota–Baxter operator on the Lie-Yamaguti algebra
(g, [·, ·], J·, ·, ·K) with respect to (V; ρ, µ) for a sufficiently small t. Thus, T = δX satisfies
conditions (i) and (ii) in Remark 1. Therefore, Tt is a relative Rota–Baxter operator for
all t, which implies that T generates a liner deformation of T. It is easy to see that this
deformation is trivial.

At the end of this subsection, we present two examples of Nijenhuis elements associ-
ated to Rota–Baxter operators.

Example 4. Let (g, [·, ·], J·, ·, ·K) be a two-dimensional Lie-Yamaguti algebra, whose nontrivial
brackets are given by, with respect to a basis {e1, e2}:

[e1, e2] = e1, Je1, e2, e2K = e1.

Moreover,

R =

(
0 a
0 b

)
is a Rota–Baxter operator on g. Then, via direct computation, any element in ∧2g is a Nijenhuis
element of R.

Example 5. Let g be a four-dimensional Lie-Yamaguti algebra with a basis {e1, e2, e3, e4} defined by

[e1, e2] = 2e4, Je1, e2, e1K = e4

and

R =


0 a12 0 0
0 0 0 0

a31 a32 a33 a34
a41 a42 a43 a44


is a Rota–Baxter operator on g. Then any element in ∧2g is a Nijenhuis element of R. In particular,

X1 = e1 ∧ e2, X2 = e1 ∧ e3, X3 = e1 ∧ e4,

X4 = e2 ∧ e3, X5 = e2 ∧ e4, X6 = e3 ∧ e4,

are all Nijenhuis elements of R.

4.2. Formal Deformations of Relative Rota–Baxter Operators on Lie-Yamaguti Algebras

In this subsection, we study formal deformations of relative Rota–Baxter operators
on Lie-Yamaguti algebras. Let K[[t]] be a ring of power series of one variable t. For any
linear vector space V, V[[t]] denotes the vector space of a formal power series of t with the
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coefficients in V. If (g, [·, ·], J·, ·, ·K) is a Lie-Yamaguti algebra, then there is a Lie-Yamaguti
algebra structure over the ring K[[t]] on g[[t]]] given by[ ∞

∑
i=0

xiti,
∞

∑
j=0

yjtj
]

=
∞

∑
s=0

∑
i+j=s

[
xi, yj

]
ts, (42)

t
∞

∑
i=0

xiti,
∞

∑
j=0

yjtj,
∞

∑
k=0

zktk

|

=
∞

∑
s=0

∑
i+j+k=s

q
xi, yj, zk

y
ts, ∀xi, yj, zk ∈ g. (43)

For any representation (V; ρ, µ) of a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K), there is
a natural representation of the Lie-Yamaguti algebra g[[t]] on the K[[t]]-module V[[t]],
given by

ρ
( ∞

∑
i=0

xiti
)( ∞

∑
k=0

vktk
)

=
∞

∑
s=0

∑
i+k=s

ρ(xi)vkts, (44)

µ
( ∞

∑
i=0

xiti,
∞

∑
j=0

yjtj
)( ∞

∑
k=0

vktk
)

=
∞

∑
s=0

∑
i+j+k=s

µ(xi, xj)vkts, ∀xi, yj ∈ g, vk ∈ V. (45)

Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ). Consider the power series

Tt =
∞

∑
i=0

Titi, Ti ∈ Hom(V, g), (46)

that is, Tt ∈ HomK(V, g)[[t]] = HomK(V, g[[t]]).

Definition 11. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ). Suppose that Tt is given by (46), where T0 = T, and Tt
also satisfies

[Ttu, Ttv] = Tt

(
ρ(Ttu)v − ρ(Ttv)u

)
, (47)

JTtu, Ttv, TtwK = Tt

(
Dρ,µ(Ttu, Ttv)w + µ(Ttv, Ttw)u − µ(Ttu, Ttw)v

)
, ∀u, v, w ∈ V. (48)

We say that Tt is a formal deformation of T.

Recall that a formal deformation of a Lie-Yamaguti algebra (g, [·, ·]J·, ·, ·K) is a pair
of power series ft = ∑∞

i=0 fiti and gt = ∑∞
j=0 gjtj, where f0 = [·, ·] and g0 = J·, ·, ·K, and

( ft, gt) defines a Lie-Yamaguti algebra structure on g[[t]] ([9]). Based on the relationship
between the relative Rota–Baxter operators and the pre-Lie-Yamaguti algebras, we have
the following proposition.

Proposition 7. If Tt = ∑∞
i=0 Titi is a formal deformation of a relative Rota–Baxter operator T on a

Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K) with respect to (V; ρ, µ), then ([·, ·]Tt , J·, ·, ·KTt
) is a formal

deformation of the Lie-Yamaguti algebra (V, [·, ·]T , J·, ·, ·KT), where

[u, v]Tt =
∞

∑
i=0

(
ρ(Tiu)v − ρ(Tiv)u

)
ti, (49)

Ju, v, wKTt
=

∞

∑
k=0

∑
i+j=k

(
Dρ,µ(Tiu,Tjv)w + µ(Tiv,Tjw)u − µ(Tiu,Tjw)v

)
tk, u, v, w ∈ V. (50)

Substituting Equation (46) into Equations (47) and (48) and comparing the coefficients
of ts (s ⩾ 0) yields that, for all u, v, w ∈ V,
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∑
i+j=s,
i,j⩾0

(
[Tiu,Tjv]− Ti

(
ρ(Tju)v − ρ(Tjv)u

))
ts = 0, (51)

∑
i+j+k=s,

i,j,k⩾0

(q
Tiu,Tjv,Tkw

y
− Ti

(
Dρ,µ(Tju,Tkv)w + µ(Tjv,Tkw)u − µ(Tju,Tkw)v

))
ts = 0. (52)

Proposition 8. If Tt = ∑∞
i=0 Titi is a formal deformation of a relative Rota–Baxter operator

T on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K) with respect to (V; ρ, µ). Then δTT1 = 0, i.e.,
T1 ∈ C1

T(V, g) is a 1-cocycle of the relative Rota–Baxter operator T.

Proof. When s = 1, Equations (51) and (52) are equivalent to

[Tu,T1v]− [T1u, Tv]

= T
(
ρ(T1u)v − ρ(T1v)u

)
+ T1

(
ρ(Tu)v − ρ(Tv)u

)
,

and

JT1u, Tv, TwK+ JTu,T1v, TwK+ JTu, Tv,T1wK

= T1

(
Dρ,µ(Tu, Tv)w + µ(Tv, Tw)u − µ(Tu, Tw)v

)
+T

(
Dρ,µ(T1u, Tv)w + µ(T1v, Tw)u − µ(T1u, Tw)v

)
+T

(
Dρ,µ(Tu,T1v)w + µ(Tv,T1w)u − µ(Tu,T1w)v

)
, ∀u, v, w ∈ V,

respectively, which implies that δT(T1) = 0, i.e., T1 is a 1-cocycle of δT .

Definition 12. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ). Then the 1-cocycle T1 is called the infinitesimal of the
formal deformation Tt = ∑∞

i=0 Titi of T.

In the sequel, let us present the notion of equivalent formal deformations of relative
Rota–Baxter operators on Lie-Yamaguti algebras.

Definition 13. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ). Two formal deformations Tt = ∑∞

i=0 Titi and
Tt = ∑∞

i=0 Titi, where T0 = T0 = T are said to be equivalent if there exists X ∈ ∧2g, ϕi ∈ gl(g)
and φi ∈ gl(V), i ⩾ 2, such that for

ϕt = Idg + tLX +
∞

∑
i=2

ϕiti, φt = IdV + tD(X) +
∞

∑
i=2

φiti, (53)

the following holds:

[ϕt(x), ϕt(y)] = ϕt[x, y], Jϕt(x), ϕt(y), ϕt(z)K = ϕtJx, y, zK, ∀x, y, z ∈ g, (54)

φtρ(x)v = ρ(ϕt(x))(φt(v)), φtµ(x, y)v = µ(ϕt(x), ϕt(y))(φt(v)), ∀x, y ∈ g, v ∈ V, (55)

and

Tt ◦ φt = ϕt ◦ Tt (56)
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as K[[t]]-module maps.

The following theorem is the second key conclusion in this section.

Theorem 4. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ). If two formal deformations Tt = ∑∞

i=0 Titi and
Tt = ∑∞

i=0 Titi are equivalent, then their infinitesimals are in the same cohomology classes.

Proof. Let (ϕt, φt) be the maps defined by (53), which makes two deformations
Tt = ∑∞

i=0 Titi and Tt = ∑∞
i=0 Titi equivalent. By (56), we have

T1v = T1v + TD(X)v − JX, TvK = T1v + δ(X)(v), ∀v ∈ V,

which implies that T1 and T1 are in the same cohomology classes.

Definition 14. A relative Rota–Baxter operator T is rigid if all formal deformations of T are trivial.

Proposition 9. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ). If Z1(V, g) = δ(Nij(T)), then T is rigid.

Proof. Let Tt = ∑∞
i=0 Titi be a formal deformation of T, then Proposition 8 gives

T1 ∈ Z1(V, g). By the assumption, T1 = δ(X) for some X ∈ ∧2g. Then setting
ϕt = Idg + tLX, φt = IdV + tD(X), we obtain a formal deformation:

Tt := ϕ−1
t ◦ Tt ◦ φt.

Thus, Tt is equivalent to Tt. Moreover, we have

Tt = (Id − LXt + (LX)
2t2 + · · ·+ (−1)i(LX)

iti + · · · )(Tt(v + tD(X)v))

= Tv + (T1v + T(D(X)v)− JX, TvK)t + T̄2vt2 + · · ·
= Tv + T̄2(v)t2 + · · · .

By repeating this procedure, we can determine that Tt is equivalent to T.

4.3. Higher-Order Deformations of Relative Rota–Baxter Operators on Lie-Yamaguti Algebras

In this subsection, we introduce a special cohomology class associated with an order
n deformation of a relative Rota–Baxter operator, and show that a deformation of order
n is extendable if and only if this cohomology class in the second cohomology group is
trivial. Thus, we call this cohomology class: the obstruction class of a deformation of an
extendable order n.

Definition 15. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ). If Tt = ∑n

i=0 Titi with T0 = T, Ti ∈ HomK(V, g),
i = 1, 2, · · · , n, a K[t]/(tn+1)-module from V[t]/(tn+1) to the Lie-Yamaguti algebra g[t]/(tn+1)
is defined, satisfying

[Ttu, Ttv] = Tt

(
ρ(Tt)u − ρ(Ttv)u

)
, (57)

JTtu, Ttv, TtwK = Tt

(
Dρ,µ(Ttu, Ttv)w + µ(Ttv, Ttw)u − µ(Ttu, Ttw)v

)
, ∀u, v, w ∈ V, (58)

hence, we say that Tt is an order n deformation of T.

Remark 2. The left-hand side of Equations (57) and (58) hold in the Lie-Yamaguti algebra
g[t]/(tn+1) and the right-hand side of Equations (57) and (58) make sense since Tt is a K[t]/(tn+1)-
module map.
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Definition 16. Let Tt = ∑n
i=0 Titi be an order n deformation of a relative Rota–Baxter operator T

on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K) with respect to a representation (V; ρ, µ). If there exists
a 1-cochain Tn+1 ∈ HomK(V, g) such that T̃t = Tt + Tn+1tn+1 is an order n + 1 deformation of
T, then we say that Tt is extendable.

The following theorem is the third key conclusion in this section.

Theorem 5. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ), and Tt = ∑n

i=0 Titi be an order n deformation of T.
Then Tt is extendable if and only if the cohomology class [ObT] ∈ H2

T(V, g) is trivial, where
ObT = (ObTI ,ObTII ) ∈ C2

T(V, g) is defined by

ObTI (v1, v2) = ∑
i+j=n+1,

i,j⩾0

(
[Tiv1,Tjv2]− Ti

(
ρ(Tjv1)v2 − ρ(Tjv2)v1

))
, (59)

ObTII (v1, v2, v3) = ∑
i+j+k=n+1,

i,j,k⩾0

(q
Tiv1,Tjv2,Tkv3

y
− Ti

(
D(Tjv1,Tkv2)v3 + µ(Tjv2,Tkv3)v1 (60)

−µ(Tjv1,Tkv3)v2

))
, ∀v1, v2, v3 ∈ V.

Proof. Let T̃t = ∑n+1
i=0 Titi be the extension of Tt, then for all u, v, w ∈ V,

[T̃tu, T̃tv] = T̃t

(
ρ(T̃tu)v − ρ(T̃tv)u

)
, (61)

r
T̃tu, T̃tv, T̃tw

z
= T̃t

(
D(T̃tu, T̃tv)w + µ(T̃tv, T̃tw)u − µ(T̃tu, T̃tw)v

)
. (62)

Expanding Equation (61) and comparing the coefficients of tn yields that

∑
i+j=n+1,

i,j⩾0

(
[Tiu,Tjv]− Ti

(
ρ(Tju)v − ρ(Tjv)u

))
= 0,

which is equivalent to

∑
i+j=n+1,

i,j⩾1

(
[Tiu,Tjv]− Ti

(
ρ(Tju)v − ρ(Tjv)u

))
+ [Tn+1u, Tv] + [Tu,Tn+1v]

−
(

T
(

ρ(Tn+1u)v − ρ(Tn+1v)u
)
+ Tn+1

(
ρ(Tu)v − ρ(Tv)u

))
= 0,

i.e.,

ObTI + δT
I (Tn+1) = 0. (63)

Similarly, expanding Equation (62) and comparing the coefficients of tn yields that

ObTII + δT
II(Tn+1) = 0. (64)

From (63) and (64), we obtain
ObT = −δT(Tn+1).

Thus, the cohomology class [ObT] is trivial.
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Conversely, suppose that the cohomology class [ObT] is trivial, then there exists
Tn+1 ∈ C1

T(V, g), such that ObT = −δT(Tn+1). Set T̃t = Tt + Tn+1tn+1. Then, for all
0 ⩽ s ⩽ n + 1, T̃t satisfies

∑
i+j=s

(
[Tiu,Tjv]− Ti

(
ρ(Tju)v − ρ(Tjv)u

))
= 0,

∑
i+j+k=s

(q
Tiu,Tjv,Tkw

y
− Ti

(
D(Tju,Tkv)w + µ(Tjv,Tkw)u − µ(Tju,Tkw)v

))
= 0.

which implies that T̃t is an order n + 1 deformation of T. Hence, T̃t is an extension of Tt.

Definition 17. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ), and Tt = ∑n

i=0 Titi be an order n deformation of T. Then
the cohomology class [ObT] ∈ H2

T(V, g) defined in Theorem 5 is called the obstruction class of
Tt being extendable.

Corollary 1. Let T be a relative Rota–Baxter operator on a Lie-Yamaguti algebra (g, [·, ·], J·, ·, ·K)
with respect to a representation (V; ρ, µ). If H2

T(V, g) = 0, then every 1-cocycle in Z1
T(V, g) is the

infinitesimal of some formal deformation of the relative Rota–Baxter operator T.
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