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Abstract: We define and study enriched Suzuki mappings in Hadamard spaces. The results obtained
here are extending fundamental findings previously established in related research. The extension is
realized with respect to at least two different aspects: the setting and the class of involved operators.
More accurately, Hilbert spaces are particular Hadamard spaces, while enriched Suzuki nonexpansive
mappings are natural generalizations of enriched nonexpansive mappings. Next, enriched Suzuki
nonexpansive mappings naturally contain Suzuki nonexpansive mappings in Hadamard spaces.
Besides technical lemmas, the results of this paper deal with (1) the existence of fixed points for
enriched Suzuki nonexpansive mappings and (2) ∆ and strong (metric) convergence of Picard iterates
of the α-averaged mapping, which are exactly Krasnoselskij iterates for the original mapping.

Keywords: enriched Suzuki mapping; Hadamard space; fixed point; Picard iteration; convergence

MSC: 47H10; 54H25; 37C25

1. Introduction

In some recent papers [1–4], Berinde and Păcurar introduced a technique for extending
the scope of several well-known classes of mappings (such as contractions, nonexpansive,
Kannan, and Chatterjea) for which the authors have used the term enrichment. The idea
is to consider mappings, say, T, which do not necessarily obey any contraction-type con-
dition but satisfy such a condition for pairs of points obtained as affine combinations of
x and Tx and, respectively, y and Ty. For instance, in a normed space X, the enriched
nonexpansiveness condition, for α ∈ (0, 1), writes as

∥((1 − α)x + αTx)− ((1 − α)y + αTy)∥ ≤ ∥x − y∥, for all x, y ∈ X.

In other words, the mapping T is enriched nonexpansive if and only if its associated α-
averaged mapping Tα = (1 − α)Id + αT is nonexpansive. The usefulness of this approach,
when it comes to the existence of fixed points, stems from the fact that the enriched
versions have the same fixed point sets as the original mappings. Moreover, both mappings
oftentimes have similar properties with respect to associated common iterates, a fact that
plays a key role while obtaining convergence results.

A natural task is to extend these fruitful methods and ideas to other settings, such as
geodesic spaces, or, more precisely, to complete CAT(0) spaces also known as Hadamard
spaces, which can be seen as important nonlinear generalizations of Hilbert spaces, and
provide a suitable setting for nonlinear analysis and optimization problems (see also [5,6]).
The fact that this is a suitable setting for developing fixed point theoretic results has been
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indicated in the pioneering works of Kirk [7,8] (also, for a basic introduction into the subject,
we refer the reader to [9]).

In a recent paper [10], enriched contractions and enriched nonexpansive mappings
were studied in the setting of Hadamard spaces by Salisu et al. The approach in [10] was
based on taking the squares in the respective inequalities and exploiting the relationship
between the square of the norm and the inner product, which, for the setting of Hadamard
spaces, was replaced by the quasi-linearization map (for details, please see [11]). However,
one can argue that invoking the quasi-linearization map while extending the enrichment
techniques to Hadamard spaces is not necessary at all, at least for mappings whose def-
inition does not involve the inner product. More precisely, the natural analogue of the
averaged mapping in the setting of Hadamard spaces is actually the mapping defined by
Tα = (1 − α)I ⊕ αT, which should be used directly in the definition. More details in this
respect are presented in the sequel.

Returning now to the question of extending the enrichment techniques of Berinde
and Păcurar to mappings in Hadamard spaces, we can address the class of Suzuki non-
expansive mappings [12] initially introduced in the setting of normed spaces, which rep-
resents an important generalization of nonexpansive mappings (i.e., mappings such that
∥Tx − Ty∥ ≤ ∥x − y∥, for all x, y ∈ X). This class was extended to the setting of Hadamard
spaces in [13] and more recently was extended to the enriched version in [14] in the setting
of Hilbert spaces. A natural development would be defining and studying enriched Suzuki
mappings in the setting of Hadamard spaces, which is precisely the main goal of this paper,
which generalizes the main results of Salisu et al. [10], Nanjaras et al. [13], Ullah et al. [14].
More precisely, the generalization is realized with respect to three different aspects. With
respect to the setting, Hilbert spaces are particular Hadamard spaces, and in this sense,
we have a generalization of [14]. With respect to the classes of mappings involved, on the
one hand, enriched Suzuki nonexpansive mappings are natural generalizations of enriched
nonexpansive mappings studied in [10]. On the other hand, enriched Suzuki nonexpansive
mappings naturally contain Suzuki nonexpansive mappings in Hadamard spaces, and in
this respect, we have a generalization of the results from [13].

The main results of this paper, besides technical lemmas, are concerned with (1)
the existence of fixed points for enriched Suzuki nonexpansive mappings and (2) ∆ and
strong (metric) convergence of the Picard iterates of the α-averaged mapping, which are
exactly Krasnoselskij iterates for the original mapping. Last but not least, we provide
an example in order to illustrate our findings. It is worth mentioning that the mapping
proposed as an example is neither enriched nonexpansive (since it is discontinuous) nor
Suzuki nonexpansive.

2. Preliminaries

A continuous mapping c : [0, t] → M, where (M, d) is a metric space, with c(0) = x ∈ M
and c(t) = y ∈ M is called geodesic if

d(c(τ1), c(τ2)) = |τ1 − τ2|,

for any τ1, τ2 ∈ [0, t]. Its image, denoted by [x, y], is called geodesic segment. If any pair of
distinct points can be joined by a geodesic, then (M, d) is called geodesic space and is said to
be uniquely geodesic if the geodesic is unique. Three distinct points, x, y, and z, in a uniquely
geodesic metric space (M, d) determine a unique geodesic triangle denoted by ∆(x, y, z). A
comparison triangle for ∆(x, y, z) is a triangle in the Euclidean plane ∆(x, y, z) such that

d(x, y) = dE(x, y), d(y, z) = dE(y, z), d(z, x) = dE(z, x),

where dE is the Euclidean metric.
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Definition 1 ([15,16]). Let (M, d) be a geodesic space and let ∆ be a geodesic triangle in M with
∆ as its corresponding comparison triangle. Then, the triangle ∆ satisfies the CAT(0) inequality if

d(x, y) ≤ dE(x, y),

for all x, y ∈ ∆ and the corresponding x, y ∈ ∆. A geodesic space is said to be a CAT(0) space if all
its geodesic triangles satisfy the CAT(0) inequality.

A complete CAT(0) space is called a Hadamard space.
Below are some fundamental properties of CAT(0) spaces.

Lemma 1 ([15]). Let (M, d) be a CAT(0) space. Then

(i) (M, d) is uniquely geodesic.
(ii) For a given pair of distinct points x, y in M and some t ∈ [0, 1], there exists a unique point

z ∈ [x, y], such that d(x, z) = (1 − t)d(x, y) and d(y, z) = td(x, y). We denote this point
by z = tx ⊕ (1 − t)y.

(iii) [x, y] = {tx ⊕ (1 − t)y : t ∈ [0, 1]}.
(iv) d(x, z) + d(z, y) = d(x, y) if and only if z ∈ [x, y].
(v) The mapping f : [0, 1] → [x, y], f (t) = tx ⊕ (1 − t)y is continuous and bijective.

Lemma 2 ([15]). Let (M, d) be a CAT(0) space. Then

d(z, tx ⊕ (1 − t)y) ≤ td(z, x) + (1 − t)d(z, y)

and
d2(z, tx ⊕ (1 − t)y) ≤ td2(z, x) + (1 − t)d2(z, y)− t(1 − t)d2(x, y), (1)

for all x, y, z ∈ M and t ∈ [0, 1].

Definition 2. Given a bounded sequence {xn} in a CAT(0) space (M, d), one can associate
the function

r(·, {xn}) : M → [0, ∞), r(x, {xn}) = lim sup
n→∞

d(x, xn),

which defines the asymptotic radius

r({xn}) = inf{x ∈ M : r(x, {xn})}

and, respectively, the asymptotic center

A({xn}) = {x ∈ M : r(x, {xn}) = r({xn})}

of the sequence {xn}.

A remarkable property of CAT(0) spaces is that the asymptotic center of a given
sequence is unique (Proposition 7, [17]). This fact is the basis for a notion of convergence
which has similar properties with weak convergence in Banach spaces and is weaker than
metric convergence.

Definition 3 ([18]). A sequence {xn} in a CAT(0) space (M, d) is said to be ∆-convergent to some
point x ∈ M, if x is the unique asymptotic center for every subsequence {xnk} of {xn}.

Lemma 3 ([15,18]). In a CAT(0) space (M, d), the following assertions are true:

i. Any bounded sequence in M has a ∆-convergent subsequence.
ii. If {xn} is a bounded sequence in a closed and convex subset C ⊆ M, then A({xn}) ∈ C.
iii. If {xn} is a bounded sequence in M with A({xn}) = {x} and {pn} is a subsequence of {xn}

with A({pn}) = {p} and the sequence {d(xn, p)} converges, then x = p.
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The following two properties will play a key role in the sequel.

Definition 4 ([19]). Let (M, d) be a uniquely geodesic space and C a nonempty closed and convex
subset. Then, a mapping T : M → M is called asymptotically regular if and only if, for any x0 ∈ C,
lim

n→∞
d
(

Tn+1x0, Tnx0

)
= 0.

Definition 5 ([20]). Let C be a subset in a metric space (M, d). A mapping T : C → M is
called demicompact if it has the property that whenever {xn} is a bounded sequence such that
{d(xn, Txn)} converges, then there exists a subsequence {xnk} ⊆ {xn} converging to some point
in C.

3. Enriched Suzuki Nonexpansive Mappings

Definition 6 ([12]). Let C be a nonempty set in a normed space X. A mapping T : C → X is said
to be Suzuki nonexpansive (SN) if

∥Tx − Ty∥ ≤ ∥x − y∥,

for all x, y ∈ C such that
1
2
∥x − Tx∥ ≤ ∥x − y∥.

Definition 7 ([14]). Let C be a nonempty set in a normed space X. A mapping T : X → X is said
to be enriched Suzuki nonexpansive (ESN) if there exists b ∈ [0, ∞) such that

∥b(x − y) + Tx − Ty∥ ≤ (b + 1)∥x − y∥, (2)

for all x, y ∈ C satisfying
1
2
∥x − Tx∥ ≤ (b + 1)∥x − y∥.

Remark 1. Rewriting the inequality (2) as∥∥∥∥( b
b + 1

x +
1

b + 1
Tx
)
−
(

b
b + 1

y +
1

b + 1
Ty
)∥∥∥∥ ≤ ∥x − y∥,

we see that the left term is the norm of a difference of terms of the form Tαx = (1 − α)x + αTx, for
1

b + 1
= α ∈ (0, 1], i.e., an affine combination of the vectors x and Tx, respectively. Moreover, the

condition
1
2
∥x − Tx∥ ≤ (b + 1)∥x − y∥ rewrites as

1
2
∥x − Tαx∥ ≤ ∥x − y∥.

The above remark suggest the natural way to define enriched Suzuki nonexpansive
mappings in the setting of a uniquely geodesic space (M, d). More precisely, the natural
analogue of the vector (1 − α)x + αTx is the unique point on the geodesic segment [x, Tx],
denoted by

Tαx = (1 − α)x ⊕ αTx, α ∈ (0, 1). (3)

The neat thing about the mapping Tα, called the α-averaged mapping of T, is that it has the
same fixed points as the mapping T in the virtue of the identity

d(x, Tαx) = αd(x, Tx). (4)

Clearly, for α = 1 and α = 0, we have, respectively, T1 = T and T0 = Id. For obvious
reasons, we exclude theses two cases from our further discussion, and henceforth, we shall
adopt the notation (3).
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Definition 8. Let C be a nonempty set in a uniquely geodesic space (M, d). A mapping T : C → M
is said to be enriched Suzuki nonexpansive (ESN) if

d(Tαx, Tαy) ≤ d(x, y),

for all x, y ∈ C such that d(x, Tαx) ≤ 2d(x, y).

In other words, the mapping T is enriched Suzuki nonexpansive if and only if the
mapping Tα is Suzuki nonexpansive.

There are two very important subclasses that are given below.

Definition 9. Let C be a nonempty set in a uniquely geodesic space (M, d). A mapping T : C → M
is said to be (α, γ)-enriched contraction if there exist α ∈ [0, 1] and γ ∈ [0, 1) such that

d(Tαx, Tαy) ≤ γd(x, y), ∀x, y ∈ C.

Definition 10. Let C be a nonempty set in a uniquely geodesic space (M, d). A mapping
T : C → M is said to be α-enriched nonexpansive mapping if there exists α ∈ [0, 1] such that

d(Tαx, Tαy) ≤ d(x, y), ∀x, y ∈ C.

Notice that these definitions do not involve the quasi-linearization map and are
simpler, more natural, and more general (it follows from the fundamental inequality (1))
as compared with those given in [10]. Moreover, the fact that these are indeed subclasses
becomes obvious if we accept the proposed definitions.

On the other hand, classical Suzuki nonexpansive mappings with a fixed point are also
quasi-nonexpansive mappings, i.e., mappings such that d(Tx, p) ≤ d(x, p), for all x ∈ C
and p ∈ Fix(T). A similar relationship holds for the enriched analogs.

Definition 11. Let C be a nonempty set in a uniquely geodesic space (M, d). A mapping T : C →
M such that Fix(T) ̸= ∅ is said to be enriched quasi-nonexpansive if and only if, for any p ∈
Fix(T),

d(Tαx, p) ≤ d(x, p), for all x ∈ C.

Proposition 1. With the above notations and definitions, every enriched Suzuki nonexpansive
mapping is an enriched quasi-nonexpansive mapping.

Proof. As d(p, Tα p) = 0, for p ∈ Fix(T), the ESN condition implies d(Tx, p) ≤ d(x, p) for
all x ∈ C.

Proposition 2 (Theorem 4.1, [13]). Let C be a nonempty bounded closed convex subset of a
Hadamard space. If T : C → C satisfies condition (C), then T has a fixed point in C.

Lemma 4 (Lemma 3.5 [13]). Let C be a nonempty subset of a uniquely geodesic space. If T : C → C
satisfies condition (C), then

d(x, Ty) ≤ 3d(x, Tx) + d(x, y), for all x, y ∈ C.

4. Main Results

We start this section with the following existence result, which extends Theorem 4.1
of [13].

Theorem 1. Let C be a nonempty bounded closed convex subset of a Hadamard space (H, d). If
T : C → C is an enriched Suzuki nonexpansive mapping, then T has a fixed point in C.
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Proof. As noticed above, T being ESN is equivalent to Tα, α ∈ (0, 1], being Suzuki nonex-
pansive. According to Proposition 2, the mapping Tα has a fixed point in p ∈ C, and from
(4), it follows that p is a fixed point for T as well.

Due to the coincidence of the fixed point sets of mappings T and Tα, we also have the
following extension of Corollary 4.2 from [13].

Corollary 1. Let C be a nonempty bounded closed convex subset of a Hadamard space (H, d). If
T : C → C is an enriched Suzuki nonexpansive mapping, then the set Fix(T) is nonempty closed,
convex, and hence contractible.

Before discussing ∆ and strong convergence results, we need to establish some techni-
cal lemmas first.

Lemma 5. Let C be a nonempty bounded closed convex subset of a Hadamard space (H, d) and
suppose that T : C → C is an ESN mapping. Define the sequence {xn}n≥0{

x0 ∈ C,
xn+1 = Tαxn, n ≥ 0.

(5)

Then, the limit lim
n→∞

d(xn, p) exists for any p ∈ Fix(T).

Proof. As the mapping Tα is Suzuki nonexpansive, it is also quasi-nonexpansive, imply-
ing that

d(xn+1, p) = d(Tαxn, p) ≤ d(xn, p),

for any p ∈ C; i.e., the sequence is nonincreasing and bounded and, hence, convergent.

The following result establishes the fact that ESN mappings satisfy the demiclosed-
ness principle.

Lemma 6. Let C be a nonempty bounded closed convex subset of a Hadamard space (H, d)
and suppose that T : C → C is an ESN mapping. If {xn}n≥0 is a sequence in C, such that

lim
n→∞

d(xn, Txn) = 0 and xn
∆→ p ∈ H, then p ∈ C and Tp = p.

Proof. The fact that p ∈ C is established by Lemma 3 (ii).
Turning to the second part, T : C → C being an ESN mapping is equivalent to the

α-averaged Tα satisfying condition (C). On the other hand, according to Lemma 4, we have

d(xn, Tα p) ≤ 3d(xn, Tαxn) + d(xn, p),

which, by taking lim sup, yields

lim sup
n→∞

d(xn, Tα p) ≤ lim sup
n→∞

d(xn, p).

By the uniqueness of the asymptotic centers, it follows that Tα p = p, implying Tp = p, as
Fix(T) = Fix(Tα).

Lemma 7. Let (M, d) be a uniquely geodesic space and C a nonempty closed and convex subset.
Then, for any quasi-nonexpansive mapping T : C → C such that Fix(T) ̸= ∅, the corresponding
α-averaged mapping Tα for arbitrary α ∈ (0, 1) is asymptotically regular.
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Proof. Take an arbitrary x0 ∈ C and consider the sequence of Picard iterates xn = Tn
α x0,

n ≥ 1. For any p ∈ Fix(T), we have, according to the fundamental inequality (1) and
quasi-nonexpansiveness of T,

d2(xn+1, p) ≤ (1 − α)d2(Tn
α x0, p) + αd2(TTn

α x0, p)− (1 − α)αd2(Tn
α x0, TTn

α x0)
≤ (1 − α)d2(Tn

α x0, p) + αd2(Tn
α x0, p)− (1 − α)αd2(Tn

α x0, TTn
α x0)

= d2(Tn
α x0, p)− (1 − α)αd2(Tn

α x0, TTn
α x0)

≤ d2(Tn
α x0, p),

which means that the sequence {d2(Tn
α x0, p)} is nonincreasing and that we also have

d2(Tn
α x0, TTn

α x0) =
1

(1 − α)α

[
d2(Tn

α x0, p)− d2(Tn+1
α x0, p)

]
,

implying that

lim
n→∞

d2(Tn
α x0, Tn+1

α x0) = lim
n→∞

αd2(Tn
α x0, TTn

α x0) = 0, for n → ∞,

which in turn implies the desired result.

The above proof suggests two important facts, which we underline in the following.

Remark 2. The sequence of Picard iterates is an approximate fixed point sequence for both the
mapping T and its associated α-averaged mapping Tα, i.e.,

lim
n→∞

d(xnTxn) = 0, and lim
n→∞

d(xnTαxn) = 0. (6)

Now we are in a position to state the first ∆-convergence result.

Theorem 2. Let C be a nonempty bounded closed convex subset of a Hadamard space (H, d). If
T : C → C is an enriched Suzuki nonexpansive mapping, then the sequence {xn} of Picard iterates
(5) is ∆-convergent to a fixed point of T.

Proof. Denote the set of all associated asymptotic centers by ωA(xn) :=
⋃

A({un}), with
union taken over all subsequences of {xn}. Now let u ∈ ωA(xn) and consider the sequence
{un} such that A({un}) = u. Since {un} is bounded, according to Lemma 3 (i) and (ii), it has
a subsequence unk that is ∆-convergent to some u′ ∈ C. As lim

n→∞
d(unk , Tαunk ) = 0, according

to Lemma 6 u′ ∈ Fix(T) = Fix(Tα) and according to Lemma 5, the limit lim
n→∞

d(xn, u′) exists.

Let us show that u = u′. Suppose the opposite; then we have the following inequalities in
which we use the properties of lim sup and the uniqueness of the asymptotic center

lim sup
n→∞

d(unk , u′) < lim sup
n→∞

d(unk , u)

≤ lim sup
n→∞

d(un, u)

< lim sup
n→∞

d(un, u′)

= lim sup
n→∞

d(unk , u′),

leading to a contradiction. Thus, u = u′ ∈ Fix(T). Now let A({xn}) = p. According to
Lemma 5, the limit lim

n→∞
d(xn, u) exists, and hence, due to Lemma 3 (iii), p = u, implying

that {xn} is ∆-convergent to p ∈ Fix(T).

Theorem 3. Let C be a nonempty bounded closed convex subset of a Hadamard space (H, d). If
T : C → C is an enriched Suzuki nonexpansive mapping and is demicompact, then the sequence
{xn} of Picard iterates (5) converges to a fixed point of T.
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Proof. We have, according to (6), that lim
n→∞

d(xn, Txn) converges, and since, by assumption,

T is demicompact, there exists a subsequence {xnk} ⊆ {xn} converging to some point
p ∈ C. On the other hand, p is also the ∆-limit of {xnk}, and hence, p ∈ Fix(T). Lastly, the
fact that the entire sequence {xn}n≥0 converges to p follows from the inequality

d(xn+1, p) ≤ d(xn, p), n ≥ 0,

established above.

Theorem 4. Let C be a nonempty bounded closed convex subset of a Hadamard space (H, d). If
T : C → C is an enriched Suzuki nonexpansive mapping and C is additionally a compact subset in
H, then the sequence {xn} of Picard iterates (5) converges to a fixed point of T.

Proof. The compactness of C implies the existence of a subsequence {xnk} ⊆ {xn} con-
verging to some p ∈ C. From Lemma 4, we have

d(xnk , Tp) ≤ 3d
(
xnk , Txnk

)
+ d(xnk , p), for all k ≥ 0.

Letting k → ∞ and keeping in mind that lim
n→∞

d(xn, Txn) = 0 yields lim
n→∞

d(xnk , Tp) = 0,

and by the uniqueness of the limit, it follows that Tp = p. The fact that the whole sequence
{xn}n≥0 converges to p can be deduced from the existence of the limit lim

n→∞
d(xn, p), which

exists according to Lemma 5.

According to [21], a mapping T : C → C is said to satisfy condition (I) if there exists a
nondecreasing function f : [0, ∞) → [0, ∞) such that f (0) = 0 and f (ξ) > 0, for all ξ > 0
and d(x, Tx) ≥ f (d(x, Fix(T))), for all x ∈ C, where d(x, Fix(T)) = inf

z∈Fix(T)
d(x, z).

Theorem 5. Let C be a nonempty bounded closed convex subset of a Hadamard space (H, d).
If T : C → C is an enriched Suzuki nonexpansive mapping that satisfies condition (I), then the
sequence {xn} of Picard iterates (5) converges to a fixed point of T.

For proof, please notice that if T is an ESN mapping with the corresponding function
f , then Tα is a Suzuki nonexpansive mapping with the corresponding function g := α f .
The rest of the proof can be followed in [13], Theorem 5.5.

5. Example

The setting of our choice in which we provide our illustrative example is the Poincaré
half-plane, i.e., the set H2 = {(x, y) ∈ R2 | y > 0}, in which the distance is defined as

d(p, q) = 2 ln

(√
(x2 − x1)2 + (y2 − y1)2 +

√
(x2 − x1)2 + (y2 + y1)2

2
√

y1y2

)
,

for p = (x1, y1) and q = (x2, y2). On subset C = {(0, y) ∈ H2 | y ∈ [e1/2, e2]}, which is
closed and convex, define the mapping

T : C → C, T(0, y) =
{

(0, e1/ ln y) y ̸= e2

(0, e3/4) y = e2 .

Due to its particular form, the distance between two points from C, say, p = (0, x) and
q = (0, y), is computed with the simplified formula d(p, q) = | ln x − ln y|. Additionally,
since we are working on the vertical axis only, for the simplicity of notations, we shall
identify the points with the second coordinate in the sequel.
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Let us show that T is an enriched Suzuki nonexpansive mapping for α =
2
5

. For this,
we need to show that

d(T2
5

p, T2
5
q) ≤ d(p, q) (7)

for all p and q such that

1
5

d(p, Tp) =
1
2

d(p, T2
5

p) ≤ d(p, q). (8)

We have the following cases:
Case I: For p = ex and q = ey, such that (ex, ey) ∈ [e1/2, e2) × [e1/2, e2), we have

Tp = e1/x, Tp = e1/y, T2
5

p = 3
5 ex ⊕ 2

5 e1/x = e
3
5 x+ 2

5
1
x , and T2

5
q = 3

5 ey ⊕ 3
5 e1/y = e

3
5 y+ 2

5
1
y .

Applying the distance formula, condition (7) becomes∣∣∣∣35 (x − y) +
2
5

(
1
x
− 1

y

)∣∣∣∣ ≤ |x − y|,

which holds for any pair (x, y) ∈
[

1
2 , 2
)
×
[

1
2 , 2
)

due to the equivalences∣∣∣∣3 − 2
xy

∣∣∣∣ ≤ 5 ⇔ −5 ≤ 3 − 2
xy

≤ 5 ⇔ −8 ≤ − 2
xy

≤ 2 ⇔ 4 ≥ 1
xy

≥ −1.

Case II: Now let p = ex and q = ey, with x ∈
[

1
2 , 2
)

and y = 2. Condition (8), after
applying the distance formula, writes as

1
5

∣∣∣∣x − 1
x

∣∣∣∣ ≤ |x − 2| (9)

and we have the following subcases:

a: For x ≥ 1, the inequality (9) leads to 6x2 − 10x − 1 ≤ 0, that is, x ∈
[

5 −
√

31
6

,
5 +

√
31

6

]
.

b: For x < 1, similarly, we obtain 4x2 − 10x − 1 ≤ 0, i.e., x ∈
[

5 −
√

21
4

,
5 +

√
21

4

]
.

Therefore, since

5 −
√

31
6

<
5 −

√
21

4
<

1
2
<

5 +
√

31
6

<
5 +

√
21

4
< 2,

it remains to be shown that condition (7) holds for x ∈
[

1
2

,
5 +

√
31

6

]
and y = 2. Indeed,

as condition (7) becomes ∣∣∣∣35 (x − 2) +
2
5

(
1
x
− 3

4

)∣∣∣∣ ≤ |x − 2|, (10)

we have, as well, two subcases:

1: If
3
5
(x − 2) +

2
5

(
1
x
− 3

4

)
≥ 0, then (10) is

3
5
(x − 2) +

2
5

(
1
x
− 3

4

)
≤ 2 − x,

leading to the equivalences

1
x
− 3

4
≤ 4(2 − x) ⇔ 16x2 − 35x + 4 ≤ 0.
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As 16
(

1
2

)2
− 35

1
2
+ 4 = −3

2
< 0 and 16 · 22 − 35 · 2 + 4 = −2 < 0, we conclude that the

last inequality holds for any x ∈ [1/2, 2].

2: On the other hand, for
3
5
(x − 2) +

2
5

(
1
x
− 3

4

)
< 0, (10) becomes

3
5
(2 − x) +

2
5

(
3
4
− 1

x

)
≤ 2 − x,

that is
3
4
− 1

x
≤ 2 − x ⇔ 4x2 − 5x − 4 ≤ 0 ⇔ x ∈

[
5 −

√
89

8
,

5 +
√

89
8

]
.

Therefore, since
5 +

√
31

6
<

5 +
√

89
8

, condition (7) holds for all x ∈
[

1
2

,
5 +

√
31

6

]
.

Case III: Lastly, for p = ex and q = ey, where x = 2 and y ∈
[

1
2 , 2
)

, condition (8)
writes as

1
5

∣∣∣∣2 − 3
4

∣∣∣∣ ≤ |y − 2| ⇔ y ≤ 7
4

, (11)

and condition (7) becomes ∣∣∣∣35 (y − 2) +
2
5

(
1
y
− 3

4

)∣∣∣∣ ≤ |y − 2|, (12)

which has already been established above but for x instead of y. Noticing as before that
7
4
<

5 +
√

89
8

, we conclude that (12) holds for all y ∈
[

1
2

,
7
4

]
, which ends the proof of the

fact that T is an enriched Suzuki nonexpansive mapping.
In order to see that T is not Suzuki nonexpansive in the sense of Definition 6, it is

enough to take p = e and q = e1/2. Indeed,
1
2

d(p, Tp) =
1
2
|1 − 1| ≤ |1 − 2| = d(p, q), but

d(Tp, Tq) = |2 − 1| = 1 > | 1
2 − 1| = d(p, q).

Lastly, since T is discontinuous at p = e2, it cannot be an enriched nonexpansive
mapping as in Definition 10, and therefore, T does not belong to the more particular
immediate subclasses.

6. Conclusions

In this paper, we introduced the class of enriched Suzuki mappings in Hadamard
spaces. The obtained results extend several existing studies in this direction if we look to
at least two different aspects: the setting and the class of involved operators. On the one
hand, Hilbert spaces are particular Hadamard spaces. On the other hand, enriched Suzuki
nonexpansive mappings are natural generalizations of enriched nonexpansive mappings,
these ones naturally containing Suzuki nonexpansive mappings in Hadamard spaces. The
new results are on the existence of fixed points for enriched Suzuki nonexpansive mappings
and on the ∆ and strong convergence of Picard iterates of the α-averaged mapping. As
further development of our study, one can consider wider classes of operators defined in
geodesic spaces.
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4. Berinde, V.; Păcurar, M. Kannan’s fixed point approximation for solving split feasibility and variational inequality problems. J.

Comput. Appl. Math. 2021, 386, 113217. [CrossRef]
5. Salisu, S.; Berinde, V.; Sriwongsa, S.; Kumam, P. Approximating fixed points of demicontractive mappings in metric spaces by

geodesic averaged perturbation techniques. AIMS Math. 2023, 8, 28582–28600. [CrossRef]
6. Inuwa, A.Y.; Kumam, P.; Chaipunya, P.; Salisu, S. Fixed point theorems for enriched Kannan mappings in CAT(0) spaces. Fixed

Point Theory Algorithms Sci. Eng. 2023, 2023, 13. [CrossRef]
7. Kirk, W.A. Geodesic geometry and fixed point theory. In Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003), 195–225;

Univ. Sevilla Secr. Publ.: Seville, Spain, 2003.
8. Kirk, W.A. Fixed point theorems in CAT(0) spaces and R-trees. Fixed Point Theory Appl. 2004, 4, 309–316.
9. Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Cham, Switzerland, 2014.
10. Salisu, S.; Kumam, P.; Sriwongsa, S. On fixed points of enriched contractions and enriched nonexpansive mappings. Carpathian J.

Math. 2023, 39, 237–254. [CrossRef]
11. Berg, I.D.; Nikolaev, I.G. Quasilinearization and curvature of Alexandrov spaces. Geom. Dedicata 2008, 133, 195–218. [CrossRef]
12. Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl.

2008, 340, 1088–1095. [CrossRef]
13. Nanjaras, B.; Panyanak, B.; Phuengrattana, W. Fixed point theorems and convergence theorems for Suzuki-generalized nonexpan-

sive mappings in CAT(0) spaces. Nonlinear Anal. Hybrid Syst. 2010, 4, 25–31. [CrossRef]
14. Ullah, K.; Ahmad, J.; Arshad, M.; Ma, Z.H. Approximation of fixed points for enriched Suzuki nonexpansive operators with an

application in Hilbert spaces. Axioms 2022, 11, 14. [CrossRef]
15. Dhompongsa, S.; Panyanak, B. On ∆-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 2008, 56, 2572–2579. [CrossRef]
16. Bridson, M.; Haefliger, A. Metric Spaces of Nonpositive Curvature; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1999.
17. Dhompongsa, S.; Kirk, W.A.; Sims, B. Fixed points of uniformly lipschitzian mappings. Nonlinear Anal. 2006, 65, 762–772

[CrossRef]
18. Kirk, W.A.; Panyanak, B. A concept of convergence in geodesic spaces. Nonlinear Anal. 2008, 195, 3689–3696. [CrossRef]
19. Browder, F.E.; Petryshyn, W.V. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 1967, 20,

197–228. [CrossRef]
20. Petryshyn, W.M. Construction of fixed points of demicompact mappings in Hilbert space. J. Math. Anal. Appl. 1966, 14, 276–284.

[CrossRef]
21. Senter, H.F.; Dotson, W.G. Approximating fixed points of nonexpansive mappings. Proc. Amer. Math. Soc. 1974, 44, 375–380.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.37193/CJM.2019.03.04
http://dx.doi.org/10.1007/s11784-020-0769-9
http://dx.doi.org/10.1007/s11784-021-00904-x
http://dx.doi.org/10.1016/j.cam.2020.113217
http://dx.doi.org/10.3934/math.20231463
http://dx.doi.org/10.1186/s13663-023-00750-1
http://dx.doi.org/10.37193/CJM.2023.01.16
http://dx.doi.org/10.1007/s10711-008-9243-3
http://dx.doi.org/10.1016/j.jmaa.2007.09.023
http://dx.doi.org/10.1016/j.nahs.2009.07.003
http://dx.doi.org/10.3390/axioms11010014
http://dx.doi.org/10.1016/j.camwa.2008.05.036
http://dx.doi.org/10.1016/j.na.2005.09.044
http://dx.doi.org/10.1016/j.na.2007.04.011
http://dx.doi.org/10.1016/0022-247X(67)90085-6
http://dx.doi.org/10.1016/0022-247X(66)90027-8
http://dx.doi.org/10.1090/S0002-9939-1974-0346608-8

	Introduction
	Preliminaries
	Enriched Suzuki Nonexpansive Mappings
	Main Results
	Example
	Conclusions
	References

