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Abstract: We continue studying the o-Ricci vector field u on a Riemannian manifold (N, g), which
is not necessarily closed. A Riemannian manifold with Ricci operator T, a Coddazi-type tensor, is
called a T-manifold. In the first result of this paper, we show that a complete and simply connected
T-manifold (N™, g), m > 1, of positive scalar curvature 7, admits a closed o-Ricci vector field u such
that the vector u — Vo is an eigenvector of T with eigenvalue tm~1, if and only if it is isometric to
the m-sphere SJ'. In the second result, we show that if a compact and connected T-manifold (N™, g),
m > 2, admits a o-Ricci vector field u with o # 0 and is an eigenvector of a rough Laplace operator
with the integral of the Ricci curvature Ric(u, u) that has a suitable lower bound, then (N™, g) is
isometric to the m-sphere S}, and the converse also holds. Finally, we show that a compact and
connected Riemannian manifold (N", g) admits a o-Ricci vector field u with ¢ as a nontrivial solution
of the static perfect fluid equation, and the integral of the Ricci curvature Ric(u, u) has a lower bound
depending on a positive constant «, if and only if (N", g) is isometric to the m-sphere SZ'.

Keywords: Ricci vector field; m-sphere; Riemannian manifold; static perfect fluid equation
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1. Introduction

In a recent paper, (cf. [1]), a o-Ricci vector field (abbreviated as o-RVF) u on a m-
Riemannian manifold (N, g) is introduced, being defined by

1
§£ug = oRic, 1)

where £, is the Lie derivative of the metric § with respect to u, ¢ is a smooth function
and Ric is the Ricci tensor of (N™,g). A o-RVF is a generalization of conformal vector
fields (known for their utility in studying geometry and relativity), on Einstein manifolds
(see [1-11]). Moreover, it represents a Killing vector field, which is known to have a great
influence on the geometry as well as topology on which it lives (see [12-15]). Apart from
these generalizations, a c-RVF is a particular form of potential field of generalized solitons
considered in [16-18]. Note that a 1-RVF u on a m-Riemannian manifold (N", g) is a stable
Ricci soliton (N™, ¢,u,0) (see [19]). Indeed, in [1], it has been observed that a ¢-RVF on
(N™, g) is a stable solution of the generalized Ricci flow (or a o-Ricci flow),

0rg =20Ric, g(0)=g, 2)

of the form g(t) = p(t)p;(g), where ¢; : N™ — N™ is a 1-parameter family of diffeo-
morphisms generated by the vector fields U(t) and p(t) is a scale factor, under the initial
conditions p(0) =1, p(0) =0, U(0) = u and ¢y = id.
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In [1], a closed 0-RVF u, with o # 0, on a compact and connected m-Riemannian
manifold (N, g), m > 2, of nonzero scalar curvature is used with an appropriate lower
bound on the integral of the Ricci curvature Ric(u, u) to find a characterization of the
m-sphere 5™ (c). Moreover, in [1], a closed o-RVF u on a complete and simply connected
m-Riemannian manifold (N",g), m > 2, of positive scalar curvature, is used, where
the function ¢ is a nontrivial solution of the Fischer-Marsden equation (cf. [20]) with an
appropriate upper bound on the length ||Vu|| of the covariant derivative of u, to find
another characterization of the sphere 5™ (c).

The Ricci operator T of a Riemannian manifold (N, g) is a symmetric operator
defined by

Ric(E,F) = g(T(E),F), E,FeT(N™),

where I'(N™) is a space of vector fields on N". A Riemannian manifold (N", g) is said to
be a T-manifold, if the Ricci operator T is a Codazzi tensor, i.e., it satisfies

(DeT)(F) = (DFT)(E), E,FeT(N"™), ®)

where D is the Riemannian connection on (N, g). It is worth noting that a T-manifold
(N™, ¢) has a constant scalar curvature.

In this article, we are interested in studying the geometry of (N, ¢) equipped with a
o-RVF u. In the first result, we consider a T-manifold (N™, g) that possesses a closed o-RVF
u and we observe that, in this case, the vector field u — Vo has a special role to play in
shaping the geometry of the T-manifold (N™, g). It is shown that if the scalar curvature 7 of
a compact T-manifold (N™, g) is positive (note that 7 is a constant for a T-manifold) and the
vector field u — Vo satisfies

T(u— Vo) = %(u — Vo),

then (N™, g) is isometric to the m-sphere S of constant curvature ¢, where T = m(m — 1)c,
and the converse also holds (cf. Theorem 1).

Then, we concentrate on a 0-RVF u on (N, g) that is not necessarily closed. In this
case, the 1-form B dual to u gives rise to a skew symmetric operator ¥ : I'(N™) — I'(N™)
defined by

$(¥(E),F) = 3d(E,F), EFeT(N"),

and we call the operator ¥ the associated operator of the o-RVF u. In the second result of
this paper, we consider a compact and connected T-manifold (N, g) with scalar curvature
T = m(m — 1)c that possesses a 0-RVF u, o # 0, with associated operator ¥ satisfying

m—1
n o2

2%+ ¥,

Au = —cu, / Ric(u,u) 2/

which necessarily implies that (N, g) is isometric to the m-sphere S of constant curvature
¢, and the converse is also true (cf. Theorem 2), where A is the rough Laplace operator
acting on vector fields on (N, g).
Recall the differential equation on a Riemannian manifold (N™,g) considered by
Obata (cf. [18,21]), namely
Hess(o) = —cog, 4)

where ¢ is a non-constant smooth function, ¢ is a positive constant and Hess(c) is the
Hessian of ¢ defined by

Hess(o)(E,F) = g(DgVo,F), E,FeT(N™).

It is known that a complete, simply connected (N", g) admits a nontrivial solution
of (4) if and only if (N, g) is isometric to the sphere S} (cf. [18,21]).
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There is yet another important differential equation on a Riemannian manifold (N™, g)
(cf. [7] and references therein), given by

oRic — Hess(0) = %(TU’ —Ao)g, (5)

known as the static fluid equation, where Ac is the Laplacian of o with respect to the metric
g. A Riemannian manifold (N™, g) that admits a nontrivial solution of the static fluid
equation is called a static space. Note that under the additional assumption

T

Ao = —
v m—1

g,

the static fluid equation reduces to the Fischer-Marsden equation (cf. [20])
(Ao)g + oRic = Hess(0). (6)

In the last result of this paper, we show that a compact and connected Riemannian
manifold (N™, g) with scalar curvature 7 possessing a 0-RVF u with associated operator ¥
and the function ¢ is a nontrivial solution of the static perfect fluid Equation (5); furthermore,
for a positive constant c, the following inequality holds:

-1 1
/ Ric(u,u) > / [mTZ(TZ + = (Ao +nco)? + |[¥)?],
N N m m

which necessarily implies that (N™, ¢) is isometric to the sphere S, and the converse is
also true (cf. Theorem 3).

2. Preliminaries

For a o-RVF u on an m-dimensional Riemannian manifold (N, g), we let B be the
1-form dual to u, i.e.,
B(E) = g(w E), EcT(N"). )

Then, we have the associated operator ¥ satisfying
1
dp(E,F) = 58(¥(E),F), EFeTI(N), ®)

which shows that ¥ is a skew symmetric operator. Using Equations (1) and (8), we obtain
the following expression for the covariant derivative Vgu

Dru=0T(E)+Y(E), EeT(N™). )
where T is the Ricci operator defined by
Ric(E,F) = g(T(E),F), E,FeT(N™).
On employing the following expression for the curvature tensor field R of (N, g),
R(E,F)G = [Dg, DF|G — Dg G, E,F,G € I'(N"™),
with Equation (9), we obtain

R(E,F)u = E(0)T(F) — F(0)T(E) + p((DeT)(F) — (DFT)(E)) (10)
+ (De¥)(F) — (DFY)(E),

forany E, F € I'(N™), where

(DET)(F) = DgT(F) — T(DEgF).
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The scalar curvature T of (N, g) is given by
m
T= Z 8(T(Ex), Ex),
a=1
where {Ej, ..., E;} is alocal frame on N™. The Ricci tensor is given by
m
Ric(E,F) = ) g(R(Ew E)F,Ey),
a=1
and employing it in Equation (10), we conclude
m
Ric(F,u) = Ric(F, Vo) — TF(c) + 0g 2 Ve T) (11)

—pY(T (P 2 Vi Y) )

where Vo is the gradient of o and we have used the symmetry of the Ricci operator T and
the skew symmetry of the associated operator Y. It is known that the gradient of scalar
curvature T satisfies (cf. [22])

I\)\P—‘

Z Dg,T) (12)

Thus, on using Equation (12) in (11), we arrive at

Ric(F,u) = Ric(F, Vo)~ tF(0) — 20F() ( i (VEY) ) (13)

and, therefore,
m

T(u) = T(Vo) —tVo — %va =Y (VR Y)(F). (14)
a=1
Lemma 1. For a o-RVF u on a T-manifold (N™, g), the associated operator ¥ satisfies
(DEY)(F) = R(E,u)F — Ric(E,F)Vo+ F(c)T(E), E,FeT(N™).
Proof. Suppose that u is a 0-RVF on a T-manifold (N, g). Then, Equation (10) changes to
(DEY)(F) — (DeY)(E) = R(E,F)u — E(0)T(F) + F(o)T(E). (15)

Now, using the fact that the 2-form dp in Equation (8) is closed and the associated
operator ¥ is skew symmetric, we have

¢((DEY)(F) — (DF¥)(E), G) + g((D¥) (E), F) = 0
and employing Equation (15) in the above equation yields
S(R(E,F)u— E(0)T(F)+ F(0)T(E),G) + g((Dc¥)(E), F) = 0.
Thus, we have
§((DcY)(E), F) = g(R(G,u)E, F) + E(0)8(T(G), F) — Ric(E, G)g(Vo, F)

and this proves the lemma. O
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On a Riemannian manifold (N™, ¢) possessing a o-RVF u, we have the second-order
differential operator VZu defined by

(V2u)(E,F) = DgDyu — Dp,pu, E,F € T(N")

and its trace

Au = f (Vzu)(Ea,Ea) (16)

a=1

is the rough Laplacian of the o-RVF u.

Lemma 2. On a connected T-manifold (N™, g), the scalar curvature T is a constant, and for a o-
RVF u on a connected T-manifold (N™, g) with associated operator ¥, the rough Laplacian satisfies
m
Au=T(Vo)+ Y (DgY)(Ex),

a=1

where {Ey, ..., Ey} is a local frame on N™.

Proof. First, note that for a T-manifold (N™, g), using Equation (3), we have

E(7) = E Y 8(T(Ex), B
= ¥ 8((DET)(Ex) + T(DpEe) Ex) + 3 s(T(EQ), DeE) (17)
= ¥ 8(De T)(E) Fo) +2 - s(T(EL), Dek
= ¥ $(E. (DR T)(EQ) +2 1 5(T(E), Deka)
Note that

DeEy =Y AS(E)Er, T(Ex) =Y piEj,
k j

where the connection forms AK are skew symmetric and coefficients i}, are symmetric and,
as such, we have

i ¢(T(Es), DEEy) = 0.
a=1

Consequently, Equation (17) yields

m

Vit =Y (De,T)(E):

a=1

Combining it with Equation (11), we obtain VT = 0, i.e., the scalar curvature T of a
T-manifold is a constant.
Employing Equation (9), we have

(V2u) (E,F) = E(0)T(F) + ¢(DgT)(F) + (De¥)(F)

and taking the trace in the above equation, while using Equation (11) with VT = 0, we
obtain -
Au=T(Vo)+ ) (Dg¥)(Ed).

a=1
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Next, the sphere SI' of constant curvature a possesses a 0-RVF induced by a coordinate

unit vector field % on the Euclidean space R"*1. Indeed, on treating S as an embedded

surface in R”*! with unit normal { and Weingarten operator—+/al, we express % as

g = S0 f = (50, (18)

where (,) is a Euclidean inner product and u € I'(S}). On taking g as the induced metric
on S} and D as the Riemannian connection with respect to ¢ and differentiating the above
equation with respect to the vector field E € I'(S}'), we have

Dru= —vafE, Vf = au. (19)

Using the first equation in (19), it follows that
£ug = —2Vafg
and for the Ricci tensor of S, we have
Ric=(m—1)ag, T=m(m—1)a. (20)
Hence, the vector field u on S’ obeys

1 1
—fyg=0Ric, 0=——-—-F, 21
5£ug = oRic e e1)
ie,uisac-RVF on S}
Moreover, note that Equation (21) in view of Equation (19) confirms

Hess(0)(E,F) = g(DgVo,F)

1

= —7(m_1)\/&g(DEVf,P)
1

= ——78(DrwF)

- YYoekp),

ie.,
Hess(0) = —aog, Ao = —mao. (22)

Combining Equations (20) and (22), we see that the function ¢ of the o-RVF u on S}/
satisfies the static fluid equation

oRic — Hess(o) = %('m —Ao)g. (23)

We investigate now whether ¢ is a nontrivial solution. If ¢ was a constant, by virtue of
Equation (21), it would mean that f was a constant, and, in turn, by (19), it would mean
that u = 0 and, by the same equation, would imply f = 0. Inserting this information
in (18), we have % = 0, a contradiction. Hence, ¢ is a nontrivial solution of the static fluid
equation on S}’

3. o-Ricci Vector Fields on T-Manifolds

In this section, we consider an m-dimensional T-manifold (N™,g) that possesses a
closed o-RVF wu. It is interesting to observe that, in this situation, the vector field u — Vo
plays an interesting role while treating the Ricci operator T of (N™,g). Note that, by
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Lemma 2, the scalar curvature T of a T-manifold (N™,g) is a constant and we put 7 =
m(m — 1)a, for a constant x. Here, we prove the following result.

Theorem 1. An m-dimensional, m > 1, complete, and simply connected T-manifold (N™, g) with
positive scalar curvature T admits a nonzero closed o-RVF u, o # 0 satisfying

T
T(u— Vo) = %(u — Vo),
if and only if (N™, g) is isometric to S}i', where T = m(m — 1)a.

Proof. Suppose that the complete and simply connected T-manifold (N",g), m > 1, of
scalar curvature T > 0, admits a nonzero closed -RVF u, o # 0, which satisfies

T(u—Vo) = %(u — Vo). (24)

As the 0-RVF u is closed, its associated operator ¥ = 0, and by Lemma 2, the scalar
curvature T is a constant, and Equation (14) becomes

T(u) =T(Vo)—1Vo. (25)
Treating it with Equation (24) yields
%(u — Vo) =—-1Vo
and, as T > 0, it transforms into
u=—(m—1)Vo. (26)

Note that, by Equation (9), we have divu = 07, and taking the divergence in Equa-
tion (26) gives
0T = —(m—1)Ac. (27)

Now, inserting the value of Vo from Equation (26) into Equation (25), we arrive at

T(u) = —mT_lrw. (28)

Note that as u is closed, Equation (9) has the form
Dru=0cT(E), EcT(N™). (29)

Next, we intend to compute the divergence div(Tu) and we proceed by choosing a
local frame {Eq, ..., E;} and using Equation (29)

m
div(Tu) = Y g(Vg,Tu,Ey)

a=1

I
=

8((VE, T)(w) + T(Vg,u), Eo)

a=1

m

8w, (Ve, T)(Ea)) + ) 8(VEw, T(E))-

1 a=1

I
1=

4

Note that on T-manifold (N™, g), by Lemma 2, T is a constant and, thus, employing
Equations (12) and (29), we arrive at

div(Tu) = o||T|>.
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Now, utilizing this equation in Equation (28) yields

m—1

o||T||? = — TAG. (30)

m

Inserting Equation (27) in the above equation gives

1
o|TIP = o2,

2 1
a<||T|| - mrz) =0.

As N* is connected (being simply connected) and ¢ # 0, in this situation, the above
equation yields

ie.,

1
T|? = =% 1

However, Equation (31) is the equality in Schwartz’s inequality

TR > L2

3

Hence, equality (31) holds if and only if

T="11
m

and Equation (29) changes to
T m
Dru = %pE, E € T(N™).
Thus, on employing Equation (26) in the above equation, we confirm

DpVo = — 0E, EeT(N™). (32)

T
m(m—1)

Note that as u # 0 by Equation (26), the function ¢ is a non-constant function and,
also, T being a positive constant, letting T = m(m — 1)a, we obtain a positive constant «
and Equation (32) is Obata’s equation

Hess(o) = —apg,

proving that (N™, g) is isometric to the sphere S}’ (cf. [18,21]).

Conversely, suppose that (N", ¢) is isometric to the sphere S}'. Then, by Equations (19)—~(21),
there is a nonzero 0-RVF u on S} and, as seen earlier, the function o # 0 and is a non-constant
function. Moreover, the Ricci operator of S’ being

T="11,
m

the condition -
T(u— Vo) = %(u - Vo)

holds, and this finishes the proof. [

In an earlier result, we considered a closed c-RVF u on an m-dimensional T-manifold
(N™, ¢) to find a characterization of the sphere S'. Next, we consider a 0-RVF u on an
m-dimensional T-manifold (N™, ¢) not necessarily closed and prove the following.
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Theorem 2. An m-dimensional compact and connected T-manifold (N™,g), m > 2 of positive

scalar curvature T admits a 0-RVF u with associated operator ¥, o # 0, Au = —mu and the

Ricci curvature Ric(u, u) satisfies

-1
/Ric(u,u) > /[mmrzaz+||‘I’||2

Nﬂ‘l Nm
ifand only if (N™, g) is isometric to S}i!, where T = m(m — 1)a.
Proof. Let an m-dimensional T-manifold (N™, g), m > 2, with scalar curvature T > 0 be
equipped with a 0-RVF u with ¢ # 0 and associated operator ¥ such that

T
Au = _7m(m—1)u (33)

and

/mRic(u,u) > / ["Z—lfoer w2, (34)

m
Using Lemma 1, we have

R(E,u)F = (Dg¥)(F) + Ric(E,F)Vo — F(o)T(E), E,F €T (N™)

Employing a local frame {Eq, ..., E; } in the above equation, we conclude
m
Ric(u, F) = Ric(Vo,F) —tF(0) — Y g(F,(Dg,¥)(Ex)), FeT(N™)

a=1

and the above equation implies
m
Ric(u,u) = Ric(Vo,u) — tu(0) — Y g(u, (Dg,¥)(Ea)).
=1

Note that, by Equation (9), we have
divu = 10
and using
div(cu) = u(o) + 702,
in the above equation containing the expression of Ric(u, u), we derive
m
Ric(u,u) = Ric(Vo,u) + t20* — tdiv(ou) — Y g(u, (Dg,¥)(Ea)). (35)

a=1

Next, using a local frame {E, ..., E;} on (N™, g), to compute the div(¥u), we have,
on using the skew symmetry of the associated operator ¥ and Equation (9),

I
=

div(¥u) 8(Dg,Yu,Ey)

=
Il
—_

I
=

(D, ¥)(u) + ¥(0cTEy + YEy), Ex) (36)

=
Il

I
\
M=~

m

g(u, (Dg,¥)(Ea)) — 0 Y §(TEy, ¥Ey) — ¥

a=1

=
Il
—_
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Since T is symmetric and the associated operator ¥ is skew symmetric, it follows that

m
Q(TE., YE,) =0 (37)
a=1
and Equation (36) now becomes
S 2
div(Yu) = — ) g(u, (D, ¥)(Ex)) — [ ¥]]
a=1

and, inserting this equation into Equation (35), we arrive at
Ric(u,u) = Ric(Ve,u) + 1202 — tdiv(ou) + |[¥]|* + div(¥u).

Note that on a T-manifold (N™,g), T is a constant and keeping this in mind and
integrating the above equation brings us to

/;(Mdmuy—Mdeu%~ﬁf—HTW):Q (38)

Observe that, by virtue of the symmetry of the operator T and Equations (9), (12)
and (37), and the fact that 7 is a constant, we have

div(Tu) = Y ¢(Dg,Tu, E,)

a=1
= ¥ 8((De T)(w) + T(TEs + ¥E,) E0) )
a=
— o7
Now, using the fact that
div(cTu) = Ric(Vo,u) + odiv(Tu)
in Equation (39), we arrive at
Ric(Vo,u) = div(cTu) — o?||T||>.
Inserting the above equation in Equation (38), we confirm
Am(RxaLu)+aﬂuﬂ2—T%#-wﬂf):o
and the above integral could be rearranged as

/ #(wﬁ_lﬂ):/’<m_%%%uww>—/ Ric(wu).  (40)
N™ m Nm m N™

Treating the above equation with the inequality (34), we arrive at

/ MOMR—1#>§Q
m m

The integrand in the above inequality by virtue of Schwartz’s inequality is non-
negative, and, therefore, we conclude

&wa—lﬁ):a
m
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As 0 # 0 and N™ is connected, we conclude that

, 1
ITIP = 22,

which, being the equality in Schwartz’s inequality, it holds if and only if

T
T=-_I (41)

Consequently, as 7 is a constant, Equations (14) and (41) combine to arrive at

%u = %(V(T) —1Vo — i (VEY)(Ey),

a=1
for alocal frame {Ej,...,E;,} on (N™,g), i.e.,, we have
m

™Vo =Y (VYY) (F). (42)

a=1

T m—1
—u = —
m m
Moreover, using Equations (33) and (41) with Lemma 2, we obtain the following:

T m

T
ECED (Vo) + D;(Va‘l’) (Fa). (43)
Adding Equations (42) and (43), we find
m—2 m—2
ml—u = —TTVU

and,as m > 2, T > 0, it confirms
u=—(m—1)Vo.

Differentiating the above equation and using Equations (9) and (41), we have

1 T
DgVo = ———(cE+¥(E)), EcT(N"),
EVO m—1\m7 + ¥ (E) e I(N™)
which, on taking the inner product with E and noticing that ¥ is a skew symmetric operator,

leads to
Hess(o)(E,E) = —acg(E,E), E €T(N™),

where T = m(m — 1)a, i.e., a is a positive constant. Now, polarizing the above equation con-
firms
Hess(o) = —aog.

Hence, (N™, g) is isometric to S (cf. [18,21]).

Conversely, suppose that (N", g) is isometric to S'. Then, by Equation (21), there is a
nonzero 0-RVF u on S’ with o # 0 and, as u is is closed, the associated operator ¥ = 0.
Moreover, it is obvious that S} is a T-manifold. Thus, using Equation (19), we have

(V2u> (E,F) = DgDpu—Dp,ru
— VRE(F
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and, therefore, by treating the above equation with (16), we have

Au = i(vzu) (EarEoc)

a=1

= —aVf,
which, by virtue of Equation (19), implies

Au = —au
- T .
o omm—1)"

where T = m(m — 1)a. Finally, using Equations (19) and (21), we have

1

YOS Tt

ie.,
lul|? = (m = 1)%|| Ve, (44)

Now, Equation (22) implies
oAo = —macaz,

which, on integrating by parts, confirms
Vel = ma / o?
S¥ e

-t / 202, (45)
s

m(m—1)2«
The Ricci curvature of S is
Ric(u,u) = (m —1)a|[ul?

and, thus, using ¥ = 0 and Equations (44) and (45), we conclude

o, Rictw,w) = [ (m—1)aul?

43

[ (m =17 Vo (46)

o

m—1
/ {72(72—1- H‘I’Hz
gm m

o

and this completes the proof. [

4. o-Ricci Vector Fields on Static Spaces

Now, we are interested in a c-RVF u, not necessarily closed, on a Riemannian manifold
(N™, ¢) with function ¢ as a nontrivial solution of the static fluid Equation (5). Indeed, we
prove the following.

Theorem 3. If an m-dimensional compact and connected Riemannian manifold (N™, ¢) admits a
o-RVF u with associated operator ¥, such that o is a nontrivial solution of the static perfect fluid
equation, for a positive constant « and the Ricci curvature Ric(u, u), it satisfies

Ric(u,u >/
/Nm ( )_ m

m—1 1
T 120 + = (Ao + mac) + |[¥|]*|,
m m
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and (N™, g) is isometric to Si', and the converse also holds.
Proof. Assume that (N, g) admits a o-RVF u with associated operator ¥, such that o

is a nontrivial solution of the static perfect fluid Equation (5) and the Ricci curvature
Ric(u,u) satisfies

/ Ric(u,u)z/ {’”mlrzaz+;(Aa+mw)2+||\f||2. 47)

Then, the Hessian operator H,; of the function ¢ defined by
§(Hy (E), F) = Hess(0)(E, F),
by virtue of Equation (5) satisfies
H,(E) =0¢T(E) + %(AU— t0)E, EeT(N™)
Utilizing Equation (9) in the above equation, we arrive at
H,(E) = Dpu—Y(E) + %(Aa —10)E
and, for a positive constant «, the above equation could be rearranged as
(Hy +acl)(E) = Dpu—Y(E) + %(Aa+ mao —to)E, E € T(N™).

Choosing a local frame {Eq, ..., E;}, and using the above equation, we compute

m
|Ho +acl|* = Y g((He+acl)(E)), (Hy + acl)(E;))
j=1
" 1
= Zg(DEju - Y(E) + %(Aa+ mao — 10)Ej
j=1

1
Dryu—Y¥(E;) + a(AO’ + mao — TU)E]->
1
— IDulP + ¥R+ (a0 -+ maw — o)
m
_228<DE]-11/‘I’(E1))
j=1

2
—I—a(AO’ + mao — to)div(u).
Now, using Equation (9) and div(u) = 7o in the above equation, we arrive at

1
|Hy + acI||* = ||Dul®—|[¥|]* + —(Ac 4 mac — 10)?
m

+2T?U(Aa+moc0—ra),
ie.,
|Ho +acT|? = [Dul - [¥]P + - (Ac + mac — 70) (A0 + mao + 70)
or
|Ho +aoT|> = [|Dul> ~ || + (A0 + mac)? ~ - (z0)2 (48)
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We recall the integral formula (cf. [23])
1
/ |Dul? = / (Ric(u,u) + E\Eug|z - (divu)z).
m N}‘Vl

Using div(u) = 7o and the outcome of Equation (1) in the form
1 £ ool — 202IITI2
Mg =207 7]

in the above integral equation, we have

/m||Du||2 — /N (Ric(u,u) +202|T|* — (z0)?).

Now, integrating Equation (48) and using the above equation, we arrive at

1
/NmHHg—i—«xUIHZ = /N <Ric(u,u) +202||T|)> - %(Tg)z (49)
1
—H‘I’H2+ (Aa+m1w)2>
m
Notice that
1 1 —1
20%||T||* - %(m)z = 207 (|T||2 - mr2) - ’”m (t0)? (50)

and, by Equation (5), we have that

oT(E) — %w}; — Hy(E) - %(AU)E,

which implies
2 2
U2HT— 11” = HHU - 1(AU)IH .
m m

Combining it with Equation (50), we arrive at

m+1 1 2 m-1
202||T|* - - (t0)? = ZHHU —(ao)1 —— (t0)2. (51)
Moreover, we have
1 2 , 1 , 2 m
Hy = —(A)I|| = [Hol|” + - (A0)" = —(Ac) } g (Ho (E)), Ej) (52)
i=1

j
2 1 )
= [Hol - L (a0)

Similarly, we have
|Hy 4 aoI|? = ||Ho||* + 200 A0 + ma2c?

and utilizing it in Equation (52), we obtain

2

1 1
HHa - E(AO')I = ||Hy + acl||* — 200A0 — ma’0? — %(AU)Z,
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ie.,
1 ? > 1 2
HHU — —(Ao)I|| =||Ho +acl||* — —(Ac + mao)”.
m m
Thus, in view of the above equation, (51) assumes the form
1 2 -1
202 T)2 = "2 (20)% = 2| Hy + acI|]? — 2 (A0 + mac)? — "L (zo)2
m m m
Now, inserting this value in Equation (49), we arrive at
2 , 2 m—1 2
/ |Hy + acl|? = / Ric(u,u) + 2||Hy + acI|? — "2 (10)
Nm™ Nm m
1
—I¥]* = = (A0 + moar)2>,
m
ie.,

(m—1 1 .
/||Hg+m||2 - /( ——(t0)” + — (A + mac)’ + |‘I’|2> - /ch(u,u).
Nm an Nm

Using inequality (47) in the above equation, we conclude

/||H(7+zwl|\2 <0,
Nm

which proves
Hess(o) = —aoyg,

where & > 0 is a constant and ¢, being a nontrivial solution of a static perfect fluid, is a
non-constant function. Hence, (N™, g) is isometric to S’ (cf. [18,21]).

The converse is trivial, because, by Equation (21), S;* admits a o-RVF u, and by Equation (23)
and the paragraph that follows (23), 0 is a nontrivial solution of the static perfect fluid equation.
Moreover, we have, by Equation (22), that

Ao+ muoc =0
and, by Equation (46), we have

n 3 _ 1 1
/ _Ric(u,u) = / . |:mmT20.2 + E(Aa+m1w)2 + ¥

This finishes the proof. O
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