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Abstract: We continue studying the σ-Ricci vector field u on a Riemannian manifold (Nm, g), which
is not necessarily closed. A Riemannian manifold with Ricci operator T, a Coddazi-type tensor, is
called a T-manifold. In the first result of this paper, we show that a complete and simply connected
T-manifold (Nm, g), m > 1, of positive scalar curvature τ, admits a closed σ-Ricci vector field u such
that the vector u −∇σ is an eigenvector of T with eigenvalue τm−1, if and only if it is isometric to
the m-sphere Sm

α . In the second result, we show that if a compact and connected T-manifold (Nm, g),
m > 2, admits a σ-Ricci vector field u with σ ̸= 0 and is an eigenvector of a rough Laplace operator
with the integral of the Ricci curvature Ric(u, u) that has a suitable lower bound, then (Nm, g) is
isometric to the m-sphere Sm

α , and the converse also holds. Finally, we show that a compact and
connected Riemannian manifold (Nm, g) admits a σ-Ricci vector field u with σ as a nontrivial solution
of the static perfect fluid equation, and the integral of the Ricci curvature Ric(u, u) has a lower bound
depending on a positive constant α, if and only if (Nm, g) is isometric to the m-sphere Sm

α .
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1. Introduction

In a recent paper, (cf. [1]), a σ-Ricci vector field (abbreviated as σ-RVF) u on a m-
Riemannian manifold (Nm, g) is introduced, being defined by

1
2

£ug = σRic, (1)

where £ug is the Lie derivative of the metric g with respect to u, σ is a smooth function
and Ric is the Ricci tensor of (Nm, g). A σ-RVF is a generalization of conformal vector
fields (known for their utility in studying geometry and relativity), on Einstein manifolds
(see [1–11]). Moreover, it represents a Killing vector field, which is known to have a great
influence on the geometry as well as topology on which it lives (see [12–15]). Apart from
these generalizations, a σ-RVF is a particular form of potential field of generalized solitons
considered in [16–18]. Note that a 1-RVF u on a m-Riemannian manifold (Nm, g) is a stable
Ricci soliton (Nm, g, u, 0) (see [19]). Indeed, in [1], it has been observed that a σ-RVF on
(Nm, g) is a stable solution of the generalized Ricci flow (or a σ-Ricci flow),

∂tg = 2σRic, g(0) = g, (2)

of the form g(t) = ρ(t)φ∗
t (g), where φt : Nm → Nm is a 1-parameter family of diffeo-

morphisms generated by the vector fields U(t) and ρ(t) is a scale factor, under the initial
conditions ρ(0) = 1,

.
ρ(0) = 0, U(0) = u and φ0 = id.
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In [1], a closed σ-RVF u, with σ ̸= 0, on a compact and connected m-Riemannian
manifold (Nm, g), m > 2, of nonzero scalar curvature is used with an appropriate lower
bound on the integral of the Ricci curvature Ric(u, u) to find a characterization of the
m-sphere Sm(c). Moreover, in [1], a closed σ-RVF u on a complete and simply connected
m-Riemannian manifold (Nm, g), m > 2, of positive scalar curvature, is used, where
the function σ is a nontrivial solution of the Fischer–Marsden equation (cf. [20]) with an
appropriate upper bound on the length ∥∇u∥ of the covariant derivative of u, to find
another characterization of the sphere Sm(c).

The Ricci operator T of a Riemannian manifold (Nm, g) is a symmetric operator
defined by

Ric(E, F) = g(T(E), F), E, F ∈ Γ(Nm),

where Γ(Nm) is a space of vector fields on Nm. A Riemannian manifold (Nm, g) is said to
be a T-manifold, if the Ricci operator T is a Codazzi tensor, i.e., it satisfies

(DET)(F) = (DFT)(E), E, F ∈ Γ(Nm), (3)

where D is the Riemannian connection on (Nm, g). It is worth noting that a T-manifold
(Nm, g) has a constant scalar curvature.

In this article, we are interested in studying the geometry of (Nm, g) equipped with a
σ-RVF u. In the first result, we consider a T-manifold (Nm, g) that possesses a closed σ-RVF
u and we observe that, in this case, the vector field u −∇σ has a special role to play in
shaping the geometry of the T-manifold (Nm, g). It is shown that if the scalar curvature τ of
a compact T-manifold (Nm, g) is positive (note that τ is a constant for a T-manifold) and the
vector field u −∇σ satisfies

T(u −∇σ) =
τ

m
(u −∇σ),

then (Nm, g) is isometric to the m-sphere Sm
c of constant curvature c, where τ = m(m − 1)c,

and the converse also holds (cf. Theorem 1).
Then, we concentrate on a σ-RVF u on (Nm, g) that is not necessarily closed. In this

case, the 1-form β dual to u gives rise to a skew symmetric operator Ψ : Γ(Nm) → Γ(Nm)
defined by

g(Ψ(E), F) =
1
2

dβ(E, F), E, F ∈ Γ(Nm),

and we call the operator Ψ the associated operator of the σ-RVF u. In the second result of
this paper, we consider a compact and connected T-manifold (Nm, g) with scalar curvature
τ = m(m − 1)c that possesses a σ-RVF u, σ ̸= 0, with associated operator Ψ satisfying

∆u = −cu,
∫

Nm
Ric(u, u) ≥

∫
Nm

[
m − 1

m
τ2σ2 + ∥Ψ∥2

]
,

which necessarily implies that (Nm, g) is isometric to the m-sphere Sm
c of constant curvature

c, and the converse is also true (cf. Theorem 2), where ∆ is the rough Laplace operator
acting on vector fields on (Nm, g).

Recall the differential equation on a Riemannian manifold (Nm, g) considered by
Obata (cf. [18,21]), namely

Hess(σ) = −cσg, (4)

where σ is a non-constant smooth function, c is a positive constant and Hess(σ) is the
Hessian of σ defined by

Hess(σ)(E, F) = g(DE∇σ, F), E, F ∈ Γ(Nm).

It is known that a complete, simply connected (Nm, g) admits a nontrivial solution
of (4) if and only if (Nm, g) is isometric to the sphere Sm

c (cf. [18,21]).
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There is yet another important differential equation on a Riemannian manifold (Nm, g)
(cf. [7] and references therein), given by

σRic − Hess(σ) =
1
m
(τσ − ∆σ)g, (5)

known as the static fluid equation, where ∆σ is the Laplacian of σ with respect to the metric
g. A Riemannian manifold (Nm, g) that admits a nontrivial solution of the static fluid
equation is called a static space. Note that under the additional assumption

∆σ = − τ

m − 1
σ,

the static fluid equation reduces to the Fischer–Marsden equation (cf. [20])

(∆σ)g + σRic = Hess(σ). (6)

In the last result of this paper, we show that a compact and connected Riemannian
manifold (Nm, g) with scalar curvature τ possessing a σ-RVF u with associated operator Ψ
and the function σ is a nontrivial solution of the static perfect fluid Equation (5); furthermore,
for a positive constant c, the following inequality holds:∫

Nm
Ric(u, u) ≥

∫
Nm

[
m − 1

m
τ2σ2 +

1
m
(∆σ + ncσ)2 + ∥Ψ∥2

]
,

which necessarily implies that (Nm, g) is isometric to the sphere Sm
c , and the converse is

also true (cf. Theorem 3).

2. Preliminaries

For a σ-RVF u on an m-dimensional Riemannian manifold (Nm, g), we let β be the
1-form dual to u, i.e.,

β(E) = g(u, E), E ∈ Γ(Nm). (7)

Then, we have the associated operator Ψ satisfying

dβ(E, F) =
1
2

g(Ψ(E), F), E, F ∈ Γ(Nm), (8)

which shows that Ψ is a skew symmetric operator. Using Equations (1) and (8), we obtain
the following expression for the covariant derivative ∇Eu

DEu = σT(E) + Ψ(E), E ∈ Γ(Nm). (9)

where T is the Ricci operator defined by

Ric(E, F) = g(T(E), F), E, F ∈ Γ(Nm).

On employing the following expression for the curvature tensor field R of (Nm, g),

R(E, F)G = [DE, DF]G − D[E,F]G, E, F, G ∈ Γ(Nm),

with Equation (9), we obtain

R(E, F)u = E(σ)T(F)− F(σ)T(E) + ρ((DET)(F)− (DFT)(E)) (10)

+ (DEΨ)(F)− (DFΨ)(E),

for any E, F ∈ Γ(Nm), where

(DET)(F) = DET(F)− T(DEF).
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The scalar curvature τ of (Nm, g) is given by

τ =
m

∑
α=1

g(T(Eα), Eα),

where {E1, . . ., Em} is a local frame on Nm. The Ricci tensor is given by

Ric(E, F) =
m

∑
α=1

g(R(Eα, E)F, Eα),

and employing it in Equation (10), we conclude

Ric(F, u) = Ric(F,∇σ)− τF(σ) + σg

(
F,

m

∑
α=1

(∇Fα T)(Fα)

)
(11)

− ρY(τ)− g

(
F,

m

∑
α=1

(∇Fα Ψ)(Fα)

)
,

where ∇σ is the gradient of σ and we have used the symmetry of the Ricci operator T and
the skew symmetry of the associated operator Ψ. It is known that the gradient of scalar
curvature τ satisfies (cf. [22])

1
2
∇τ =

m

∑
α=1

(DFα T)(Fα). (12)

Thus, on using Equation (12) in (11), we arrive at

Ric(F, u) = Ric(F,∇σ)− τF(σ)− 1
2

σF(τ)− g

(
F,

m

∑
α=1

(∇Fα Ψ)(Fα)

)
(13)

and, therefore,

T(u) = T(∇σ)− τ∇σ − 1
2

ρ∇τ −
m

∑
α=1

(∇Fα Ψ)(Fα). (14)

Lemma 1. For a σ-RVF u on a T-manifold (Nm, g), the associated operator Ψ satisfies

(DEΨ)(F) = R(E, u)F − Ric(E, F)∇σ + F(σ)T(E), E, F ∈ Γ(Nm).

Proof. Suppose that u is a σ-RVF on a T-manifold (Nm, g). Then, Equation (10) changes to

(DEΨ)(F)− (DFΨ)(E) = R(E, F)u − E(σ)T(F) + F(σ)T(E). (15)

Now, using the fact that the 2-form dβ in Equation (8) is closed and the associated
operator Ψ is skew symmetric, we have

g((DEΨ)(F)− (DFΨ)(E), G) + g((DGΨ)(E), F) = 0

and employing Equation (15) in the above equation yields

g(R(E, F)u − E(σ)T(F) + F(σ)T(E), G) + g((DGΨ)(E), F) = 0.

Thus, we have

g((DGΨ)(E), F) = g(R(G, u)E, F) + E(σ)g(T(G), F)− Ric(E, G)g(∇σ, F)

and this proves the lemma.
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On a Riemannian manifold (Nm, g) possessing a σ-RVF u, we have the second-order
differential operator ∇2u defined by(

∇2u
)
(E, F) = DEDFu − DDE Fu, E, F ∈ Γ(Nm)

and its trace

∆u =
m

∑
α=1

(
∇2u

)
(Eα, Eα) (16)

is the rough Laplacian of the σ-RVF u.

Lemma 2. On a connected T-manifold (Nm, g), the scalar curvature τ is a constant, and for a σ-
RVF u on a connected T-manifold (Nm, g) with associated operator Ψ, the rough Laplacian satisfies

∆u = T(∇σ) +
m

∑
α=1

(DEα Ψ)(Eα),

where {E1, . . ., Em} is a local frame on Nm.

Proof. First, note that for a T-manifold (Nm, g), using Equation (3), we have

E(τ) = E
m

∑
α=1

g(T(Eα), Eα)

=
m

∑
α=1

g((DET)(Eα) + T(DEEα), Eα) +
m

∑
α=1

g(T(Eα), DEEα) (17)

=
m

∑
α=1

g((DEα T)(E), Eα) + 2
m

∑
α=1

g(T(Eα), DEEα)

=
m

∑
α=1

g(E, (DEα T)(Eα)) + 2
m

∑
α=1

g(T(Eα), DEEα).

Note that
DEEα = ∑

k
∧k

α(E)Ek, T(Eα) = ∑
j

µ
j
αEj,

where the connection forms ∧k
α are skew symmetric and coefficients µ

j
α are symmetric and,

as such, we have

m

∑
α=1

g(T(Eα), DEEα) = 0.

Consequently, Equation (17) yields

∇τ =
m

∑
α=1

(DEα T)(Eα).

Combining it with Equation (11), we obtain ∇τ = 0, i.e., the scalar curvature τ of a
T-manifold is a constant.

Employing Equation (9), we have(
∇2u

)
(E, F) = E(σ)T(F) + σ(DET)(F) + (DEΨ)(F)

and taking the trace in the above equation, while using Equation (11) with ∇τ = 0, we
obtain

∆u = T(∇σ) +
m

∑
α=1

(DEα Ψ)(Eα).
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Next, the sphere Sm
α of constant curvature α possesses a σ-RVF induced by a coordinate

unit vector field ∂
∂u on the Euclidean space Rm+1. Indeed, on treating Sm

α as an embedded
surface in Rm+1 with unit normal ζ and Weingarten operator−

√
αI, we express ∂

∂u as

∂

∂u
= u + f ζ, f =

〈
∂

∂u
, ζ

〉
, (18)

where ⟨, ⟩ is a Euclidean inner product and u ∈ Γ(Sm
α ). On taking g as the induced metric

on Sm
α and D as the Riemannian connection with respect to g and differentiating the above

equation with respect to the vector field E ∈ Γ(Sm
α ), we have

DEu = −
√

α f E, ∇ f =
√

αu. (19)

Using the first equation in (19), it follows that

£ug = −2
√

α f g

and for the Ricci tensor of Sm
α , we have

Ric = (m − 1)αg, τ = m(m − 1)α. (20)

Hence, the vector field u on Sm
α obeys

1
2

£ug = σRic, σ = − 1
(m − 1)

√
α

f , (21)

i.e., u is a σ-RVF on Sm
α .

Moreover, note that Equation (21) in view of Equation (19) confirms

Hess(σ)(E, F) = g(DE∇σ, F)

= − 1
(m − 1)

√
α

g(DE∇ f , F)

= − 1
m − 1

g(DEu, F)

=

√
α f

m = 1
g(E, F),

i.e.,
Hess(σ) = −ασg, ∆σ = −mασ. (22)

Combining Equations (20) and (22), we see that the function σ of the σ-RVF u on Sm
α

satisfies the static fluid equation

σRic − Hess(σ) =
1
m
(τσ − ∆σ)g. (23)

We investigate now whether σ is a nontrivial solution. If σ was a constant, by virtue of
Equation (21), it would mean that f was a constant, and, in turn, by (19), it would mean
that u = 0 and, by the same equation, would imply f = 0. Inserting this information
in (18), we have ∂

∂u = 0, a contradiction. Hence, σ is a nontrivial solution of the static fluid
equation on Sm

α .

3. σ-Ricci Vector Fields on T-Manifolds

In this section, we consider an m-dimensional T-manifold (Nm, g) that possesses a
closed σ-RVF u. It is interesting to observe that, in this situation, the vector field u −∇σ
plays an interesting role while treating the Ricci operator T of (Nm, g). Note that, by
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Lemma 2, the scalar curvature τ of a T-manifold (Nm, g) is a constant and we put τ =
m(m − 1)α, for a constant α. Here, we prove the following result.

Theorem 1. An m-dimensional, m > 1, complete, and simply connected T-manifold (Nm, g) with
positive scalar curvature τ admits a nonzero closed σ-RVF u, σ ̸= 0 satisfying

T(u −∇σ) =
τ

m
(u −∇σ),

if and only if (Nm, g) is isometric to Sm
α , where τ = m(m − 1)α.

Proof. Suppose that the complete and simply connected T-manifold (Nm, g), m > 1, of
scalar curvature τ > 0, admits a nonzero closed σ-RVF u, σ ̸= 0, which satisfies

T(u −∇σ) =
τ

m
(u −∇σ). (24)

As the σ-RVF u is closed, its associated operator Ψ = 0, and by Lemma 2, the scalar
curvature τ is a constant, and Equation (14) becomes

T(u) = T(∇σ)− τ∇σ. (25)

Treating it with Equation (24) yields

τ

m
(u −∇σ) = −τ∇σ

and, as τ > 0, it transforms into

u = −(m − 1)∇σ. (26)

Note that, by Equation (9), we have divu = στ, and taking the divergence in Equa-
tion (26) gives

στ = −(m − 1)∆σ. (27)

Now, inserting the value of ∇σ from Equation (26) into Equation (25), we arrive at

T(u) = −m − 1
m

τ∇σ. (28)

Note that as u is closed, Equation (9) has the form

DEu = σT(E), E ∈ Γ(Nm). (29)

Next, we intend to compute the divergence div(Tu) and we proceed by choosing a
local frame {E1, . . . , Em} and using Equation (29)

div(Tu) =
m

∑
α=1

g(∇Eα Tu, Eα)

=
m

∑
α=1

g((∇Eα T)(u) + T(∇Eα u), Eα)

=
m

∑
α=1

g(u, (∇Eα T)(Eα)) +
m

∑
α=1

g(∇Eα u, T(Eα)).

Note that on T-manifold (Nm, g), by Lemma 2, τ is a constant and, thus, employing
Equations (12) and (29), we arrive at

div(Tu) = σ∥T∥2.
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Now, utilizing this equation in Equation (28) yields

σ∥T∥2 = −m − 1
m

τ∆σ. (30)

Inserting Equation (27) in the above equation gives

σ∥T∥2 =
1
m

στ2,

i.e.,

σ

(
∥T∥2 − 1

m
τ2
)
= 0.

As Nk is connected (being simply connected) and σ ̸= 0, in this situation, the above
equation yields

∥T∥2 =
1
m

τ2. (31)

However, Equation (31) is the equality in Schwartz’s inequality

∥T∥2 ≥ 1
m

τ2.

Hence, equality (31) holds if and only if

T =
τ

m
I

and Equation (29) changes to

DEu =
τ

m
ρE, E ∈ Γ(Nm).

Thus, on employing Equation (26) in the above equation, we confirm

DE∇σ = − τ

m(m − 1)
σE, E ∈ Γ(Nm). (32)

Note that as u ̸= 0 by Equation (26), the function σ is a non-constant function and,
also, τ being a positive constant, letting τ = m(m − 1)α, we obtain a positive constant α
and Equation (32) is Obata’s equation

Hess(σ) = −αρg,

proving that (Nm, g) is isometric to the sphere Sm
α (cf. [18,21]).

Conversely, suppose that (Nm, g) is isometric to the sphere Sm
α . Then, by Equations (19)–(21),

there is a nonzero σ-RVF u on Sm
α and, as seen earlier, the function σ ≠ 0 and is a non-constant

function. Moreover, the Ricci operator of Sm
α being

T =
τ

m
I,

the condition
T(u −∇σ) =

τ

m
(u −∇σ)

holds, and this finishes the proof.

In an earlier result, we considered a closed σ-RVF u on an m-dimensional T-manifold
(Nm, g) to find a characterization of the sphere Sm

α . Next, we consider a σ-RVF u on an
m-dimensional T-manifold (Nm, g) not necessarily closed and prove the following.
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Theorem 2. An m-dimensional compact and connected T-manifold (Nm, g), m > 2 of positive
scalar curvature τ admits a σ-RVF u with associated operator Ψ, σ ̸= 0, ∆u = − τ

m(m−1)u and the
Ricci curvature Ric(u, u) satisfies∫

Nm

Ric(u, u) ≥
∫

Nm

[
m − 1

m
τ2σ2 + ∥Ψ∥2

]

if and only if (Nm, g) is isometric to Sm
α , where τ = m(m − 1)α.

Proof. Let an m-dimensional T-manifold (Nm, g), m > 2, with scalar curvature τ > 0 be
equipped with a σ-RVF u with σ ̸= 0 and associated operator Ψ such that

∆u = − τ

m(m − 1)
u (33)

and ∫
Nm

Ric(u, u) ≥
∫

Nm

[
m − 1

m
τ2σ2 + ∥Ψ∥2

]
. (34)

Using Lemma 1, we have

R(E, u)F = (DEΨ)(F) + Ric(E, F)∇σ − F(σ)T(E), E, F ∈ Γ(Nm)

Employing a local frame {E1, . . ., Em} in the above equation, we conclude

Ric(u, F) = Ric(∇σ, F)− τF(σ)−
m

∑
α=1

g(F, (DEα Ψ)(Eα)), F ∈ Γ(Nm)

and the above equation implies

Ric(u, u) = Ric(∇σ, u)− τu(σ)−
m

∑
α=1

g(u, (DEα Ψ)(Eα)).

Note that, by Equation (9), we have

divu = τσ

and using
div(σu) = u(σ) + τσ2,

in the above equation containing the expression of Ric(u, u), we derive

Ric(u, u) = Ric(∇σ, u) + τ2σ2 − τdiv(σu)−
m

∑
α=1

g(u, (DEα Ψ)(Eα)). (35)

Next, using a local frame {E1, . . ., Em} on (Nm, g), to compute the div(Ψu), we have,
on using the skew symmetry of the associated operator Ψ and Equation (9),

div(Ψu) =
m

∑
α=1

g(DEα Ψu, Eα)

=
m

∑
α=1

g((DEα Ψ)(u) + Ψ(σTEα + ΨEα), Eα) (36)

= −
m

∑
α=1

g(u, (DEα Ψ)(Eα))− σ
m

∑
α=1

g(TEα, ΨEα)− ∥Ψ∥2
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Since T is symmetric and the associated operator Ψ is skew symmetric, it follows that

m

∑
α=1

g(TEα, ΨEα) = 0 (37)

and Equation (36) now becomes

div(Ψu) = −
m

∑
α=1

g(u, (DEα Ψ)(Eα))− ∥Ψ∥2

and, inserting this equation into Equation (35), we arrive at

Ric(u, u) = Ric(∇σ, u) + τ2σ2 − τdiv(σu) + ∥Ψ∥2 + div(Ψu).

Note that on a T-manifold (Nm, g), τ is a constant and keeping this in mind and
integrating the above equation brings us to∫

Nm

(
Ric(u, u)− Ric(∇σ, u)− τ2σ2 − ∥Ψ∥2

)
= 0. (38)

Observe that, by virtue of the symmetry of the operator T and Equations (9), (12)
and (37), and the fact that τ is a constant, we have

div(Tu) =
m

∑
α=1

g(DEα Tu, Eα)

=
m

∑
α=1

g((DEα T)(u) + T(σTEα + ΨEα), Eα) (39)

= σ∥T∥2.

Now, using the fact that

div(σTu) = Ric(∇σ, u) + σdiv(Tu)

in Equation (39), we arrive at

Ric(∇σ, u) = div(σTu)− σ2∥T∥2.

Inserting the above equation in Equation (38), we confirm∫
Nm

(
Ric(u, u) + σ2∥T∥2 − τ2σ2 − ∥Ψ∥2

)
= 0

and the above integral could be rearranged as∫
Nm

σ2
(
∥T∥2 − 1

m
τ2
)
=
∫

Nm

(
m − 1

m
τ2σ2 + ∥Ψ∥2

)
−
∫

Nm
Ric(u, u). (40)

Treating the above equation with the inequality (34), we arrive at∫
Nm

σ2
(
∥T∥2 − 1

m
τ2
)
≤ 0.

The integrand in the above inequality by virtue of Schwartz’s inequality is non-
negative, and, therefore, we conclude

σ2
(
∥T∥2 − 1

m
τ2
)
= 0.
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As σ ̸= 0 and Nm is connected, we conclude that

∥T∥2 =
1
m

τ2,

which, being the equality in Schwartz’s inequality, it holds if and only if

T =
τ

m
I. (41)

Consequently, as τ is a constant, Equations (14) and (41) combine to arrive at

τ

m
u =

τ

m
(∇σ)− τ∇σ −

m

∑
α=1

(∇Fα Ψ)(Fα),

for a local frame {E1, . . . , Em} on (Nm, g), i.e., we have

τ

m
u = −m − 1

m
τ∇σ −

m

∑
α=1

(∇Fα Ψ)(Fα). (42)

Moreover, using Equations (33) and (41) with Lemma 2, we obtain the following:

− τ

m(m − 1)
u =

τ

m
(∇σ) +

m

∑
α=1

(∇Fα Ψ)(Fα). (43)

Adding Equations (42) and (43), we find

m − 2
m(m − 1)

τu = −m − 2
m

τ∇σ

and, as m > 2, τ > 0, it confirms

u = −(m − 1)∇σ.

Differentiating the above equation and using Equations (9) and (41), we have

DE∇σ = − 1
m − 1

( τ

m
σE + Ψ(E)

)
, E ∈ Γ(Nm),

which, on taking the inner product with E and noticing that Ψ is a skew symmetric operator,
leads to

Hess(σ)(E, E) = −ασg(E, E), E ∈ Γ(Nm),

where τ = m(m − 1)α, i.e., α is a positive constant. Now, polarizing the above equation con-
firms

Hess(σ) = −ασg.

Hence, (Nm, g) is isometric to Sm
α (cf. [18,21]).

Conversely, suppose that (Nm, g) is isometric to Sm
α . Then, by Equation (21), there is a

nonzero σ-RVF u on Sm
α with σ ̸= 0 and, as u is is closed, the associated operator Ψ = 0.

Moreover, it is obvious that Sm
α is a T-manifold. Thus, using Equation (19), we have(

∇2u
)
(E, F) = DEDFu − DDE Fu

= −
√

αE( f )F
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and, therefore, by treating the above equation with (16), we have

∆u =
m

∑
α=1

(
∇2u

)
(Eα, Eα)

= −
√

α∇ f ,

which, by virtue of Equation (19), implies

∆u = −αu

= − τ

m(m − 1)
u,

where τ = m(m − 1)α. Finally, using Equations (19) and (21), we have

∇σ = − 1
(m − 1)

√
α
∇ f

= − 1
m − 1

u,

i.e.,
∥u∥2 = (m − 1)2∥∇σ∥2. (44)

Now, Equation (22) implies
σ∆σ = −mασ2,

which, on integrating by parts, confirms∫
Sm

α

∥∇σ∥2 = mα
∫

Sm
α

σ2

=
1

m(m − 1)2α

∫
Sm

α

τ2σ2. (45)

The Ricci curvature of Sm
α is

Ric(u, u) = (m − 1)α∥u∥2

and, thus, using Ψ = 0 and Equations (44) and (45), we conclude∫
Sm

α

Ric(u, u) =
∫

Sm
α

(m − 1)α∥u∥2

=
∫

Sm
α

(m − 1)3α∥∇σ∥2 (46)

=
∫

Sm
α

[
m − 1

m
τ2σ2 + ∥Ψ∥2

]
and this completes the proof.

4. σ-Ricci Vector Fields on Static Spaces

Now, we are interested in a σ-RVF u, not necessarily closed, on a Riemannian manifold
(Nm, g) with function σ as a nontrivial solution of the static fluid Equation (5). Indeed, we
prove the following.

Theorem 3. If an m-dimensional compact and connected Riemannian manifold (Nm, g) admits a
σ-RVF u with associated operator Ψ, such that σ is a nontrivial solution of the static perfect fluid
equation, for a positive constant α and the Ricci curvature Ric(u, u), it satisfies∫

Nm
Ric(u, u) ≥

∫
Nm

[
m − 1

m
τ2σ2 +

1
m
(∆σ + mασ)2 + ∥Ψ∥2

]
,
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and (Nm, g) is isometric to Sm
α , and the converse also holds.

Proof. Assume that (Nm, g) admits a σ-RVF u with associated operator Ψ, such that σ
is a nontrivial solution of the static perfect fluid Equation (5) and the Ricci curvature
Ric(u, u) satisfies∫

Nm
Ric(u, u) ≥

∫
Nm

[
m − 1

m
τ2σ2 +

1
m
(∆σ + mασ)2 + ∥Ψ∥2

]
. (47)

Then, the Hessian operator Hσ of the function σ defined by

g(Hσ(E), F) = Hess(σ)(E, F),

by virtue of Equation (5) satisfies

Hσ(E) = σT(E) +
1
m
(∆σ − τσ)E, E ∈ Γ(Nm)

Utilizing Equation (9) in the above equation, we arrive at

Hσ(E) = DEu − Ψ(E) +
1
m
(∆σ − τσ)E

and, for a positive constant α, the above equation could be rearranged as

(Hσ + ασI)(E) = DEu − Ψ(E) +
1
m
(∆σ + mασ − τσ)E, E ∈ Γ(Nm).

Choosing a local frame {E1, . . . , Em}, and using the above equation, we compute

∥Hσ + ασI∥2 =
m

∑
j=1

g
(
(Hσ + ασI)(Ej), (Hσ + ασI)(Ej)

)
=

m

∑
j=1

g
(

DEj u − Ψ
(
Ej
)
+

1
m
(∆σ + mασ − τσ)Ej,

DEj u − Ψ
(
Ej
)
+

1
m
(∆σ + mασ − τσ)Ej

)
= ∥Du∥2 + ∥Ψ∥2 +

1
m
(∆σ + mασ − τσ)2

−2
m

∑
j=1

g
(

DEj u, Ψ
(
Ej
))

+
2
m
(∆σ + mασ − τσ)div(u).

Now, using Equation (9) and div(u) = τσ in the above equation, we arrive at

∥Hσ + ασI∥2 = ∥Du∥2 − ∥Ψ∥2 +
1
m
(∆σ + mασ − τσ)2

+
2τσ

m
(∆σ + mασ − τσ),

i.e.,

∥Hσ + ασI∥2 = ∥Du∥2 − ∥Ψ∥2 +
1
m
(∆σ + mασ − τσ)(∆σ + mασ + τσ)

or
∥Hσ + ασI∥2 = ∥Du∥2 − ∥Ψ∥2 +

1
m
(∆σ + mασ)2 − 1

m
(τσ)2. (48)
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We recall the integral formula (cf. [23])∫
Nm

∥Du∥2 =
∫

Nm

(
Ric(u, u) +

1
2
|£ug|2 − (divu)2

)
.

Using div(u) = τσ and the outcome of Equation (1) in the form

1
2
|£ug|2 = 2σ2∥T∥2

in the above integral equation, we have∫
Nm

∥Du∥2 =
∫

Nm

(
Ric(u, u) + 2σ2∥T∥2 − (τσ)2

)
.

Now, integrating Equation (48) and using the above equation, we arrive at∫
Nm

∥Hσ + ασI∥2 =
∫

Nm

(
Ric(u, u) + 2σ2∥T∥2 − m + 1

m
(τσ)2 (49)

−∥Ψ∥2 +
1
m
(∆σ + mασ)2

)
Notice that

2σ2∥T∥2 − m + 1
m

(τσ)2 = 2σ2
(
∥T∥2 − 1

m
τ2
)
− m − 1

m
(τσ)2 (50)

and, by Equation (5), we have that

σT(E)− 1
m

τσE = Hσ(E)− 1
m
(∆σ)E,

which implies

σ2
∥∥∥T − τ

m
I
∥∥∥2

=

∥∥∥∥Hσ −
1
m
(∆σ)I

∥∥∥∥2
.

Combining it with Equation (50), we arrive at

2σ2∥T∥2 − m + 1
m

(τσ)2 = 2
∥∥∥∥Hσ −

1
m
(∆σ)I

∥∥∥∥2
− m − 1

m
(τσ)2. (51)

Moreover, we have∥∥∥∥Hσ −
1
m
(∆σ)I

∥∥∥∥2
= ∥Hσ∥2 +

1
m
(∆σ)2 − 2

m
(∆σ)

m

∑
j=1

g
(

Hσ

(
Ej
)
, Ej
)

(52)

= ∥Hσ∥2 − 1
m
(∆σ)2

Similarly, we have

∥Hσ + ασI∥2 = ∥Hσ∥2 + 2ασ∆σ + mα2σ2

and utilizing it in Equation (52), we obtain∥∥∥∥Hσ −
1
m
(∆σ)I

∥∥∥∥2
= ∥Hσ + ασI∥2 − 2ασ∆σ − mα2σ2 − 1

m
(∆σ)2,
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i.e., ∥∥∥∥Hσ −
1
m
(∆σ)I

∥∥∥∥2
= ∥Hσ + ασI∥2 − 1

m
(∆σ + mασ)2.

Thus, in view of the above equation, (51) assumes the form

2σ2∥T∥2 − m + 1
m

(τσ)2 = 2∥Hσ + ασI∥2 − 2
m
(∆σ + mασ)2 − m − 1

m
(τσ)2.

Now, inserting this value in Equation (49), we arrive at∫
Nm

∥Hσ + ασI∥2 =
∫

Nm

(
Ric(u, u) + 2∥Hσ + ασI∥2 − m − 1

m
(τσ)2

−∥Ψ∥2 − 1
m
(∆σ + mασ)2

)
,

i.e., ∫
Nm

∥Hσ + ασI∥2 =
∫

Nm

(
m − 1

m
(τσ)2 +

1
m
(∆σ + mασ)2 + ∥Ψ∥2

)
−
∫

Nm

Ric(u, u).

Using inequality (47) in the above equation, we conclude∫
Nm

∥Hσ + ασI∥2 ≤ 0,

which proves
Hess(σ) = −ασg,

where α > 0 is a constant and σ, being a nontrivial solution of a static perfect fluid, is a
non-constant function. Hence, (Nm, g) is isometric to Sm

α (cf. [18,21]).
The converse is trivial, because, by Equation (21), Sm

α admits a σ-RVF u, and by Equation (23)
and the paragraph that follows (23), σ is a nontrivial solution of the static perfect fluid equation.
Moreover, we have, by Equation (22), that

∆σ + mασ = 0

and, by Equation (46), we have∫
Nm

Ric(u, u) =
∫

Nm

[
m − 1

m
τ2σ2 +

1
m
(∆σ + mασ)2 + ∥Ψ∥2

]
This finishes the proof.
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