Article

Ricci Vector Fields Revisited

Hanan Alohali ${ }^{1,+(\mathbb{D}}$, Sharief Deshmukh ${ }^{1,+(\mathbb{D}}$ and Gabriel-Eduard Vîlcu ${ }^{2, *,+(\mathbb{D}}$
1 Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2 Department of Mathematics and Informatics, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
* Correspondence: gabriel.vilcu@upb.ro
+ These authors contributed equally to this work.

Citation: Alohali, H.; Deshmukh, S.; Vîlcu, G.-E. Ricci Vector Fields
Revisited. Mathematics 2024, 12, 144. https://doi.org/10.3390/ math12010144

Academic Editor: Jonathan Blackledge

Received: 25 November 2023
Accepted: 29 December 2023
Published: 1 January 2024
Corrected: 7 February 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Abstract

We continue studying the σ-Ricci vector field \mathbf{u} on a Riemannian manifold $\left(N^{m}, g\right)$, which is not necessarily closed. A Riemannian manifold with Ricci operator T, a Coddazi-type tensor, is called a T-manifold. In the first result of this paper, we show that a complete and simply connected T-manifold (N^{m}, g), $m>1$, of positive scalar curvature τ, admits a closed σ-Ricci vector field \mathbf{u} such that the vector $\mathbf{u}-\nabla \sigma$ is an eigenvector of T with eigenvalue τm^{-1}, if and only if it is isometric to the m-sphere S_{α}^{m}. In the second result, we show that if a compact and connected T-manifold $\left(N^{m}, g\right)$, $m>2$, admits a σ-Ricci vector field \mathbf{u} with $\sigma \neq 0$ and is an eigenvector of a rough Laplace operator with the integral of the Ricci curvature $\operatorname{Ric}(\mathbf{u}, \mathbf{u})$ that has a suitable lower bound, then $\left(N^{m}, g\right)$ is isometric to the m-sphere S_{α}^{m}, and the converse also holds. Finally, we show that a compact and connected Riemannian manifold (N^{m}, g) admits a σ-Ricci vector field \mathbf{u} with σ as a nontrivial solution of the static perfect fluid equation, and the integral of the Ricci curvature $\operatorname{Ric}(\mathbf{u}, \mathbf{u})$ has a lower bound depending on a positive constant α, if and only if $\left(N^{m}, g\right)$ is isometric to the m-sphere S_{α}^{m}.

Keywords: Ricci vector field; m-sphere; Riemannian manifold; static perfect fluid equation

MSC: 53C20, 53C21, 53B50

1. Introduction

In a recent paper, (cf. [1]), a σ-Ricci vector field (abbreviated as σ-RVF) u on a m Riemannian manifold $\left(N^{m}, g\right)$ is introduced, being defined by

$$
\begin{equation*}
\frac{1}{2} £_{\mathbf{u}} g=\sigma R i c \tag{1}
\end{equation*}
$$

where $£_{\mathbf{u}} g$ is the Lie derivative of the metric g with respect to \mathbf{u}, σ is a smooth function and Ric is the Ricci tensor of $\left(N^{m}, g\right)$. A σ-RVF is a generalization of conformal vector fields (known for their utility in studying geometry and relativity), on Einstein manifolds (see [1-11]). Moreover, it represents a Killing vector field, which is known to have a great influence on the geometry as well as topology on which it lives (see [12-15]). Apart from these generalizations, a $\sigma-R V F$ is a particular form of potential field of generalized solitons considered in [16-18]. Note that a 1-RVF u on a m-Riemannian manifold $\left(N^{m}, g\right)$ is a stable Ricci soliton ($N^{m}, g, \mathbf{u}, 0$) (see [19]). Indeed, in [1], it has been observed that a $\sigma-R V F$ on $\left(N^{m}, g\right)$ is a stable solution of the generalized Ricci flow (or a σ-Ricci flow),

$$
\begin{equation*}
\partial_{t} g=2 \sigma \text { Ric }, \quad g(0)=g \tag{2}
\end{equation*}
$$

of the form $g(t)=\rho(t) \varphi_{t}^{*}(g)$, where $\varphi_{t}: N^{m} \rightarrow N^{m}$ is a 1-parameter family of diffeomorphisms generated by the vector fields $\mathbf{U}(t)$ and $\rho(t)$ is a scale factor, under the initial conditions $\rho(0)=1, \dot{\rho}(0)=0, \mathbf{U}(0)=\mathbf{u}$ and $\varphi_{0}=i d$.

In [1], a closed σ-RVF u, with $\sigma \neq 0$, on a compact and connected m-Riemannian manifold $\left(N^{m}, g\right), m>2$, of nonzero scalar curvature is used with an appropriate lower bound on the integral of the Ricci curvature $\operatorname{Ric}(\mathbf{u}, \mathbf{u})$ to find a characterization of the m-sphere $S^{m}(c)$. Moreover, in [1], a closed $\sigma-R V F \mathbf{u}$ on a complete and simply connected m-Riemannian manifold $\left(N^{m}, g\right), m>2$, of positive scalar curvature, is used, where the function σ is a nontrivial solution of the Fischer-Marsden equation (cf. [20]) with an appropriate upper bound on the length $\|\nabla \mathbf{u}\|$ of the covariant derivative of \mathbf{u}, to find another characterization of the sphere $S^{m}(c)$.

The Ricci operator T of a Riemannian manifold $\left(N^{m}, g\right)$ is a symmetric operator defined by

$$
\operatorname{Ric}(E, F)=g(T(E), F), \quad E, F \in \Gamma\left(N^{m}\right),
$$

where $\Gamma\left(N^{m}\right)$ is a space of vector fields on N^{m}. A Riemannian manifold $\left(N^{m}, g\right)$ is said to be a T-manifold, if the Ricci operator T is a Codazzi tensor, i.e., it satisfies

$$
\begin{equation*}
\left(D_{E} T\right)(F)=\left(D_{F} T\right)(E), \quad E, F \in \Gamma\left(N^{m}\right) \tag{3}
\end{equation*}
$$

where D is the Riemannian connection on $\left(N^{m}, g\right)$. It is worth noting that a T-manifold (N^{m}, g) has a constant scalar curvature.

In this article, we are interested in studying the geometry of $\left(N^{m}, g\right)$ equipped with a $\sigma-R V F \mathbf{u}$. In the first result, we consider a T-manifold $\left(N^{m}, g\right)$ that possesses a closed $\sigma-R V F$ \mathbf{u} and we observe that, in this case, the vector field $\mathbf{u}-\nabla \sigma$ has a special role to play in shaping the geometry of the T-manifold $\left(N^{m}, g\right)$. It is shown that if the scalar curvature τ of a compact T-manifold $\left(N^{m}, g\right)$ is positive (note that τ is a constant for a T-manifold) and the vector field $\mathbf{u}-\nabla \sigma$ satisfies

$$
T(\mathbf{u}-\nabla \sigma)=\frac{\tau}{m}(\mathbf{u}-\nabla \sigma)
$$

then $\left(N^{m}, g\right)$ is isometric to the m-sphere S_{c}^{m} of constant curvature c, where $\tau=m(m-1) c$, and the converse also holds (cf. Theorem 1).

Then, we concentrate on a $\sigma-R V F \mathbf{u}$ on $\left(N^{m}, g\right)$ that is not necessarily closed. In this case, the 1-form β dual to u gives rise to a skew symmetric operator $\Psi: \Gamma\left(N^{m}\right) \rightarrow \Gamma\left(N^{m}\right)$ defined by

$$
g(\Psi(E), F)=\frac{1}{2} d \beta(E, F), \quad E, F \in \Gamma\left(N^{m}\right),
$$

and we call the operator Ψ the associated operator of the $\sigma-R V F \mathbf{u}$. In the second result of this paper, we consider a compact and connected T-manifold $\left(N^{m}, g\right)$ with scalar curvature $\tau=m(m-1) c$ that possesses a $\sigma-R V F \mathbf{u}, \sigma \neq 0$, with associated operator Ψ satisfying

$$
\Delta \mathbf{u}=-c \mathbf{u}, \quad \int_{N^{m}} \operatorname{Ric}(\mathbf{u}, \mathbf{u}) \geq \int_{N^{m}}\left[\frac{m-1}{m} \tau^{2} \sigma^{2}+\|\Psi\|^{2}\right]
$$

which necessarily implies that $\left(N^{m}, g\right)$ is isometric to the m-sphere S_{c}^{m} of constant curvature c, and the converse is also true (cf. Theorem 2), where Δ is the rough Laplace operator acting on vector fields on $\left(N^{m}, g\right)$.

Recall the differential equation on a Riemannian manifold (N^{m}, g) considered by Obata (cf. [18,21]), namely

$$
\begin{equation*}
\operatorname{Hess}(\sigma)=-c \sigma g, \tag{4}
\end{equation*}
$$

where σ is a non-constant smooth function, c is a positive constant and $\operatorname{Hess}(\sigma)$ is the Hessian of σ defined by

$$
\operatorname{Hess}(\sigma)(E, F)=g\left(D_{E} \nabla \sigma, F\right), \quad E, F \in \Gamma\left(N^{m}\right)
$$

It is known that a complete, simply connected $\left(N^{m}, g\right)$ admits a nontrivial solution of (4) if and only if $\left(N^{m}, g\right)$ is isometric to the sphere S_{c}^{m} (cf. [18,21]).

There is yet another important differential equation on a Riemannian manifold ($\left.N^{m}, g\right)$ (cf. [7] and references therein), given by

$$
\begin{equation*}
\sigma R i c-\operatorname{Hess}(\sigma)=\frac{1}{m}(\tau \sigma-\Delta \sigma) g \tag{5}
\end{equation*}
$$

known as the static fluid equation, where $\Delta \sigma$ is the Laplacian of σ with respect to the metric g. A Riemannian manifold $\left(N^{m}, g\right)$ that admits a nontrivial solution of the static fluid equation is called a static space. Note that under the additional assumption

$$
\Delta \sigma=-\frac{\tau}{m-1} \sigma
$$

the static fluid equation reduces to the Fischer-Marsden equation (cf. [20])

$$
\begin{equation*}
(\Delta \sigma) g+\sigma \operatorname{Ric}=\operatorname{Hess}(\sigma) \tag{6}
\end{equation*}
$$

In the last result of this paper, we show that a compact and connected Riemannian manifold $\left(N^{m}, g\right)$ with scalar curvature τ possessing a $\sigma-R V F \mathbf{u}$ with associated operator Ψ and the function σ is a nontrivial solution of the static perfect fluid Equation (5); furthermore, for a positive constant c, the following inequality holds:

$$
\int_{N^{m}} \operatorname{Ric}(\mathbf{u}, \mathbf{u}) \geq \int_{N^{m}}\left[\frac{m-1}{m} \tau^{2} \sigma^{2}+\frac{1}{m}(\Delta \sigma+n c \sigma)^{2}+\|\Psi\|^{2}\right]
$$

which necessarily implies that $\left(N^{m}, g\right)$ is isometric to the sphere S_{c}^{m}, and the converse is also true (cf. Theorem 3).

2. Preliminaries

For a $\sigma-R V F \mathbf{u}$ on an m-dimensional Riemannian manifold $\left(N^{m}, g\right)$, we let β be the 1-form dual to \mathbf{u}, i.e.,

$$
\begin{equation*}
\beta(E)=g(\mathbf{u}, E), \quad E \in \Gamma\left(N^{m}\right) . \tag{7}
\end{equation*}
$$

Then, we have the associated operator Ψ satisfying

$$
\begin{equation*}
d \beta(E, F)=\frac{1}{2} g(\Psi(E), F), \quad E, F \in \Gamma\left(N^{m}\right) \tag{8}
\end{equation*}
$$

which shows that Ψ is a skew symmetric operator. Using Equations (1) and (8), we obtain the following expression for the covariant derivative $\nabla_{E} \mathbf{u}$

$$
\begin{equation*}
D_{E} \mathbf{u}=\sigma T(E)+\Psi(E), \quad E \in \Gamma\left(N^{m}\right) . \tag{9}
\end{equation*}
$$

where T is the Ricci operator defined by

$$
\operatorname{Ric}(E, F)=g(T(E), F), \quad E, F \in \Gamma\left(N^{m}\right) .
$$

On employing the following expression for the curvature tensor field R of $\left(N^{m}, g\right)$,

$$
R(E, F) G=\left[D_{E}, D_{F}\right] G-D_{[E, F]} G, \quad E, F, G \in \Gamma\left(N^{m}\right),
$$

with Equation (9), we obtain

$$
\begin{align*}
R(E, F) \mathbf{u} & =E(\sigma) T(F)-F(\sigma) T(E)+\rho\left(\left(D_{E} T\right)(F)-\left(D_{F} T\right)(E)\right) \tag{10}\\
& +\left(D_{E} \Psi\right)(F)-\left(D_{F} \Psi\right)(E)
\end{align*}
$$

for any $E, F \in \Gamma\left(N^{m}\right)$, where

$$
\left(D_{E} T\right)(F)=D_{E} T(F)-T\left(D_{E} F\right) .
$$

The scalar curvature τ of $\left(N^{m}, g\right)$ is given by

$$
\tau=\sum_{\alpha=1}^{m} g\left(T\left(E_{\alpha}\right), E_{\alpha}\right)
$$

where $\left\{E_{1}, \ldots, E_{m}\right\}$ is a local frame on N^{m}. The Ricci tensor is given by

$$
\operatorname{Ric}(E, F)=\sum_{\alpha=1}^{m} g\left(R\left(E_{\alpha}, E\right) F, E_{\alpha}\right),
$$

and employing it in Equation (10), we conclude

$$
\begin{align*}
\operatorname{Ric}(F, \mathbf{u}) & =\operatorname{Ric}(F, \nabla \sigma)-\tau F(\sigma)+\sigma g\left(F, \sum_{\alpha=1}^{m}\left(\nabla_{F_{\alpha}} T\right)\left(F_{\alpha}\right)\right) \tag{11}\\
& -\rho Y(\tau)-g\left(F, \sum_{\alpha=1}^{m}\left(\nabla_{F_{\alpha}} \Psi\right)\left(F_{\alpha}\right)\right),
\end{align*}
$$

where $\nabla \sigma$ is the gradient of σ and we have used the symmetry of the Ricci operator T and the skew symmetry of the associated operator Ψ. It is known that the gradient of scalar curvature τ satisfies (cf. [22])

$$
\begin{equation*}
\frac{1}{2} \nabla \tau=\sum_{\alpha=1}^{m}\left(D_{F_{\alpha}} T\right)\left(F_{\alpha}\right) . \tag{12}
\end{equation*}
$$

Thus, on using Equation (12) in (11), we arrive at

$$
\begin{equation*}
\operatorname{Ric}(F, \mathbf{u})=\operatorname{Ric}(F, \nabla \sigma)-\tau F(\sigma)-\frac{1}{2} \sigma F(\tau)-g\left(F, \sum_{\alpha=1}^{m}\left(\nabla_{F_{\alpha}} \Psi\right)\left(F_{\alpha}\right)\right) \tag{13}
\end{equation*}
$$

and, therefore,

$$
\begin{equation*}
T(\mathbf{u})=T(\nabla \sigma)-\tau \nabla \sigma-\frac{1}{2} \rho \nabla \tau-\sum_{\alpha=1}^{m}\left(\nabla_{F_{\alpha}} \Psi\right)\left(F_{\alpha}\right) . \tag{14}
\end{equation*}
$$

Lemma 1. For a σ-RVF \mathbf{u} on a T-manifold $\left(N^{m}, g\right)$, the associated operator Ψ satisfies

$$
\left(D_{E} \Psi\right)(F)=R(E, \mathbf{u}) F-\operatorname{Ric}(E, F) \nabla \sigma+F(\sigma) T(E), \quad E, F \in \Gamma\left(N^{m}\right) .
$$

Proof. Suppose that \mathbf{u} is a σ-RVF on a T-manifold $\left(N^{m}, g\right)$. Then, Equation (10) changes to

$$
\begin{equation*}
\left(D_{E} \Psi\right)(F)-\left(D_{F} \Psi\right)(E)=R(E, F) \mathbf{u}-E(\sigma) T(F)+F(\sigma) T(E) . \tag{15}
\end{equation*}
$$

Now, using the fact that the 2-form $d \beta$ in Equation (8) is closed and the associated operator Ψ is skew symmetric, we have

$$
g\left(\left(D_{E} \Psi\right)(F)-\left(D_{F} \Psi\right)(E), G\right)+g\left(\left(D_{G} \Psi\right)(E), F\right)=0
$$

and employing Equation (15) in the above equation yields

$$
g(R(E, F) \mathbf{u}-E(\sigma) T(F)+F(\sigma) T(E), G)+g\left(\left(D_{G} \Psi\right)(E), F\right)=0 .
$$

Thus, we have

$$
g\left(\left(D_{G} \Psi\right)(E), F\right)=g(R(G, \mathbf{u}) E, F)+E(\sigma) g(T(G), F)-\operatorname{Ric}(E, G) g(\nabla \sigma, F)
$$

and this proves the lemma.

On a Riemannian manifold $\left(N^{m}, g\right)$ possessing a $\sigma-R V F \mathbf{u}$, we have the second-order differential operator $\nabla^{2} \mathbf{u}$ defined by

$$
\left(\nabla^{2} \mathbf{u}\right)(E, F)=D_{E} D_{F} \mathbf{u}-D_{D_{E} F} \mathbf{u}, \quad E, F \in \Gamma\left(N^{m}\right)
$$

and its trace

$$
\begin{equation*}
\Delta \mathbf{u}=\sum_{\alpha=1}^{m}\left(\nabla^{2} \mathbf{u}\right)\left(E_{\alpha}, E_{\alpha}\right) \tag{16}
\end{equation*}
$$

is the rough Laplacian of the $\sigma-R V F \mathbf{u}$.
Lemma 2. On a connected T-manifold $\left(N^{m}, g\right)$, the scalar curvature τ is a constant, and for a σ $R V F \mathbf{u}$ on a connected T-manifold $\left(N^{m}, g\right)$ with associated operator Ψ, the rough Laplacian satisfies

$$
\Delta \mathbf{u}=T(\nabla \sigma)+\sum_{\alpha=1}^{m}\left(D_{E_{\alpha}} \Psi\right)\left(E_{\alpha}\right)
$$

where $\left\{E_{1}, \ldots, E_{m}\right\}$ is a local frame on N^{m}.
Proof. First, note that for a T-manifold $\left(N^{m}, g\right)$, using Equation (3), we have

$$
\begin{align*}
E(\tau) & =E \sum_{\alpha=1}^{m} g\left(T\left(E_{\alpha}\right), E_{\alpha}\right) \\
& =\sum_{\alpha=1}^{m} g\left(\left(D_{E} T\right)\left(E_{\alpha}\right)+T\left(D_{E} E_{\alpha}\right), E_{\alpha}\right)+\sum_{\alpha=1}^{m} g\left(T\left(E_{\alpha}\right), D_{E} E_{\alpha}\right) \tag{17}\\
& =\sum_{\alpha=1}^{m} g\left(\left(D_{E_{\alpha}} T\right)(E), E_{\alpha}\right)+2 \sum_{\alpha=1}^{m} g\left(T\left(E_{\alpha}\right), D_{E} E_{\alpha}\right) \\
& =\sum_{\alpha=1}^{m} g\left(E,\left(D_{E_{\alpha}} T\right)\left(E_{\alpha}\right)\right)+2 \sum_{\alpha=1}^{m} g\left(T\left(E_{\alpha}\right), D_{E} E_{\alpha}\right) .
\end{align*}
$$

Note that

$$
D_{E} E_{\alpha}=\sum_{k} \wedge_{\alpha}^{k}(E) E_{k}, \quad T\left(E_{\alpha}\right)=\sum_{j} \mu_{\alpha}^{j} E_{j}
$$

where the connection forms \wedge_{α}^{k} are skew symmetric and coefficients μ_{α}^{j} are symmetric and, as such, we have

$$
\sum_{\alpha=1}^{m} g\left(T\left(E_{\alpha}\right), D_{E} E_{\alpha}\right)=0
$$

Consequently, Equation (17) yields

$$
\nabla \tau=\sum_{\alpha=1}^{m}\left(D_{E_{\alpha}} T\right)\left(E_{\alpha}\right)
$$

Combining it with Equation (11), we obtain $\nabla \tau=0$, i.e., the scalar curvature τ of a T-manifold is a constant.

Employing Equation (9), we have

$$
\left(\nabla^{2} \mathbf{u}\right)(E, F)=E(\sigma) T(F)+\sigma\left(D_{E} T\right)(F)+\left(D_{E} \Psi\right)(F)
$$

and taking the trace in the above equation, while using Equation (11) with $\nabla \tau=0$, we obtain

$$
\Delta \mathbf{u}=T(\nabla \sigma)+\sum_{\alpha=1}^{m}\left(D_{E_{\alpha}} \Psi\right)\left(E_{\alpha}\right)
$$

Next, the sphere S_{α}^{m} of constant curvature α possesses a σ-RVF induced by a coordinate unit vector field $\frac{\partial}{\partial u}$ on the Euclidean space R^{m+1}. Indeed, on treating S_{α}^{m} as an embedded surface in R^{m+1} with unit normal ζ and Weingarten operator $-\sqrt{\alpha} I$, we express $\frac{\partial}{\partial u}$ as

$$
\begin{equation*}
\frac{\partial}{\partial u}=\mathbf{u}+f \zeta, f=\left\langle\frac{\partial}{\partial u}, \zeta\right\rangle, \tag{18}
\end{equation*}
$$

where \langle,$\rangle is a Euclidean inner product and \mathbf{u} \in \Gamma\left(S_{\alpha}^{m}\right)$. On taking g as the induced metric on S_{α}^{m} and D as the Riemannian connection with respect to g and differentiating the above equation with respect to the vector field $E \in \Gamma\left(S_{\alpha}^{m}\right)$, we have

$$
\begin{equation*}
D_{E} \mathbf{u}=-\sqrt{\alpha} f E, \quad \nabla f=\sqrt{\alpha} \mathbf{u} . \tag{19}
\end{equation*}
$$

Using the first equation in (19), it follows that

$$
£_{\mathbf{u}} g=-2 \sqrt{\alpha} f g
$$

and for the Ricci tensor of S_{α}^{m}, we have

$$
\begin{equation*}
\text { Ric }=(m-1) \alpha g, \quad \tau=m(m-1) \alpha . \tag{20}
\end{equation*}
$$

Hence, the vector field \mathbf{u} on S_{α}^{m} obeys

$$
\begin{equation*}
\frac{1}{2} £_{\mathbf{u}} g=\sigma \text { Ric }, \quad \sigma=-\frac{1}{(m-1) \sqrt{\alpha}} f, \tag{21}
\end{equation*}
$$

i.e., \mathbf{u} is a $\sigma-R V F$ on S_{α}^{m}.

Moreover, note that Equation (21) in view of Equation (19) confirms

$$
\begin{aligned}
& H e s s \\
&(\sigma)(E, F)=g\left(D_{E} \nabla \sigma, F\right) \\
&=-\frac{1}{(m-1) \sqrt{\alpha}} g\left(D_{E} \nabla f, F\right) \\
&=-\frac{1}{m-1} g\left(D_{E} \mathbf{u}, F\right) \\
&=\frac{\sqrt{\alpha} f}{m=1} g(E, F)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\operatorname{Hess}(\sigma)=-\alpha \sigma g, \quad \Delta \sigma=-m \alpha \sigma . \tag{22}
\end{equation*}
$$

Combining Equations (20) and (22), we see that the function σ of the $\sigma-R V F \mathbf{u}$ on S_{α}^{m} satisfies the static fluid equation

$$
\begin{equation*}
\sigma \operatorname{Ric}-\operatorname{Hess}(\sigma)=\frac{1}{m}(\tau \sigma-\Delta \sigma) g . \tag{23}
\end{equation*}
$$

We investigate now whether σ is a nontrivial solution. If σ was a constant, by virtue of Equation (21), it would mean that f was a constant, and, in turn, by (19), it would mean that $\mathbf{u}=0$ and, by the same equation, would imply $f=0$. Inserting this information in (18), we have $\frac{\partial}{\partial u}=0$, a contradiction. Hence, σ is a nontrivial solution of the static fluid equation on S_{α}^{m}.

3. σ-Ricci Vector Fields on T-Manifolds

In this section, we consider an m-dimensional T-manifold $\left(N^{m}, g\right)$ that possesses a closed $\sigma-R V F \mathbf{u}$. It is interesting to observe that, in this situation, the vector field $\mathbf{u}-\nabla \sigma$ plays an interesting role while treating the Ricci operator T of $\left(N^{m}, g\right)$. Note that, by

Lemma 2, the scalar curvature τ of a T-manifold $\left(N^{m}, g\right)$ is a constant and we put $\tau=$ $m(m-1) \alpha$, for a constant α. Here, we prove the following result.

Theorem 1. An m-dimensional, $m>1$, complete, and simply connected T-manifold $\left(N^{m}, g\right)$ with positive scalar curvature τ admits a nonzero closed σ-RVF $\mathbf{u}, \sigma \neq 0$ satisfying

$$
T(\mathbf{u}-\nabla \sigma)=\frac{\tau}{m}(\mathbf{u}-\nabla \sigma)
$$

if and only if $\left(N^{m}, g\right)$ is isometric to S_{α}^{m}, where $\tau=m(m-1) \alpha$.
Proof. Suppose that the complete and simply connected T-manifold $\left(N^{m}, g\right), m>1$, of scalar curvature $\tau>0$, admits a nonzero closed $\sigma-R V F \mathbf{u}, \sigma \neq 0$, which satisfies

$$
\begin{equation*}
T(\mathbf{u}-\nabla \sigma)=\frac{\tau}{m}(\mathbf{u}-\nabla \sigma) . \tag{24}
\end{equation*}
$$

As the $\sigma-R V F \mathbf{u}$ is closed, its associated operator $\Psi=0$, and by Lemma 2, the scalar curvature τ is a constant, and Equation (14) becomes

$$
\begin{equation*}
T(\mathbf{u})=T(\nabla \sigma)-\tau \nabla \sigma \tag{25}
\end{equation*}
$$

Treating it with Equation (24) yields

$$
\frac{\tau}{m}(\mathbf{u}-\nabla \sigma)=-\tau \nabla \sigma
$$

and, as $\tau>0$, it transforms into

$$
\begin{equation*}
\mathbf{u}=-(m-1) \nabla \sigma . \tag{26}
\end{equation*}
$$

Note that, by Equation (9), we have $\operatorname{divu}=\sigma \tau$, and taking the divergence in Equation (26) gives

$$
\begin{equation*}
\sigma \tau=-(m-1) \Delta \sigma . \tag{27}
\end{equation*}
$$

Now, inserting the value of $\nabla \sigma$ from Equation (26) into Equation (25), we arrive at

$$
\begin{equation*}
T(\mathbf{u})=-\frac{m-1}{m} \tau \nabla \sigma . \tag{28}
\end{equation*}
$$

Note that as \mathbf{u} is closed, Equation (9) has the form

$$
\begin{equation*}
D_{E} \mathbf{u}=\sigma T(E), \quad E \in \Gamma\left(N^{m}\right) \tag{29}
\end{equation*}
$$

Next, we intend to compute the divergence $\operatorname{div}(T \mathbf{u})$ and we proceed by choosing a local frame $\left\{E_{1}, \ldots, E_{m}\right\}$ and using Equation (29)

$$
\begin{aligned}
\operatorname{div}(T \mathbf{u}) & =\sum_{\alpha=1}^{m} g\left(\nabla_{E_{\alpha}} T \mathbf{u}, E_{\alpha}\right) \\
& =\sum_{\alpha=1}^{m} g\left(\left(\nabla_{E_{\alpha}} T\right)(\mathbf{u})+T\left(\nabla_{E_{\alpha}} \mathbf{u}\right), E_{\alpha}\right) \\
& =\sum_{\alpha=1}^{m} g\left(\mathbf{u},\left(\nabla_{E_{\alpha}} T\right)\left(E_{\alpha}\right)\right)+\sum_{\alpha=1}^{m} g\left(\nabla_{E_{\alpha}} \mathbf{u}, T\left(E_{\alpha}\right)\right) .
\end{aligned}
$$

Note that on T-manifold (N^{m}, g), by Lemma 2, τ is a constant and, thus, employing Equations (12) and (29), we arrive at

$$
\operatorname{div}(T \mathbf{u})=\sigma\|T\|^{2}
$$

Now, utilizing this equation in Equation (28) yields

$$
\begin{equation*}
\sigma\|T\|^{2}=-\frac{m-1}{m} \tau \Delta \sigma . \tag{30}
\end{equation*}
$$

Inserting Equation (27) in the above equation gives

$$
\sigma\|T\|^{2}=\frac{1}{m} \sigma \tau^{2},
$$

i.e.,

$$
\sigma\left(\|T\|^{2}-\frac{1}{m} \tau^{2}\right)=0
$$

As N^{k} is connected (being simply connected) and $\sigma \neq 0$, in this situation, the above equation yields

$$
\begin{equation*}
\|T\|^{2}=\frac{1}{m} \tau^{2} \tag{31}
\end{equation*}
$$

However, Equation (31) is the equality in Schwartz's inequality

$$
\|T\|^{2} \geq \frac{1}{m} \tau^{2}
$$

Hence, equality (31) holds if and only if

$$
T=\frac{\tau}{m} I
$$

and Equation (29) changes to

$$
D_{E} \mathbf{u}=\frac{\tau}{m} \rho E, \quad E \in \Gamma\left(N^{m}\right) .
$$

Thus, on employing Equation (26) in the above equation, we confirm

$$
\begin{equation*}
D_{E} \nabla \sigma=-\frac{\tau}{m(m-1)} \sigma E, \quad E \in \Gamma\left(N^{m}\right) . \tag{32}
\end{equation*}
$$

Note that as $\mathbf{u} \neq 0$ by Equation (26), the function σ is a non-constant function and, also, τ being a positive constant, letting $\tau=m(m-1) \alpha$, we obtain a positive constant α and Equation (32) is Obata's equation

$$
\operatorname{Hess}(\sigma)=-\alpha \rho g,
$$

proving that $\left(N^{m}, g\right)$ is isometric to the sphere S_{α}^{m} (cf. [18,21]).
Conversely, suppose that $\left(N^{m}, g\right)$ is isometric to the sphere S_{α}^{m}. Then, by Equations (19)-(21), there is a nonzero $\sigma-R V F \mathbf{u}$ on S_{α}^{m} and, as seen earlier, the function $\sigma \neq 0$ and is a non-constant function. Moreover, the Ricci operator of S_{α}^{m} being

$$
T=\frac{\tau}{m} I,
$$

the condition

$$
T(\mathbf{u}-\nabla \sigma)=\frac{\tau}{m}(\mathbf{u}-\nabla \sigma)
$$

holds, and this finishes the proof.
In an earlier result, we considered a closed σ-RVF u on an m-dimensional T-manifold $\left(N^{m}, g\right)$ to find a characterization of the sphere S_{α}^{m}. Next, we consider a $\sigma-R V F \mathbf{u}$ on an m-dimensional T-manifold $\left(N^{m}, g\right)$ not necessarily closed and prove the following.

Theorem 2. An m-dimensional compact and connected T-manifold $\left(N^{m}, g\right), m>2$ of positive scalar curvature τ admits a σ-RVF \mathbf{u} with associated operator $\Psi, \sigma \neq 0, \Delta \mathbf{u}=-\frac{\tau}{m(m-1)} \mathbf{u}$ and the Ricci curvature Ric (\mathbf{u}, \mathbf{u}) satisfies

$$
\int_{N^{m}} \operatorname{Ric}(\mathbf{u}, \mathbf{u}) \geq \int_{N^{m}}\left[\frac{m-1}{m} \tau^{2} \sigma^{2}+\|\Psi\|^{2}\right]
$$

if and only if $\left(N^{m}, g\right)$ is isometric to S_{α}^{m}, where $\tau=m(m-1) \alpha$.
Proof. Let an m-dimensional T-manifold $\left(N^{m}, g\right), m>2$, with scalar curvature $\tau>0$ be equipped with a $\sigma-R V F \mathbf{u}$ with $\sigma \neq 0$ and associated operator Ψ such that

$$
\begin{equation*}
\Delta \mathbf{u}=-\frac{\tau}{m(m-1)} \mathbf{u} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{N^{m}} \operatorname{Ric}(\mathbf{u}, \mathbf{u}) \geq \int_{N^{m}}\left[\frac{m-1}{m} \tau^{2} \sigma^{2}+\|\Psi\|^{2}\right] . \tag{34}
\end{equation*}
$$

Using Lemma 1, we have

$$
R(E, \mathbf{u}) F=\left(D_{E} \Psi\right)(F)+\operatorname{Ric}(E, F) \nabla \sigma-F(\sigma) T(E), \quad E, F \in \Gamma\left(N^{m}\right)
$$

Employing a local frame $\left\{E_{1}, \ldots, E_{m}\right\}$ in the above equation, we conclude

$$
\operatorname{Ric}(\mathbf{u}, F)=\operatorname{Ric}(\nabla \sigma, F)-\tau F(\sigma)-\sum_{\alpha=1}^{m} g\left(F,\left(D_{E_{\alpha}} \Psi\right)\left(E_{\alpha}\right)\right), \quad F \in \Gamma\left(N^{m}\right)
$$

and the above equation implies

$$
\operatorname{Ric}(\mathbf{u}, \mathbf{u})=\operatorname{Ric}(\nabla \sigma, \mathbf{u})-\tau \mathbf{u}(\sigma)-\sum_{\alpha=1}^{m} g\left(\mathbf{u},\left(D_{E_{\alpha}} \Psi\right)\left(E_{\alpha}\right)\right) .
$$

Note that, by Equation (9), we have

$$
\operatorname{div} \mathbf{u}=\tau \sigma
$$

and using

$$
\operatorname{div}(\sigma \mathbf{u})=\mathbf{u}(\sigma)+\tau \sigma^{2}
$$

in the above equation containing the expression of $\operatorname{Ric}(\mathbf{u}, \mathbf{u})$, we derive

$$
\begin{equation*}
\operatorname{Ric}(\mathbf{u}, \mathbf{u})=\operatorname{Ric}(\nabla \sigma, \mathbf{u})+\tau^{2} \sigma^{2}-\tau \operatorname{div}(\sigma \mathbf{u})-\sum_{\alpha=1}^{m} g\left(\mathbf{u},\left(D_{E_{\alpha}} \Psi\right)\left(E_{\alpha}\right)\right) \tag{35}
\end{equation*}
$$

Next, using a local frame $\left\{E_{1}, \ldots, E_{m}\right\}$ on $\left(N^{m}, g\right)$, to compute the $\operatorname{div}(\Psi \mathbf{u})$, we have, on using the skew symmetry of the associated operator Ψ and Equation (9),

$$
\begin{align*}
\operatorname{div}(\Psi \mathbf{u}) & =\sum_{\alpha=1}^{m} g\left(D_{E_{\alpha}} \Psi \mathbf{u}, E_{\alpha}\right) \\
& =\sum_{\alpha=1}^{m} g\left(\left(D_{E_{\alpha}} \Psi\right)(\mathbf{u})+\Psi\left(\sigma T E_{\alpha}+\Psi E_{\alpha}\right), E_{\alpha}\right) \tag{36}\\
& =-\sum_{\alpha=1}^{m} g\left(\mathbf{u},\left(D_{E_{\alpha}} \Psi\right)\left(E_{\alpha}\right)\right)-\sigma \sum_{\alpha=1}^{m} g\left(T E_{\alpha}, \Psi E_{\alpha}\right)-\|\Psi\|^{2}
\end{align*}
$$

Since T is symmetric and the associated operator Ψ is skew symmetric, it follows that

$$
\begin{equation*}
\sum_{\alpha=1}^{m} g\left(T E_{\alpha}, \Psi E_{\alpha}\right)=0 \tag{37}
\end{equation*}
$$

and Equation (36) now becomes

$$
\operatorname{div}(\Psi \mathbf{u})=-\sum_{\alpha=1}^{m} g\left(\mathbf{u},\left(D_{E_{\alpha}} \Psi\right)\left(E_{\alpha}\right)\right)-\|\Psi\|^{2}
$$

and, inserting this equation into Equation (35), we arrive at

$$
\operatorname{Ric}(\mathbf{u}, \mathbf{u})=\operatorname{Ric}(\nabla \sigma, \mathbf{u})+\tau^{2} \sigma^{2}-\tau \operatorname{div}(\sigma \mathbf{u})+\|\Psi\|^{2}+\operatorname{div}(\Psi \mathbf{u}) .
$$

Note that on a T-manifold $\left(N^{m}, g\right), \tau$ is a constant and keeping this in mind and integrating the above equation brings us to

$$
\begin{equation*}
\int_{N^{m}}\left(\operatorname{Ric}(\mathbf{u}, \mathbf{u})-\operatorname{Ric}(\nabla \sigma, \mathbf{u})-\tau^{2} \sigma^{2}-\|\Psi\|^{2}\right)=0 \tag{38}
\end{equation*}
$$

Observe that, by virtue of the symmetry of the operator T and Equations (9), (12) and (37), and the fact that τ is a constant, we have

$$
\begin{align*}
\operatorname{div}(T \mathbf{u}) & =\sum_{\alpha=1}^{m} g\left(D_{E_{\alpha}} T \mathbf{u}, E_{\alpha}\right) \\
& =\sum_{\alpha=1}^{m} g\left(\left(D_{E_{\alpha}} T\right)(\mathbf{u})+T\left(\sigma T E_{\alpha}+\Psi E_{\alpha}\right), E_{\alpha}\right) \tag{39}\\
& =\sigma\|T\|^{2} .
\end{align*}
$$

Now, using the fact that

$$
\operatorname{div}(\sigma T \mathbf{u})=\operatorname{Ric}(\nabla \sigma, \mathbf{u})+\sigma \operatorname{div}(T \mathbf{u})
$$

in Equation (39), we arrive at

$$
\operatorname{Ric}(\nabla \sigma, \mathbf{u})=\operatorname{div}(\sigma T \mathbf{u})-\sigma^{2}\|T\|^{2}
$$

Inserting the above equation in Equation (38), we confirm

$$
\int_{N^{m}}\left(\operatorname{Ric}(\mathbf{u}, \mathbf{u})+\sigma^{2}\|T\|^{2}-\tau^{2} \sigma^{2}-\|\Psi\|^{2}\right)=0
$$

and the above integral could be rearranged as

$$
\begin{equation*}
\int_{N^{m}} \sigma^{2}\left(\|T\|^{2}-\frac{1}{m} \tau^{2}\right)=\int_{N^{m}}\left(\frac{m-1}{m} \tau^{2} \sigma^{2}+\|\Psi\|^{2}\right)-\int_{N^{m}} \operatorname{Ric}(\mathbf{u}, \mathbf{u}) . \tag{40}
\end{equation*}
$$

Treating the above equation with the inequality (34), we arrive at

$$
\int_{N^{m}} \sigma^{2}\left(\|T\|^{2}-\frac{1}{m} \tau^{2}\right) \leq 0 .
$$

The integrand in the above inequality by virtue of Schwartz's inequality is nonnegative, and, therefore, we conclude

$$
\sigma^{2}\left(\|T\|^{2}-\frac{1}{m} \tau^{2}\right)=0 .
$$

As $\sigma \neq 0$ and N^{m} is connected, we conclude that

$$
\|T\|^{2}=\frac{1}{m} \tau^{2},
$$

which, being the equality in Schwartz's inequality, it holds if and only if

$$
\begin{equation*}
T=\frac{\tau}{m} I . \tag{41}
\end{equation*}
$$

Consequently, as τ is a constant, Equations (14) and (41) combine to arrive at

$$
\frac{\tau}{m} \mathbf{u}=\frac{\tau}{m}(\nabla \sigma)-\tau \nabla \sigma-\sum_{\alpha=1}^{m}\left(\nabla_{F_{\alpha}} \Psi\right)\left(F_{\alpha}\right),
$$

for a local frame $\left\{E_{1}, \ldots, E_{m}\right\}$ on $\left(N^{m}, g\right)$, i.e., we have

$$
\begin{equation*}
\frac{\tau}{m} \mathbf{u}=-\frac{m-1}{m} \tau \nabla \sigma-\sum_{\alpha=1}^{m}\left(\nabla_{F_{\alpha}} \Psi\right)\left(F_{\alpha}\right) . \tag{42}
\end{equation*}
$$

Moreover, using Equations (33) and (41) with Lemma 2, we obtain the following:

$$
\begin{equation*}
-\frac{\tau}{m(m-1)} \mathbf{u}=\frac{\tau}{m}(\nabla \sigma)+\sum_{\alpha=1}^{m}\left(\nabla_{F_{\alpha}} \Psi\right)\left(F_{\alpha}\right) . \tag{43}
\end{equation*}
$$

Adding Equations (42) and (43), we find

$$
\frac{m-2}{m(m-1)} \tau \mathbf{u}=-\frac{m-2}{m} \tau \nabla \sigma
$$

and, as $m>2, \tau>0$, it confirms

$$
\mathbf{u}=-(m-1) \nabla \sigma
$$

Differentiating the above equation and using Equations (9) and (41), we have

$$
D_{E} \nabla \sigma=-\frac{1}{m-1}\left(\frac{\tau}{m} \sigma E+\Psi(E)\right), \quad E \in \Gamma\left(N^{m}\right),
$$

which, on taking the inner product with E and noticing that Ψ is a skew symmetric operator, leads to

$$
\operatorname{Hess}(\sigma)(E, E)=-\alpha \sigma g(E, E), \quad E \in \Gamma\left(N^{m}\right)
$$

where $\tau=m(m-1) \alpha$, i.e., α is a positive constant. Now, polarizing the above equation confirms

$$
\operatorname{Hess}(\sigma)=-\alpha \sigma g .
$$

Hence, $\left(N^{m}, g\right)$ is isometric to S_{α}^{m} (cf. $\left.[18,21]\right)$.
Conversely, suppose that $\left(N^{m}, g\right)$ is isometric to S_{α}^{m}. Then, by Equation (21), there is a nonzero $\sigma-R V F \mathbf{u}$ on S_{α}^{m} with $\sigma \neq 0$ and, as \mathbf{u} is is closed, the associated operator $\Psi=0$. Moreover, it is obvious that S_{α}^{m} is a T-manifold. Thus, using Equation (19), we have

$$
\begin{aligned}
\left(\nabla^{2} \mathbf{u}\right)(E, F) & =D_{E} D_{F} \mathbf{u}-D_{D_{E} F} \mathbf{u} \\
& =-\sqrt{\alpha} E(f) F
\end{aligned}
$$

and, therefore, by treating the above equation with (16), we have

$$
\begin{aligned}
\Delta \mathbf{u} & =\sum_{\alpha=1}^{m}\left(\nabla^{2} \mathbf{u}\right)\left(E_{\alpha}, E_{\alpha}\right) \\
& =-\sqrt{\alpha} \nabla f,
\end{aligned}
$$

which, by virtue of Equation (19), implies

$$
\begin{aligned}
\Delta \mathbf{u} & =-\alpha \mathbf{u} \\
& =-\frac{\tau}{m(m-1)} \mathbf{u}
\end{aligned}
$$

where $\tau=m(m-1) \alpha$. Finally, using Equations (19) and (21), we have

$$
\begin{aligned}
\nabla \sigma & =-\frac{1}{(m-1) \sqrt{\alpha}} \nabla f \\
& =-\frac{1}{m-1} \mathbf{u}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\|\mathbf{u}\|^{2}=(m-1)^{2}\|\nabla \sigma\|^{2} \tag{44}
\end{equation*}
$$

Now, Equation (22) implies

$$
\sigma \Delta \sigma=-m \alpha \sigma^{2}
$$

which, on integrating by parts, confirms

$$
\begin{align*}
\int_{S_{\alpha}^{m}}\|\nabla \sigma\|^{2} & =m \alpha \int_{S_{\alpha}^{m}} \sigma^{2} \\
& =\frac{1}{m(m-1)^{2} \alpha} \int_{S_{\alpha}^{m}} \tau^{2} \sigma^{2} . \tag{45}
\end{align*}
$$

The Ricci curvature of S_{α}^{m} is

$$
\operatorname{Ric}(\mathbf{u}, \mathbf{u})=(m-1) \alpha\|\mathbf{u}\|^{2}
$$

and, thus, using $\Psi=0$ and Equations (44) and (45), we conclude

$$
\begin{align*}
\int_{S_{\alpha}^{m}} \operatorname{Ric}(\mathbf{u}, \mathbf{u}) & =\int_{S_{\alpha}^{m}}(m-1) \alpha\|\mathbf{u}\|^{2} \\
& =\int_{S_{\alpha}^{m}}(m-1)^{3} \alpha\|\nabla \sigma\|^{2} \tag{46}\\
& =\int_{S_{\alpha}^{m}}\left[\frac{m-1}{m} \tau^{2} \sigma^{2}+\|\Psi\|^{2}\right]
\end{align*}
$$

and this completes the proof.

4. σ-Ricci Vector Fields on Static Spaces

Now, we are interested in a $\sigma-R V F \mathbf{u}$, not necessarily closed, on a Riemannian manifold $\left(N^{m}, g\right)$ with function σ as a nontrivial solution of the static fluid Equation (5). Indeed, we prove the following.

Theorem 3. If an m-dimensional compact and connected Riemannian manifold $\left(N^{m}, g\right)$ admits a σ-RVF \mathbf{u} with associated operator Ψ, such that σ is a nontrivial solution of the static perfect fluid equation, for a positive constant α and the Ricci curvature $\operatorname{Ric}(\mathbf{u}, \mathbf{u})$, it satisfies

$$
\int_{N^{m}} \operatorname{Ric}(\mathbf{u}, \mathbf{u}) \geq \int_{N^{m}}\left[\frac{m-1}{m} \tau^{2} \sigma^{2}+\frac{1}{m}(\Delta \sigma+m \alpha \sigma)^{2}+\|\Psi\|^{2}\right]
$$

and $\left(N^{m}, g\right)$ is isometric to S_{α}^{m}, and the converse also holds.
Proof. Assume that $\left(N^{m}, g\right)$ admits a $\sigma-R V F \mathbf{u}$ with associated operator Ψ, such that σ is a nontrivial solution of the static perfect fluid Equation (5) and the Ricci curvature $\operatorname{Ric}(\mathbf{u}, \mathbf{u})$ satisfies

$$
\begin{equation*}
\int_{N^{m}} \operatorname{Ric}(\mathbf{u}, \mathbf{u}) \geq \int_{N^{m}}\left[\frac{m-1}{m} \tau^{2} \sigma^{2}+\frac{1}{m}(\Delta \sigma+m \alpha \sigma)^{2}+\|\Psi\|^{2}\right] . \tag{47}
\end{equation*}
$$

Then, the Hessian operator H_{σ} of the function σ defined by

$$
g\left(H_{\sigma}(E), F\right)=\operatorname{Hess}(\sigma)(E, F),
$$

by virtue of Equation (5) satisfies

$$
H_{\sigma}(E)=\sigma T(E)+\frac{1}{m}(\Delta \sigma-\tau \sigma) E, \quad E \in \Gamma\left(N^{m}\right)
$$

Utilizing Equation (9) in the above equation, we arrive at

$$
H_{\sigma}(E)=D_{E} \mathbf{u}-\Psi(E)+\frac{1}{m}(\Delta \sigma-\tau \sigma) E
$$

and, for a positive constant α, the above equation could be rearranged as

$$
\left(H_{\sigma}+\alpha \sigma I\right)(E)=D_{E} \mathbf{u}-\Psi(E)+\frac{1}{m}(\Delta \sigma+m \alpha \sigma-\tau \sigma) E, \quad E \in \Gamma\left(N^{m}\right)
$$

Choosing a local frame $\left\{E_{1}, \ldots, E_{m}\right\}$, and using the above equation, we compute

$$
\begin{aligned}
\left\|H_{\sigma}+\alpha \sigma I\right\|^{2}= & \sum_{j=1}^{m} g\left(\left(H_{\sigma}+\alpha \sigma I\right)\left(E_{j}\right),\left(H_{\sigma}+\alpha \sigma I\right)\left(E_{j}\right)\right) \\
= & \sum_{j=1}^{m} g\left(D_{E_{j}} \mathbf{u}-\Psi\left(E_{j}\right)+\frac{1}{m}(\Delta \sigma+m \alpha \sigma-\tau \sigma) E_{j}\right. \\
& \left.D_{E_{j}} \mathbf{u}-\Psi\left(E_{j}\right)+\frac{1}{m}(\Delta \sigma+m \alpha \sigma-\tau \sigma) E_{j}\right) \\
= & \|D \mathbf{u}\|^{2}+\|\Psi\|^{2}+\frac{1}{m}(\Delta \sigma+m \alpha \sigma-\tau \sigma)^{2} \\
& -2 \sum_{j=1}^{m} g\left(D_{E_{j}} \mathbf{u}, \Psi\left(E_{j}\right)\right) \\
& +\frac{2}{m}(\Delta \sigma+m \alpha \sigma-\tau \sigma) \operatorname{div}(\mathbf{u})
\end{aligned}
$$

Now, using Equation (9) and $\operatorname{div}(\mathbf{u})=\tau \sigma$ in the above equation, we arrive at

$$
\begin{aligned}
\left\|H_{\sigma}+\alpha \sigma I\right\|^{2}= & \|D \mathbf{u}\|^{2}-\|\Psi\|^{2}+\frac{1}{m}(\Delta \sigma+m \alpha \sigma-\tau \sigma)^{2} \\
& +\frac{2 \tau \sigma}{m}(\Delta \sigma+m \alpha \sigma-\tau \sigma),
\end{aligned}
$$

i.e.,

$$
\left\|H_{\sigma}+\alpha \sigma I\right\|^{2}=\|D \mathbf{u}\|^{2}-\|\Psi\|^{2}+\frac{1}{m}(\Delta \sigma+m \alpha \sigma-\tau \sigma)(\Delta \sigma+m \alpha \sigma+\tau \sigma)
$$

or

$$
\begin{equation*}
\left\|H_{\sigma}+\alpha \sigma I\right\|^{2}=\|D \mathbf{u}\|^{2}-\|\Psi\|^{2}+\frac{1}{m}(\Delta \sigma+m \alpha \sigma)^{2}-\frac{1}{m}(\tau \sigma)^{2} . \tag{48}
\end{equation*}
$$

We recall the integral formula (cf. [23])

$$
\int_{N^{m}}\|D \mathbf{u}\|^{2}=\int_{N^{m}}\left(\operatorname{Ric}(\mathbf{u}, \mathbf{u})+\frac{1}{2}\left|£_{\mathbf{u}} g\right|^{2}-(\operatorname{div} \mathbf{u})^{2}\right)
$$

Using $\operatorname{div}(\mathbf{u})=\tau \sigma$ and the outcome of Equation (1) in the form

$$
\frac{1}{2}\left|£_{\mathbf{u}} g\right|^{2}=2 \sigma^{2}\|T\|^{2}
$$

in the above integral equation, we have

$$
\int_{N^{m}}\|D \mathbf{u}\|^{2}=\int_{N^{m}}\left(\operatorname{Ric}(\mathbf{u}, \mathbf{u})+2 \sigma^{2}\|T\|^{2}-(\tau \sigma)^{2}\right) .
$$

Now, integrating Equation (48) and using the above equation, we arrive at

$$
\begin{align*}
\int_{N^{m}}\left\|H_{\sigma}+\alpha \sigma I\right\|^{2} & =\int_{N^{m}}\left(\operatorname{Ric}(\mathbf{u}, \mathbf{u})+2 \sigma^{2}\|T\|^{2}-\frac{m+1}{m}(\tau \sigma)^{2}\right. \tag{49}\\
& \left.-\|\Psi\|^{2}+\frac{1}{m}(\Delta \sigma+m \alpha \sigma)^{2}\right)
\end{align*}
$$

Notice that

$$
\begin{equation*}
2 \sigma^{2}\|T\|^{2}-\frac{m+1}{m}(\tau \sigma)^{2}=2 \sigma^{2}\left(\|T\|^{2}-\frac{1}{m} \tau^{2}\right)-\frac{m-1}{m}(\tau \sigma)^{2} \tag{50}
\end{equation*}
$$

and, by Equation (5), we have that

$$
\sigma T(E)-\frac{1}{m} \tau \sigma E=H_{\sigma}(E)-\frac{1}{m}(\Delta \sigma) E
$$

which implies

$$
\sigma^{2}\left\|T-\frac{\tau}{m} I\right\|^{2}=\left\|H_{\sigma}-\frac{1}{m}(\Delta \sigma) I\right\|^{2} .
$$

Combining it with Equation (50), we arrive at

$$
\begin{equation*}
2 \sigma^{2}\|T\|^{2}-\frac{m+1}{m}(\tau \sigma)^{2}=2\left\|H_{\sigma}-\frac{1}{m}(\Delta \sigma) I\right\|^{2}-\frac{m-1}{m}(\tau \sigma)^{2} . \tag{51}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
\left\|H_{\sigma}-\frac{1}{m}(\Delta \sigma) I\right\|^{2} & =\left\|H_{\sigma}\right\|^{2}+\frac{1}{m}(\Delta \sigma)^{2}-\frac{2}{m}(\Delta \sigma) \sum_{j=1}^{m} g\left(H_{\sigma}\left(E_{j}\right), E_{j}\right) \tag{52}\\
& =\left\|H_{\sigma}\right\|^{2}-\frac{1}{m}(\Delta \sigma)^{2}
\end{align*}
$$

Similarly, we have

$$
\left\|H_{\sigma}+\alpha \sigma I\right\|^{2}=\left\|H_{\sigma}\right\|^{2}+2 \alpha \sigma \Delta \sigma+m \alpha^{2} \sigma^{2}
$$

and utilizing it in Equation (52), we obtain

$$
\left\|H_{\sigma}-\frac{1}{m}(\Delta \sigma) I\right\|^{2}=\left\|H_{\sigma}+\alpha \sigma I\right\|^{2}-2 \alpha \sigma \Delta \sigma-m \alpha^{2} \sigma^{2}-\frac{1}{m}(\Delta \sigma)^{2},
$$

i.e.,

$$
\left\|H_{\sigma}-\frac{1}{m}(\Delta \sigma) I\right\|^{2}=\left\|H_{\sigma}+\alpha \sigma I\right\|^{2}-\frac{1}{m}(\Delta \sigma+m \alpha \sigma)^{2} .
$$

Thus, in view of the above equation, (51) assumes the form

$$
2 \sigma^{2}\|T\|^{2}-\frac{m+1}{m}(\tau \sigma)^{2}=2\left\|H_{\sigma}+\alpha \sigma I\right\|^{2}-\frac{2}{m}(\Delta \sigma+m \alpha \sigma)^{2}-\frac{m-1}{m}(\tau \sigma)^{2} .
$$

Now, inserting this value in Equation (49), we arrive at

$$
\begin{aligned}
\int_{N^{m}}\left\|H_{\sigma}+\alpha \sigma I\right\|^{2} & =\int_{N^{m}}\left(\operatorname{Ric}(\mathbf{u}, \mathbf{u})+2\left\|H_{\sigma}+\alpha \sigma I\right\|^{2}-\frac{m-1}{m}(\tau \sigma)^{2}\right. \\
& \left.-\|\Psi\|^{2}-\frac{1}{m}(\Delta \sigma+m \alpha \sigma)^{2}\right)
\end{aligned}
$$

i.e.,

$$
\int_{N^{m}}\left\|H_{\sigma}+\alpha \sigma I\right\|^{2}=\int_{N^{m}}\left(\frac{m-1}{m}(\tau \sigma)^{2}+\frac{1}{m}(\Delta \sigma+m \alpha \sigma)^{2}+\|\Psi\|^{2}\right)-\int_{N^{m}} \operatorname{Ric}(\mathbf{u}, \mathbf{u}) .
$$

Using inequality (47) in the above equation, we conclude

$$
\int_{N^{m}}\left\|H_{\sigma}+\alpha \sigma I\right\|^{2} \leq 0
$$

which proves

$$
\operatorname{Hess}(\sigma)=-\alpha \sigma g,
$$

where $\alpha>0$ is a constant and σ, being a nontrivial solution of a static perfect fluid, is a non-constant function. Hence, $\left(N^{m}, g\right)$ is isometric to S_{α}^{m} (cf. [18,21]).

The converse is trivial, because, by Equation (21), S_{α}^{m} admits a σ-RVF \mathbf{u}, and by Equation (23) and the paragraph that follows (23), σ is a nontrivial solution of the static perfect fluid equation. Moreover, we have, by Equation (22), that

$$
\Delta \sigma+m \alpha \sigma=0
$$

and, by Equation (46), we have

$$
\int_{N^{m}} \operatorname{Ric}(\mathbf{u}, \mathbf{u})=\int_{N^{m}}\left[\frac{m-1}{m} \tau^{2} \sigma^{2}+\frac{1}{m}(\Delta \sigma+m \alpha \sigma)^{2}+\|\Psi\|^{2}\right]
$$

This finishes the proof.

Author Contributions: Conceptualization, H.A., S.D. and G.-E.V.; methodology, H.A., S.D. and G.-E.V.; software, H.A., S.D. and G.-E.V.; validation, H.A., S.D. and G.-E.V.; formal analysis, H.A., S.D. and G.-E.V.; investigation, H.A., S.D. and G.-E.V.; resources, H.A., S.D. and G.-E.V.; data curation, H.A., S.D. and G.-E.V.; writing-original draft preparation, H.A., S.D. and G.-E.V.; writing-review and editing, H.A., S.D. and G.-E.V.; visualization, H.A., S.D. and G.-E.V.; supervision, H.A., S.D. and G.-E.V.; project administration, H.A., S.D. and G.-E.V.; funding acquisition, H.A. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to extend their sincere appreciation to Supporting Project Number (RSPD2023R860), King Saud University, Riyadh, Saudi Arabia.
Data Availability Statement: Data are contained within the article.
Acknowledgments: The authors would like to extend their sincere appreciations to Supporting project number (RSPD2024R860) King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Alohali, H.; Deshmukh, S. Ricci vector fields. Mathematics 2023, 11, 4622. [CrossRef]
2. Chen, B.-Y. Some results on concircular vector fields and their applications to Ricci solitons. Bull. Korean Math. Soc. 2015, 52, 1535-1547. [CrossRef]
3. Deshmukh, S.; Turki, N.B.; Vîlcu, G.-E. A note on static spaces. Results Phys. 2021, 27, 104519. [CrossRef]
4. Falcitelli, M.; Sarkar, A.; Halder, S. Conformal vector fields and conformal Ricci solitons on α-Kenmotsu manifolds. Mediterr. J. Math. 2023, 20, 127. [CrossRef]
5. Hwang, S.; Yun, G. Conformal vector fields and their applications to Einstein-type manifolds. Results Math. 2024, 79, 45. [CrossRef]
6. Khan, S.; Bukhari, M.; Alkhaldi, A.; Ali, A. Conformal vector fields of Bianchi type-I spacetimes. Mod. Phys. Lett. A 2021, 36, 2150254. [CrossRef]
7. Narmanov, A.; Rajabov, E. On the geometry of orbits of conformal vector fields. J. Geom. Symmetry Phys. 2019, 51, 29-39. [CrossRef]
8. Poddar, R.; Balasubramanian, S.; Sharma, R. Quasi-Einstein manifolds admitting conformal vector fields. Colloq. Math. 2023, 174, 81-87. [CrossRef]
9. Sharma, R. Gradient Ricci solitons with a conformal vector field. J. Geom. 2018, 109, 33. [CrossRef]
10. Sharma, R. Conformal flatness and conformal vector fields on umbilically synchronized space-times. Acta Phys. Pol. B 2023, 54, A3. [CrossRef]
11. Filho, J.F.S. Quasi-Einstein manifolds admitting a closed conformal vector field. Differ. Geom. Appl. 2024, 92, 102083. [CrossRef]
12. Nikonorov, Y. Spectral properties of Killing vector fields of constant length. J. Geom. Phys. 2019, 145, 103485. [CrossRef]
13. Lynge, W.C. Sufficient conditions for periodicity of a Killing vector field. Proc. Am. Math. Soc. 1973, 38, 614-616. [CrossRef]
14. Rong, X. Positive curvature, local and global symmetry, and fundamental groups. Am. J. Math. 1999, 121, 931-943. [CrossRef]
15. Yorozu, S. Killing vector fields on complete Riemannian manifolds. Proc. Am. Math. Soc. 1982, 84, 115-120. [CrossRef]
16. Blaga, A.M.; Chen, B.-Y. Harmonic forms and generalized solitons. Results Math. 2024, 79, 16. [CrossRef]
17. Lee, K.-H. Stability and moduli space of generalized Ricci solitons. Nonlinear Anal. 2024, 240, 113458. [CrossRef]
18. Obata, M. The conjectures about conformal transformations. J. Differ. Geom. 1971, 6, 247-258. [CrossRef]
19. Chow, B.; Lu, P.; Ni, L. Hamilton's Ricci Flow; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2006; Volume 77.
20. Fischer, A.E.; Marsden, J.E. Manifolds of Riemannian metrics with prescribed scalar curvature. Bull. Am. Math. Soc. 1974, 80, 479-484. [CrossRef]
21. Obata, M. Conformal transformations of Riemannian manifolds. J. Differ. Geom. 1970, 4, 311-333. [CrossRef]
22. Besse, A.L. Einstein Manifolds; Springer: Berlin/Heidelberg, Germany, 1987.
23. Yano, K. Integral Formulas in Riemannian Geometry; Marcel Dekker Inc.: New York, NY, USA, 1970.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

