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Abstract: With the growing emphasis on privacy awareness, there is an increasing demand for privacy-
preserving encrypted image retrieval and secure image storage on cloud servers. Nonetheless, existing
solutions exhibit certain shortcomings regarding retrieval accuracy, the capacity to search large images
from smaller ones, and the implementation of fine-grained access control. Consequently, to rectify these
issues, the YOLOv5 technique is employed for object detection within the image, capturing them as
localized images. A trained convolutional neural network (CNN) model extracts the feature vectors from
the localized images. To safeguard the encrypted image rules from easy accessibility by third parties,
the image is encrypted using ElGamal. In contrast, the feature vectors are encrypted using the skNN
method to achieve ciphertext retrieval and then upload this to the cloud. In pursuit of fine-grained
access control, a role-based multinomial access control technique is implemented to bestow access rights
to local graphs, thereby achieving more nuanced permission management and heightened security. The
proposed scheme introduces a comprehensive cryptographic image retrieval and secure access solution,
encompassing fine-grained access control techniques to bolster security. Ultimately, the experiments
are conducted to validate the proposed solution’s feasibility, security, and accuracy. The solution’s
performance across various facets is evaluated through these experiments.

Keywords: encrypted image retrieval; fine-grained access control; YOLOv5; ElGamal; convolutional
neural network (CNN); secure k-nearest neighbor (skNN)

MSC: 68U01

1. Introduction

Due to rapid technological advancements and improvements in hardware and soft-
ware, various aspects of information hiding, including retrieval, storage, and transmission,
have greatly improved in convenience. The emergence of cloud technology has revolu-
tionized data processing, offering novel methods for managing information. However,
this progress has also ushered in elevated risks to information security, driven by the
growing demand for network connectivity. Notable security incidents encompass phishing
schemes aimed at stealing personal data, malicious apps designed to abscond with vital
phone information, ransomware viruses targeting operating systems and cloud users, and
instances of database exposure orchestrated by hackers.

According to the 2022 Mid-Year Network Security Statistics Report [1] from the Smart
Protection Network (SPN), the count of threats detected and thwarted by Emotet exhibited
a significant upsurge compared to the corresponding period in 2021. The concept of
information privacy originated from Reidenberg’s work in 1999. In our country, protective
measures have been taken, including the enactment of the Personal Data Protection Law,
the Medical Law, and other associated regulations, all aimed at safeguarding users against
privacy violations. The Personal Data Protection and Healthcare Act provisions secure
users’ privacy. However, contemporary concerns about privacy breaches persist. For
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instance, the incident involving the unauthorized release of private photos of Jennie, a
member of a Korean girl group, by hackers has ignited a widespread public outcry. This
incident vividly underscores the ongoing inadequacy in effectively addressing the challenge
of personal privacy breaches.

Hence, when dealing with sensitive information, particularly during storage or trans-
mission, adopting encryption techniques becomes imperative to counter information leak-
age. It is important to note that encrypted data often appear convoluted, raising the question
of ensuring the triumvirate of confidentiality, integrity, and information availability, as
Neumann highlighted in 1977 [2]. This stands as a significant contemporary challenge.

As various fields witness the expansion of large-scale image databases, the associated
computational and storage demands on systems have grown considerably. Consequently,
an emerging trend involves outsourcing images to cloud platforms. This shift is driven
by the ample computational prowess and storage capabilities of the cloud, which are par-
ticularly beneficial for resource-constrained users. Nonetheless, apprehensions regarding
privacy and security have consistently posed significant hurdles for users contemplating
adopting cloud services. For instance, there is concern that unscrupulous cloud service
providers (CSPs) might illicitly acquire information for unauthorized use or manipulate
data during its transfer.

To effectively safeguard privacy, users’ personal information requires transmission,
computation, storage, and retrieval in ciphertext, ensuring robust security. Consequently,
this paper explores encrypted image retrieval within the cloud environment. Moreover, the
traditional approach to content-based image retrieval (CBIR) typically involves retrieving
an entire image rather than “searching a small image within a larger one”. In contrast, the
proposed method focuses on retrieving specific objects or details within images, demanding
precise techniques for extracting image features.

A subsequent aspect under investigation pertains to the requirements of fine-grained
access control. This exploration commences with the clarification of coarse-grained versus
fine-grained distinctions. In the context of image retrieval, coarse-grained access control
typically involves authorization based on entire sets of images. This grants users access to
complete image collections based on their roles or privileges. While simpler, this approach
cannot effectively manage and differentiate image content intricacies. On the other hand,
fine-grained access control pertains to the meticulous regulation of access to detailed image
attributes. This entails granting access authorization based on image labels and content
characteristics. The absence of fine-grained access control can result in administrators
having limited control over image resource access, potentially elevating the privacy risks
due to the inadequate oversight of users’ interaction with sensitive images.

This study performs a comprehensive analysis and synthesis of literature authored by
diverse scholars. The subsequent section enumerates the focal points of the research, as
outlined in Table 1.

Table 1. Comparison of previous methods.

Methods Data Type Feature
Extraction

Retrieval
Methods

Access
Control

Fine-
Grained Accuracy

[3] Image CNN skNN None No 0.7

[4] Image CNN skNN
Symmetric

polyno-
mial

No 0.8323

[5] Image CNN skNN
Symmetric

polyno-
mial

No 0.82

[6] Image CNN DT-PKC None No 0.7

[7] Image Fisher
vector skNN

Symmetric
polyno-

mial
No 0.61
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(1) Low retrieval accuracy: The retrieval of standard global features like texture, color, and
brightness is feasible, yet accurately describing the image content becomes challenging
under varying conditions such as lighting, occlusion, cropping, and more. Images
can significantly differ under diverse lighting and angles, leading to diminished re-
trieval accuracy, as indicated by Shen et al. [8]. While scholars have attempted to
utilize methods like the edge histogram descriptor (EHD) [9] and color layout descrip-
tor (CLD) [10] to extract feature vectors from images, these approaches fall short of
providing a comprehensive image characterization, thus resulting in low retrieval
accuracy. Efforts to establish secure image retrieval schemes have incorporated the
scale-invariant feature transform (SIFT) for extracting local image features [11–13]. Al-
though SIFT is resilient against scaling, rotation, and brightness variations, it struggles
to accurately capture features in images with smooth edges. Another technique, the
Fisher vector [14], employs k-means clustering to aggregate SIFT feature vectors into
a global feature vector. However, an analysis of the data presented in Table 1 reveals
that the image retrieval accuracy achieved through CNN-based feature extraction
methods, as highlighted in the works of Li et al. [4,5], significantly surpasses that of
the Fisher vector method. Recent years have witnessed a surge in studies proposing
the utilization of convolutional neural networks (CNNs) for extracting image feature
vectors, as demonstrated by Li et al. [4,15–17]. The adoption of CNNs in image fea-
ture extraction has notably enhanced retrieval accuracy. This improvement has been
experimentally proven to outperform SIFT, CLD, and EHD methods. The strength of
CNNs lies in their ability to simulate the biological visual system, enabling them to
recognize images through unsupervised learning and capture intricate and abstract
image information.

(2) Lack of multi-object retrieval: Retrieving multi-object images from a specific image.
In contrast to the conventional CBIR approach discussed in Table 1, CBIR schemes
typically use single-object images to locate similar counterparts within the database.
However, real-world scenarios often involve query images that only encompass a
small fraction of the entire scene, with numerous other objects in the picture. This
characteristic adds complexity to the retrieval process. While methods like R-CNN can
be employed to detect object boundaries, define regions of interest (RoIs), and enhance
convolutional neural network features for individual regions to facilitate classification,
as explored by Amitha et al. [18], there is a shortage of research on retrieving single-
object images (small images) within encrypted environments. Moreover, no existing
research tackles the challenge of retrieving multi-object images (large images) from
single-object images (small images) while under encryption.

(3) Lack of granularity: Yingying et al.’s research employs the secure k-nearest neigh-
bor (skNN) encryption method to establish a framework for coarse-grained access
control [3]. This symmetric method restricts access to outsourced images solely to
users possessing the corresponding search key. Users lacking the requisite key can-
not gain entry, while authorized users can seamlessly access the entire repository of
outsourced images. Given the substantial security risks associated with unauthorized
access, implementing fine-grained access control techniques becomes imperative to
regulate image access per user. The solutions presented for fine-grained access control
in Table 1 predominantly revolve around images autonomously determining their
specific authorization criteria. However, a notable gap exists in the research landscape,
as no study thus far has proposed a mechanism for controlling multi-object images by
delineating authorization criteria for individual objects within the image.

The structure of this paper is as follows. Section 2 presents the detailed methods
applied to encryption image retrieval. Section 3 proposes a supporting fine-grained retrieval
for encrypted images. Section 4 presents the experimental results to compare with other
retrieval systems. The conclusions and discussions are made in Section 5.
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2. Related Works

This section delves deeply into the intricate techniques behind fine-grained crypto-
graphic image retrieval schemes while reviewing pertinent research, including feature
extraction methods, YOLO method, encryption methods, similarity measurement, and
access control methods.

2.1. Feature Extraction Methods

In CBIR, a prevalent technique for extracting essential information involves capturing
an image’s color, texture, and shape. This extracted feature is crucial as it is pivotal in
the search process. By comparing these feature values, the system can more effectively
identify query results that align with the user’s search request. The quality of these feature
descriptors directly impacts the accuracy of the image search results. With this in mind,
we will introduce three widely used methods for feature extraction: the edge histogram
descriptor, the color layout descriptor, and the VGG-16 module.

VGG-16, as elucidated by Tao et al. [19], stands as a modular convolutional neural
network architecture. It accomplishes feature extraction by employing multiple convolution
and pooling layers, followed by fully connected layers and a softmax layer for classification.
The initial two modules comprise two convolutional layers each, complemented by a maxi-
mum pooling layer. Modules three to five integrate three convolutional layers alongside a
maximum pooling layer. The sixth module encompasses three fully connected layers.

Notably, all convolutional kernels maintain a 3 × 3 size with a stride of 1, while the
pooling layers adopt a 2 × 2 size with a stride of 2. An illustrative example of a typical
input VGG-16 image is 224 × 224 × 3. This signifies a colored image spanning 224 pixels in
width and height, featuring three channels (RGB). As the image progresses through the
first module’s convolutional layer, the number of channels ascends from 3 to 64, aligning
with a corresponding 64-channel maximum pooling layer.

The primary role of the maximum pooling layers is to downsize the feature dimen-
sions. Consequently, a 224-pixel-wide image is halved into 112 pixels in the first mod-
ule, resulting in an image size of 112 × 112 × 64. Similarly, the fifth module leads to a
7 × 7 × 512 dimension as the image advances through the network.

Figure 1 delineates the architecture of the VGG-16 [19]. In typical use cases, the later
stages of the network, encompassing fully connected and softmax layers, are excluded, and
only the five initial modules, involving convolutional and pooling layers, are retained for
feature vector extraction.

Figure 1. VGG-16 network architecture.
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2.2. Yolov5

The inaugural iteration of YOLO, known as YOLOv1, was introduced by Joseph
Redmon et al. in 2015 [20]. This version’s network architecture takes inspiration from
GoogleNet, employing convolutional layers for feature extraction and connectivity lay-
ers for object class and location determination. YOLOv1’s approach involves dividing
images into fixed-size grids, predicting bounding boxes within each grid. However, a
limitation arises when the objects under evaluation cannot effectively be enclosed within
these fixed-size grids, leading to inaccurate predictions for object location and class. This
deficiency becomes particularly pronounced for partially occluded objects, where features
may not be fully captured within the predicted grid, resulting in imprecise classification
and localization.

Subsequently, YOLOv5 [21] offers flexibility by providing four model sizes (s, m, l,
and x) catering to different requirements. YOLOv5’s network structure can be delineated
into four primary components: input, backbone, neck, and prediction.

(1) Input: The input layer of the YOLOv5 network accepts images with dimensions of
608 × 608 × 3 as input data. This layer undertakes preprocessing tasks, such as MLLE
data enhancement (manifold learning-based image enhancement), to enhance the
visual quality of the images. This augmentation improves contrast and brightness,
leading to superior outcomes in terms of visual presentation[22]. Moreover, YOLOv5
incorporates adaptive image scaling to handle images of varying sizes. Dealing
with a broad spectrum of image sizes in the training set poses a challenge. The
conventional resizing of all images to a fixed dimension can result in distortion.
Adaptive image scaling adeptly adjusts the scaling ratio based on individual image
sizes. This approach ensures that the image’s shape and aspect ratio are preserved
post-scaling. This preservation of proportions enhances the object detection accuracy
in YOLOv5’s framework.

(2) Backbone: Within YOLOv5, the CSPDarknet53 architecture serves as the backbone.
This architectural design, conceptualized by Joseph Redmon, leverages the cross-
stage partial network module to enhance the performance of Darknet53. Darknet53,
originally proposed by Joseph Redmon, constitutes a deep convolutional neural
network architecture. Moreover, the backbone of YOLOv5 incorporates the focus
architecture. This innovative design partitions the input feature map into multiple
sub-maps. Subsequently, the convolution operations are executed on each sub-feature
map. Eventually, the outputs from these convolutions are amalgamated. This design
rationale aims to facilitate the model in more effectively capturing nuanced features
within images.

(3) Neck: This segment predominantly serves the purpose of feature fusion and multi-
scale processing. Conventional object detection techniques often rely on a singular-
scale detector for object location and categorization, which can result in inaccuracies
when detecting small-scale objects. In response, YOLOv5 incorporates a multi-scale
feature pyramid into its feature extraction process by integrating a feature pyramid
network (FPN)[23]. This strategic approach extracts features starting from the net-
work’s bottom layer and then employs up and down-sampling operations on the
lower-layer features. The up-sampling operation enlarges the scale of the feature map,
while the down-sampling process reduces it. These operations collectively generate
a feature pyramid. Connections are established between each layer of features and
adjacent upper layers, and these linked features are subsequently integrated to form
the ultimate feature pyramid. The features within this pyramid are ultimately har-
nessed for object detection. By leveraging this feature pyramid, YOLOv5 effectively
addresses the challenge of detecting objects at diverse scales. This approach enhances
the detection accuracy by furnishing comprehensive object information across various
scales, producing more robust results.

(4) Prediction: The intersection over union (IOU) loss constitutes a pivotal loss function in
object detection, quantifying the intersection ratio to the union between the predicted
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and actual bounding boxes. However, IOU does not account for size discrepancies
or positional deviations between predicted and actual boxes, rendering it less precise.
To overcome this limitation, YOLOv5 adopts the CIOU loss (complete intersection
over union loss) as its loss function. CIOU loss is an enhanced iteration of IOU.
It computes the standard IOU and integrates a corrective factor derived from the
distance between the centers of the predicted and actual boxes and the disparities in
width and height. This correction factor refines the IOU computation. In scenarios
where the gap in the center distance or dimension differences is more significant, the
compensation factor becomes more substantial, leading to lower loss values. This
mechanism considers both the overlap between predicted and actual boxes and the
disparities in the size and position. The result is a more precise loss value, enhancing
the object detection accuracy.

2.3. Secure k-Nearest Neighbor (skNN)

K-nearest neighbor (KNN) represents a prevalent supervised machine learning tech-
nique that measures distances between query points and training set points. Identifying
the k-closest neighbors subsequently predicts or analyzes these neighbors to infer charac-
teristics about the query point.

In contrast, secure k-nearest neighbor (skNN) [3] emerges as a privacy-focused data
retrieval algorithm designed to address the privacy concerns associated with kNN queries.
Situations often arise where datasets contain sensitive information, posing a substantial
privacy risk when conventional kNN distance computations are applied to the data.

The skNN method has been developed to bolster retrieval security. This technique
is based on symmetric encryption algorithms. By adopting this approach, the goal is to
safeguard data privacy during distance computations, thereby mitigating the risk of privacy
breaches that could arise from utilizing traditional kNN methods on sensitive data.

Furthermore, to enable the detection of encrypted images, skNN employs the concept
of homomorphic encryption. This principle ensures privacy protection and facilitates
computations on ciphertexts without decryption. Remarkably, the decrypted outcome
aligns with the original kNN computation result. The forthcoming section provides an
overview of the algorithm’s introduction:

Ii = [Ii,1, Ii,2, . . . , Ii,n]

signifies that the index vector within the ith photo in the image set possesses n dimensions.

Qq = [Qq,1, Qq,2, . . . , Qq,n]

indicates that the query vector within the qth photo of the query image comprises
n dimensions.

(1) Secret key generation: As shown in Equation (1), two random numbers r1 and r2
are generated to define the range and r1 > r2. η is a public parameter and a random
number chosen by 0 ∼ r1. M is a random and inverse matrix size of (2n × 2n). M−1 is
the inverse matrix of M.

key = [η, M, M−1] (1)

(2) Encryption index vector: Extending by Ii, as shown in Equation (2), the n − 1 random
vector is generated by random number in [0, r2]. 2n-dimensional vector I⃗i is shown in
Equation (2).

I⃗i = [Ii,−
1
2

n

∑
j=1

I2
i,j, S] (2)

As shown in Equation (3), the vector I⃗i is encrypted as Ĩi with Equation (3). e⃗i is a
random and noise matrix chosen by [0, r1], where 2|max(e⃗i)| must be less than η, and
|max(e⃗i)| is the maximum absolute value of e⃗i.
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Ĩi = (η · I⃗i + e⃗i) · M (3)

(3) Encryption query vector:
Extending Qq with Equation (4), where δq is a random number and δq ∈ [0, r2], θq is a
(n − 1) random vector and θq ∈ [0, r2] to obtain a 2n-vector Q⃗q.

Q⃗q = [δqQq, δq, θq] (4)

With Equation (5), the vector Q⃗q is encrypted as Q̃q and e⃗q is a noise random (2n)-
vector by 0 ∼ r1. Moreover, 2

∣∣max(e⃗q)
∣∣ must be less than η.

∣∣max(e⃗q)
∣∣ denotes the

maximum absolute value of e⃗q. Q⃗q
T

and e⃗q
T represent the inverse matrices of Q⃗q and

e⃗q, respectively.

Ĩq = M−1 · (η · Q⃗q
T
+ e⃗q

T) (5)

(4) Interpolation value: The interpolation values Ii and Iq can be computed with Equation (6):

Compi =
Ĩi · Q̃q

η2

= −
δq

2
(
∥∥Qq − Ii

∥∥2 −
∥∥Qq

∥∥2
) + QT

q

(6)

(5) Similarity computation: The similarity of two different images ia and ib can be com-
puted with Equation (7). If the value is positive, the two images are similar; otherwise,
they are much different.

Compia − Compib =
˜Iia · Q̃q

η2 −
˜Iib · Q̃q

η2

=
δq

2
(
∥∥Qq − Iia

∥∥2
)− (

∥∥Qq − Iib
∥∥2
)

(7)

3. Proposed Method

The section presents an intricate account of the threat model, system architecture, and
the sequential processes encompassed by that architecture. While delving into the threat
model, it analyzes potential security threats and risk factors to fortify the system’s defensive
capabilities. The system architecture delineates the comprehensive design framework of
the system, elucidating the interplay between modules and the methodologies governing
data flow. This approach ensures both the logical coherence and functional soundness of
the system. Furthermore, each step within the system architecture undergoes comprehen-
sive examination, fostering a profound comprehension of operational principles and the
significance of each sequential action.

3.1. The Flowchart of System Architecture

Within the cloud environment, the scheme for retrieving fine-grained encryption
patterns is primarily structured around four distinct entities: the image owner, the user,
the trusted organization (the certificate authority (CA)), and the CSP. Figure 1 depicts the
architectural layout among these four entities.

(1) CA: The unit in charge of key management assists image owners and subscribers in
generating and distributing keys.

(2) Owner: Its responsibilities encompass training the image set, extracting index vectors
from image slices, encrypting both the index vectors and the image set, and ultimately
entrusting the resulting ciphertext to the CSP.
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(3) User: Conduct object detection on the query image and extract the localized images of
the identified objects. Apply the identical feature extraction and encryption techniques
to these localized images, mirroring the methods employed by the image owner.
Subsequently, upload the encrypted query features of the localized images to the CSP
as a query request. Upon receiving the search results, utilize the private key furnished
by the CA to decrypt.

(4) CSP: Upon receiving the query request submitted by the user, the system retrieves
the top k most similar images from the encrypted index vectors, forming the retrieval
results. Subsequently, after verifying the user’s identity, this returns the retrieval
results to the user.

As shown in Figure 2, the CA initially assumes the key generation and distribution
role, disseminating the generated key across image owners, users, and CSPs. Following
this, image owners employ the RoleEnc algorithm to encrypt the role code directed towards
users using the distributed key. Furthermore, the image owners utilize the IndexEnc and
ImageEnc algorithms to encrypt the index vector and image set, ensuring their security
and confidentiality. Subsequently, these encrypted data units are uploaded to the CSPs.
A dual-layer encryption approach is adopted to reinforce the encrypted data’s security
during transmission. The encrypted index vector, encrypted image set, and role polynomial
are collectively re-encrypted utilizing the IndexReEnc algorithm. These doubly encrypted
data units are then uploaded to the CSPs to ensure their safeguarding throughout delivery.
Upon receiving the encrypted role code from the image owner, the user initiates the process
by decrypting it using the RoleDec algorithm. Subsequently, the user employs YOLOv5
with a seed file for querying object detection within the image. The system then extracts
partial images based on object coordinates and generates query vectors. These query
vectors are subsequently encrypted using the QueryEnc algorithm. The user implements an
additional layer of encryption to enhance the security of the encrypted query vectors during
transmission. The user utilizes the QueryReEnc algorithm to re-encrypt the encrypted query
vectors alongside their role code, creating a query request uploaded to the CSP. This double-
layer encryption strategy safeguards the encrypted query vectors throughout the delivery
process. Upon the reception of encrypted data from both the image owner and the user, the
CSP executes decryption using the IndexDec and QueryDec algorithms. During retrieval, it
calculates the inner product between the encrypted index vector and the encrypted query
vector, subsequently performing a comparison based on the relative Euclidean distance.
An adverse comparison value indicates that the former index vector’s length is more minor,
implying closer proximity to the queried vector of the user’s interest. The CSP then cross-
references the user’s role code with the role polynomial associated with the index vector
to verify the user’s authorization. Following this verification, the CSP identifies the first
k-most similar encrypted images, which it re-encrypts using the CSP_ReEnc algorithm.
These re-encrypted images constitute the retrieval results transmitted back to the user.
Upon reception of the retrieval results, the user can utilize the ImageDec algorithm to
decrypt the results, revealing the plaintext images corresponding to the retrieved k images.
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Figure 2. System architecture.

3.2. The Threat Model

In the threat model, the authorized users are trusted, and the CSP is honest but curious.
That is, CSP can provide correct services for users, but it might be interesting to have private
data stored in the cloud. Two threat models are considered and discussed.

(1) Known Ciphertext attack: CSP might try to infer the related information from to the
encrypted images, encrypted indices, and the returned images.

(2) Known background attack: Through statistical analysis, CSP might infer the relation-
ship between plaintexts and ciphertext.

3.3. Feature Extraction

The YOLOv5 is used to recognize the objects in images, where the positions (xmax, ymax)
and (xmin, ymin) in the image are used to slice the images. Next, the features are extracted
by sliced images using the VGG16 [24] model, where the feature size is 25,088 (7 × 7 × 512).
To make the system efficient, different dimension reductions are used. The image dataset,
index vectors, and query vectors are defined as follows.

(1) Image dataset: The set M includes m images, denoted by

M = [1, 2, . . . , m]

(2) Index vector: The given image has i objects, and each object has an index vector with
n-dimension, defined as

Ii = [Ii,1, Ii,2, . . . , Ii,n]

(3) Query vector: q images are used as primitive data for a query, and each one is the size
of n-dimension as

Qq = [Qq,1, Qq,2, . . . , Qq,n]

3.4. Fine-Grained Access Control

The authors are authorized to access the specific objects in images. An authorized user
is assigned to a role and assigned the corresponding authorization to the role. The steps are
shown as follows.

(1) Role: A role set, denoted by R, describes the positions or purposes that people have in
an organization. The u-th user in R is represented by Ru.

(2) Role-based symmetric polynomial: The identifications of the classified objects are
encrypted with Equation (8) by f (x). For instance, four roles are 1, 2, 3, and 4. The
region that is just for role IDs is to generate the role polynomial with Equation (8). For
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example, as the regions authorized for IDs 3 and 4, the polynomial can be generated
as f (x) = N(x − 3)(x − 4).

(3) The index vectors are mapped to the generated role polynomials, denoted by (Ii, f (x)).

f (x) = ∏
ids

(x − id) (8)

3.5. Keygen

According to the ElGamal algorithm, a pair secret key is created and denoted by
(pko, sko) and (pku, sku), where pko and sko are the owner’s public key and private key.
With Equation (1), the secret key is generated and represented by kskNN . The owner and
users randomly generate a 128-bit secret key, denoted by kAES.

Thus, the owner and the users own the key kskNN and kAES. The keys are generated as
listed below.

(1) Owner:(pko, sko, kskNN , kAES, pku)
(2) Users:(pku, sku, kskNN , kAES)
(3) CSP:(pko, pku)

In addition, the owner and users own the secret keys kreo and kreu with Equations (9)
and (10), respectively.

kreo = gpko mod p (9)

kreu = gpku mod p (10)

3.6. Encrypt

Due to the image containing sensitive data or personal information, two encryption
methods, AES and skNN, are applied to the proposed scheme. AES firstly encrypts the
image, and then skNN is used to encrypt the images implied to contain the features of
the image. On the user’s side, users could use skNN to retrieve the encrypted images.
The Euclid distance is adopted to calculate the differences between the encrypted images
and query vectors to find the nearest ones to return to the users. During the encryption
procedure, the role ID, weights, encrypted images, encrypted vectors, and query vectors
are listed below.

(1) IndexEnc: Through skNN encryption, the owner uses the secret key kskNN to encrypt
the index vectors Ii with Equation (2). The Ii can be extended to Ĩi by Equation (3).

(2) ImageEnc: According to the AES encryption method, the owner can encrypt the
images M to M̃ with key kAES.

(3) QueryEnc: Through the skNN encryption method, the user used key kskNN to encrypt
the query and extend the query to be Qq with Equation (4). Finally, Qq can be encrypted
as Q̃q with Equation (5).

3.7. ReEnc

The scheme uses the ElGamal encryption method to encrypt the role ID to ensure that
the role ID can be securely transferred to the user side. To prevent the key from being stolen
by unauthorized users, the ElGamal encryption method encrypts the encrypted image. The
details are listed below.

(1) RoleEnc: With the Elgamal encryption method as shown in Equation (11), the image
owner uses the encryption key pku to encrypt the roid ID Ru to obtain CR = (cr1, cr2).

cr1 = gr mod p

cr2 = Ru · pkr
u mod p

(11)

(2) IndexReEnc: With Equation (12), the owner encrypts the encrypted contents M̃ and Ĩi
with the key kreo. Also, to obtain CI = (ci1, ci2) from f (x) for access control.
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ci1 = gr mod p

ci2 = ( Ĩi, f (x), M̃) · kr
reo mod p

(12)

(3) QueryReEnc: Through the Elgamal encryption method, the users re-encrypt the query
vector with the secret key kreu to generate the encrypted query Q̃q by role ID Ru to
obtain CQ = (cq1, cq2).

cq1 = gr mod p

cq2 = (Q̃q, Ru) · kr
reu mod p

(13)

(4) CSP_ReEnc: When CSP retrieves the most k similar encrypted images and checks the
users’ identities. The most similar images are encrypted by the Elgamal encryption
method. CSP uses users’ public key pku to encrypt the retrieved results Mk to obtain
CK = (ck1, ck2) with Equation (14).

ck1 = gr mod p

ck2 = Mk · pkr
u mod p

(14)

(5) As shown in Figure 3, the owners transmit CR to the users and CI up to CSP. After
that, the users can request a query CQ to CSP. CSP obtains the most similar images CK
back to the users.

Figure 3. Query of the encryption images diagram.

3.8. Retrieval Process

The CSP decrypts CI and CQ as ( Ĩi, f (x), M̃) and (Q̃q, Ru). With Equation (6), the CSP
calculates the Euclid distance between Ĩi and Q̃q to find the k most similar images. Then,
CSP uses Ru to f (x) to check whether the users have rights to access the images. If the f (x)
is 0, the user can access the image; otherwise, it is unauthorized.

3.9. Decrypt

As described below, the decryption procedure contains RoleDec, IndexDec, QueryDec,
and ImageDec stages.

(1) RoleDec: User can use their own private key sku to decrypt the secrets CR = (cr1, cr2)
obtaining the role ID Ru with Equation (15).

cr2 · c−sku
r1 = Ru · grx · g−rx = Ru (15)

(2) IndexDec: CSP uses the public key pko from the owner to decrypt CI = (ci1, ci2) and
obtain Ĩi, f (x) and M̃, as shown in Equation (16).

ci2 · c−pko
i1 = (( Ĩi, f (x), M̃) · grx) · g−rx = ( Ĩi, f (x), M̃) (16)

(3) QueryDec: CSP uses the public key pku to decrypt CQ = (cq1, cq2) to obtain the query
vectors Q̃q and role ID Ru as shown in Equation (17).

cq2 · c−pku
q1 = ((Q̃q, Ru) · grx) · g−rx = (Q̃q, Ru) (17)
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(4) ImageDec: After the users obtain the retrieval results, the users can decrypt the
secret image with their own private key pku to decrypt CK = (ck1, ck2) and obtain the
retrieval results Mk as shown in Equation (18).

ck2 · c−sku
k1 = Mk · grx · g−rx = Mk (18)

Finally, the users use private key kAES to decrypt Mk to obtain k secret images.

4. Experimental Results

This paper uses the Python programming language in conjunction with the TensorFlow
2.13.0 package, and it is necessary to establish a development environment. The computer
host configurations are as follows:

(1) Processor: AMD Ryzen 7 3700X 8-Core Processor 3.60 GHz
(2) Memory: 32.0 GB
(3) Graphics Card: NVIDIA GeForce RTX 2080 SUPER
(4) Operating System: Windows 11

The dataset is the Caltech101 dataset [5], which includes 101 different categories,
including faces, animals, plants, etc. The total number of the dataset is 9144, and the
number in each category is in the range of 40–800. This section introduces the preprocessing,
dimension reduction, measure metrics, and threat model discussion.

4.1. Preprocessing

Object detection and dimension reduction are processed. In object detection, the label
Img is used to label the images to mark the category of the object. The YOLOv5 is used to
detect the category message and its position. The features are extracted from the bounding
boxes as shown in Figure 4.

Figure 4. The bounding box examples.
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Dimension Reduction

The VGG16 is used to extract the features. To reduce the time cost of image retrieval,
principal component analysis (PCA) is used to reduce the dimension of the features. Using
a linear transformation, PCA is a typical dimension reduction method for transforming
a high-dimension into a low-dimension space. After transformation, the low-dimension
space can preserve the features the original dimension space [25].

4.2. Measurement Metric

The performance evaluates whether the most k-th similar images meet the users’
requests as shown in Figure 5. The average precision (AP) at top-k(P@k) [4,5] and mean
average precision (MAP) [7,26] as shown in Equation (19) and Equation (20), respectively.
In Equation (19), there are (In)

p
n=1 returned images and (Rm)

q
m=1 are correct images. MAP

obtains the average value of multiple query requests. For example, five returned images
(I1, I2, I3, I4, I5), and I1 and I3 are correct. AP is calculated as (1/1 + 2/3)/2 = 5/6. MAP
is the average value of AP, ranging from 0 to 1. The higher the MAP is, the more accurate it
is. The P@k value (i.e., Equation (21)) is also in the range of 0 and 1, where k is the returned
image and num proper indicates the correct number of returned images. The higher P@k
value presents higher accuracy.

AP =
q

∑
m=1

(m/n)/q (19)

MAP =
d

∑
t=1

APt

d
(20)

P@k =
num proper

k
(21)

Figure 5. Top-k searching results.

Different dimension reductions and feature extractions are to evaluate the correspond-
ing accuracy and compare them to the others.

Three feature extraction methods, EHD, CLD, and VGG16, extract the 64-vector
features. In Figures 6 and 7, the VGG16 feature extraction is the best one. Thus, VGG16
feature extraction methods are used in the proposed scheme for image retrieval.

In Tables 2 and 3, the proposed scheme uses VGG16 to extract the features. The results
show the highest accuracy when the feature vector size is 128.

In Figure 8, the proposed work compares to MU-TEIR[6], which are under the calteh101
dataset, and the feature extraction is also adopted by VGG16, the vector size is 128. The
values of P@k, while k is 5, 10, 15, 20, 25, and 30, the proposed work is superior to MU-
TEIR [6]. When k is equal to 5, the accuracy is 82%. While the accuracy of the method [4],
as shown in Table 1, is higher than ours, it lacks support for fine-grained encrypted
image retrieval.
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Figure 6. The accuracy of different feature extractions (P@k).

Figure 7. The accuracy of different feature extractions (MAP).

Table 2. Different accuracies on different dimension reduction (P@k).

k = 5 k = 10 k = 15 k = 20 k = 25 k = 30

PCA32 0.76 0.73 0.70 0.68 0.67 0.65

PCA64 0.81 0.78 0.75 0.73 0.72 0.70

PCA128 0.82 0.79 0.76 0.74 0.72 0.69

PCA256 0.81 0.77 0.73 0.71 0.68 0.66

PCA512 0.78 0.72 0.69 0.66 0.63 0.60

Table 3. Different accuracies on different dimension reduction (MAP).

k = 5 k = 10 k = 15 k = 20 k = 25 k = 30

PCA32 0.84 0.82 0.79 0.78 0.77 0.76

PCA64 0.87 0.85 0.84 0.83 0.82 0.81

PCA128 0.88 0.87 0.85 0.84 0.83 0.82

PCA256 0.87 0.85 0.84 0.83 0.82 0.81

PCA512 0.85 0.84 0.82 0.81 0.79 0.78
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4.3. Security Analysis

(1) Known-ciphertext attacks: CSP has encrypted images but lacks the corresponding
plaintext. However, CSP can collect the query request to statistically analyze the minor
differences to induce the encrypted image mapped to the features to trace the source.

(2) Known-background attacks: CSP has rich background knowledge, including key-
words related to statistically different datasets. The previous query requests and the
returned queried results are linked together to find the specific plaintext. The attackers
expose the implied message of the query requests. The attacker may extract more
insights from the known background knowledge through statistical analysis and data
correlation disclosure, thereby cracking or inferring hidden content in query requests.
This study employs the concept of unverifiable queries, which means that, even if the
CSP obtains partial plaintext information about the retrieval results, it is still unable to
deduce the hidden content of the query request based on this plaintext information.

Figure 8. Comparison performances with the other works.

4.3.1. Encrypted Image Dissimilarity

When encrypting images, it is essential to ensure that the encrypted images obtained
after multiple encryption processes of the same image exhibit dissimilarity. Such dissimilar-
ity enhances the security of encryption algorithms, preventing attackers from deducing the
encryption algorithm or decrypting the key by analyzing the similarities between multiple
encrypted images. Ensuring that the outcomes of each encryption process differ heightens
the challenge for attackers attempting to speculate and analyze the encryption algorithm.
This dissimilarity also ensures that, even if attackers have information about multiple
encrypted images, they cannot deduce the content of the original image. Therefore, to
ensure the security of encryption algorithms, every encryption of the same image should
produce different encrypted images to enhance the algorithm’s resistance to analysis and
decryption, ensuring the security and confidentiality of encrypted images.

The peak signal-to-noise ratio (PSNR) serves as a quantitative indicator for measuring
the dissimilarity between images, as expressed in Equation (22), where MAX represents
the maximum possible pixel value, and the mean squared error (MSE) denotes the average
squared difference between the original image and the target image. MSE is commonly
employed to assess the performance of regression models and compare the accuracy of
various models. Furthermore, PSNR is measured in decibels (dB), with higher PSNR values
signifying a better image quality and more remarkable similarity. Generally, a PSNR value
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above 30 dB indicates minor image differences, whereas a PSNR value below 20 dB suggests
more pronounced disparities between images.

PSNR = 10 · log10
MAX2

MSE
(22)

This paper compares two encrypted images to demonstrate the scenario where the
original images are the same but the encrypted images are different. It calculates their
differences, as shown in Figure 9.

Figure 9. The encrypted images.

In this study, the AES encryption method was used, and the same key was applied
during the encryption process to encrypt the first image of a butterfly and the second image
of a cougar. These two encryption processes represent the encryption of two uploaded
images. These four encrypted images are called Encrypted Image1, Encrypted Image2,
Encrypted Image3, and Encrypted Image4, respectively.

By calculating the PSNR between Encrypted Image1 and Encrypted Image2, it was
approximately 27.91 dB, while the PSNR between Encrypted Image3 and Encrypted Image4
was approximately 27.92 dB. This indicates that there are differences between the two sets
of encrypted images. Furthermore, the study also compared encrypted images of different
types. Taking Encrypted Image1 and Encrypted Image3 as examples, the PSNR between
these two encrypted images was approximately 27.91 dB, confirming that the PSNR of
encrypted images, whether of the same or different types, falls within the range of 27.

Due to the randomness of the encryption process and the role of the encryption key, the
two encryption processes will still generate different encrypted results even when upload-
ing the same original image. This dissimilarity is an essential characteristic of encryption
algorithms, as it prevents third parties from deducing the rules of the encryption algorithm
or decrypting the key based on the encrypted results. Therefore, by demonstrating the
scenario where the original images are the same but the encrypted images are different,
this study established the existence of dissimilarity during the encryption process. This
dissimilarity enhances the security of encryption algorithms, preventing attackers from
deducing the encryption algorithm or decrypting the key based on the similarities between
multiple encrypted images and further safeguarding against unauthorized access attempts.
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4.3.2. Query Unlinkability

“Query unlinkability” is achieved by introducing randomness during the encryption
process, ensuring that the same query image will produce different encrypted results in
different query contexts. For the encryption method applied to indexing, this study chose
the skNN method. The following will provide proof of the query vector unlinkability
generated by this method.

According to skNN encrypting the query vector with Equation (2), the query vector is
extended to assign the random numbers in the range of 0 ∼ r2, denoted by δq, and in the
range of 0 ∼ r2, denoted by θq. With Equation (3), the extended vector is added to a noise
vector e⃗q, which is in the range of 0 ∼ r1. Thus, the encrypted query request differs from
and is independent of previous or subsequent requests.

This design ensures that, under the observation of a CSP, it is impossible to determine
whether two query feature vectors originate from the same image. In other words, the CSP
cannot deduce or guess hidden content within query requests by analyzing the encrypted
results of query vectors. This proof demonstrates that the method adopted in this research
effectively resists known background attacks, thereby preserving the unlinkability between
queries and enhancing the system’s overall security.

5. Conclusions

This study aimed to address the limitations of existing solutions in encrypted image
retrieval, explicitly focusing on image encryption and retrieval in cloud environments,
and has designed a fine-grained encrypted image retrieval scheme. Firstly, the VGG-16
module of CNN is employed to extract features from the local regions of images, which
is more accurate in describing image content than traditional feature extraction methods,
effectively improving retrieval precision. In experiments, this study compared the proposed
scheme with conventional local and global feature extraction methods (such as CLD and
EHD), validating its effectiveness, with the best retrieval precision achieved under 128-
dimensional feature vectors and various dimensionality reduction techniques.

Secondly, this scheme supports the search for small images within larger images.
It achieves this by utilizing object detection techniques, specifically YOLOv5, to detect
objects within the original image and extract them as local images. These local images’
feature vectors are encrypted, and similarity matching is performed in the cloud, enabling
encrypted small image retrieval within larger images.

Finally, fine-grained access control is implemented using role-based polynomial access
control technology. The access structure for each local image is determined through the
construction of role polynomials, with different access roles assigned to different users.
If a user is an authorized party for a specific local image, the computation result equals
the root of the role polynomial. Otherwise, the querying user is considered unauthorized,
effectively ensuring whether a user is an authorized party for a particular local image and
thereby guaranteeing access security.

This research contributes to retrieval precision, small image searching within larger
images, and fine-grained access control. This research outcome is believed to promote the
development of encrypted image retrieval technology and provide valuable references and
guidance for research and applications in related fields.
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