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Abstract: Shape From Focus (SFF) reconstructs a scene’s shape using a series of images with varied
focus settings. However, the effectiveness of SFF largely depends on the Focus Measure (FM) used,
which is prone to noise-induced inaccuracies in focus values. To address these issues, we introduce a
perception-influenced factor to refine the traditional Focus Volume (FV) derived from a traditional
FM. Owing to the strong relationship between the Difference of Gaussians (DoG) and how the visual
system perceives edges in a scene, we apply it to local areas of the image sequence by segmenting the
image sequence into non-overlapping blocks. This process yields a new metric, the Perceptual Focus
Factor (PFF), which we combine with the traditional FV to obtain an enhanced FV and, ultimately, an
enhanced depth map. Intensive experiments are conducted by using fourteen synthetic and six real-
world data sets. The performance of the proposed method is evaluated using quantitative measures,
such as Root Mean Square Error (RMSE) and correlation. For fourteen synthetic data sets, the average
RMSE measure of 6.88 and correction measure of 0.65 are obtained, which are improved through PFF
from an RMSE of 7.44 and correlation of 0.56, respectively. Experimental results and comparative
analysis demonstrate that the proposed approach outperforms the traditional state-of-the-art FMs in
extracting depth maps.

Keywords: shape from focus; focus measure; directional ring difference filter; perceptual focus factor;
depth map

MSC: 65D19

1. Introduction

In computer vision, a primary focus is on creating 3D representations of scenes using
just 2D camera images, a complex but vital task. A key technique in this field is Shape From
Focus (SFF) or Depth From Focus (DFF), which reconstructs 3D shapes by utilizing the
focus cue of an image. This method estimates depth by analyzing various focus positions
in a scene and determining the correct focus for each pixel. In contrast, other methods like
depth from motion [1], shape from contour [2], shape from reflection [3], and shape from
time of flight [4], also provide depth estimates, but each comes with specific limitations. For
instance, shape from motion can struggle with ambiguous or degenerate motion scenarios
where multiple 3D shapes can explain the observed 2D motion, shape from contour relies
heavily on the presence of clear edges and contours in the image, making it less effective for
textureless or featureless objects. Shape from reflection can struggle with objects that have
complex or non-Lambertian reflective properties and shape from time of flight requires
specialized hardware. Meanwhile, SFF stands out for its simplicity, ease of implementation,
no need for special hardware, and its ability to generate a detailed depth map.

In SFF, evaluating the relative degree of focus for each pixel using an FM is con-
sidered the most crucial step. Numerous FMs have been proposed in the literature, as
highlighted in [5]. These can be broadly categorized into gradient-based, statistics-based,
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and transformation-based methods. Gradient-based methods involve analyzing the focus
degree of each pixel by its derivative. For instance, ref. [6] utilizes a multi-scale template
with varying weights and convolves it with the output of modified Laplacian applied to
images, where modified Laplacian is a famous gradient operator. Another example is the
edge-weighted modified Laplacian focus measure by [7], which uses the modified Lapla-
cian weighted by the Gaussian kernel. Statistics-based FMs operate by applying statistical
measures to local pixels. This includes the approach [8], which is based on probability
coefficients and modified entropy, a fuzzy entropy-based image focus quality measure [9],
and absolute central moment [10] that exploits histograms obtained from the grayscale
version of the image. Transformation-based FMs use the frequency components of an
image to evaluate sharpness. For example, [11] is based on the discrete wavelet transform,
ref. [12] focuses on the energy of high-frequency components in the S-transform, and [13]
involves Bayes-spectral-entropy-based focus evaluation using a discrete cosine transform.
Moreover, FMs not fitting these categories include a morphology-based focus measure in a
quad-tree structure [14], a new, robust to noise, directional ring difference filter [15] that
exploits directionality in evaluating focus, and a perceptual-based measure [16].

Due to the diversity in the imaging content, condition, and capturing devices and the
limited capabilities of FM operators, generally, the focus values in FV are erroneous and
thus it results in an inaccurate depth map. To address these limitations of FM operators,
several techniques have been proposed for the improvement of FV and depth maps. Fil-
tering techniques, such as anisotropic diffusion, have been applied that compute weights
adaptively from local structures [17,18]. In another work, depth reconstruction has been
formulated in a total variation-based framework that includes a nonconvex data fidelity
and a convex regularization term [19]. Recently, Weighted Least Squares (WLS) techniques
have also been proposed to improve the initial FV [20]. A common drawback of these
techniques is that these techniques do not address the problem of preserving structural
edges and fine details in recovered shapes. Moreover, the performance of these techniques
relies on the accuracy of the initial depth map, which in turn, depends on the quality of
the initial FV. Recently, deep learning methods have been suggested that are based on an
auto-encoder-style convolutional neural network [21–23]. In [22], the authors propose a
deep learning-based method to estimate depth maps and all-in-focus images. In a recent
work [23], authors suggested a CNN-based model to compute the deep differential focus
volume (DFV) by applying the first-order derivative with the stacked features over different
focal distances. Deep learning methods require large datasets of focal stakes with true
depth maps for the model training. In the case of shape from focus, a limited number of
training datasets are available.

Traditional focus measure operators compute focus quality for each pixel in the input
sequence by using a sliding window. These pixel-based focus measures suffer from many
limitations. When depth is deduced from these focus measures, these often yield incorrect
depth values and representations. This inaccuracy arises from several factors. For example,
the scenery and content of an image can significantly affect the evaluation. Issues such as
focus measures misinterpreting shadows as objects and assigning them erroneous depths
are common. The window size chosen for applying focus measures during convolution
with the image sequence also impacts the accuracy of focus evaluation. Furthermore,
lighting conditions in a scene can hinder the focus measures’ ability to distinguish objects
and their boundaries. These issues frequently result in an inaccurate depth representation
of the scene’s objects and contribute to substantial background noise.

In this paper, to address the above-stated issues, we propose a shape-from-focus
method that enhances the traditional FV by utilizing the Perceptual Focus Factor (PFF),
which is based on biological perception principles. In the first phase, a traditional focus
volume is obtained by applying any traditional focus measure on the input image sequence.
In the second phase of our method, the PFF is computed for each pixel of the input
sequence by dividing it into small, non-overlapping blocks. The PFF has two major aspects
that help in improving the traditional focus measures: (1) PFF is computed through non-
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overlapping blocks whereas normal focus measures use sliding windows, and (2) the
responses from DoG or LoG operator mimic the biological responses. Finally, the enhanced
resultant FV is obtained by scaling the traditional FV with the PFF. Intensive experiments
are conducted by using fourteen synthetic and six real-world data sets. The performance of
the proposed method is evaluated using quantitative measures such as Root Mean Square
Error (RMSE) and correlation. Experimental results and comparative analysis demonstrate
that the proposed approach outperforms the traditional state-of-the-art FMs in extracting
depth maps.

The rest of the paper is organized as follows: the SFF system, focus measures, and
perceptual focus measures are explained in Section 2; the proposed method and its compo-
nents are presented in Section 3; the experimental setup, analysis, results, and comparative
analysis are provided in Section 4. Finally, Section 5 concludes this study.

2. Background
2.1. Shape from Focus

A general framework of Shape From Focus (SFF) is shown in Figure 1, which begins
by capturing a sequence of images with varying focus settings, termed as the image
sequence [24]. This is achieved by incrementally changing the focus setting of the camera
system or by translating the object toward the camera with a static position. The next
step involves evaluating the focus degree of each pixel by applying a Focus Measure (FM)
operator to the image sequence, which results in a Focus Volume (FV). Generally, a single
FM operator cannot tackle the wide range of imaging content and imaging conditions [5].
This results in inaccurate focus measurements and thus the image focus volume needs to be
enhanced. In the third step, the initial focus volume is improved and outputs an enhanced
image focus volume. For this, a large number of linear and non-linear approaches are
suggested in the literature [25]. Finally, a depth map is constructed by selecting the image
frame from the sequence that exhibits the highest focus in the optical direction.

Figure 1. Shape from focus system.

2.2. Focus Measures

Let us assume that the image sequence is represented by I(c)z (p) and consists of Z
images. Each image has dimensions of X×Y, where X represents rows, and Y represents
columns. Then, the pixel intensity at coordinate (x, y) in the c-th color channel of the z-th
image in I(c)z (p) is denoted as I(c)z (x, y), where c ∈ {r, g, b} represents the different color
channels of an image. To simplify the notation, we will use p as the subscript to indicate
the coordinates of a pixel in the 3D volume as I(c)z (p), where p = (x, y) ∈ R2. For a given
input image sequence I(c)z (p), an image focus volume f (u)z (p) is obtained by applying a
focus measure (FM) operator. The focus value or sharpness level for each pixel is computed
by applying a focus measure operator (u) to I(c)z (p) as:

f (u)z (p) = ∑
c

I(c)z (p)⊛ u (1)

where ⊛ represents the two-dimensional convolution operator, and u corresponds to any
suitable FM operator. In the literature, a large number of FM operators have been proposed,
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and each FM operator exhibits some strengths and weaknesses. However, the most popular
and commonly used FM operator is modified-Laplacian (ML) [24], which computes the
focus value for a pixel as:

f (ML)
z (p) = ∑

c

[∣∣∣∂2 I(c)z (p)
∂x2

∣∣∣+ ∣∣∣∂2 I(c)z (p)
∂y2

∣∣∣], (2)

where ∂2(.)
∂x2 and ∂2(.)

∂y2 are the second-order partial derivatives in the x- and y-directions. Thus,
the first and second terms on the right-hand side are the absolute values of second-order
derivatives in the x and y-dimensions, respectively. Another well-known FM operator is
f (GLV) [26], which computes the variance of image gray levels (GLV) within a neighborhood
window and is given by

f (GLV)
z (p) = ∑

c

 1
|N | ∑

(q)∈N (p)

(
Iz(q)− µ

)2

, (3)

where µ and |N | are the mean gray-level and total number of pixels in the small neigh-
borhood window N centered at (p), respectively. One more famous FM operator is
f (TEN) [27–29], known as Tenengrad (TEN), which computes the sharpness level as

f (TEN)
z (p) = ∑

c

[
|Gx ⊗ I(c)z(p)|+ |Gy ⊗ I(c)z (p)|

]
, (4)

where Gx and Gy are the Sobel operators in the x- and y-directions, respectively. A detailed
study about the focus measure can be found in [5].

2.3. Perceptual Focus Measures

In literature, a few focus measures are proposed, which are inspired by the early
visual information processing mechanisms in the biological visual system, so named the
Perceptual Focus Measures (PFM) [16,30]. In perceptual focus measures, the focus values
are computed based on non-overlapping blocks. For instance, in [30], blocks of sizes
32× 32 pixels are used to compute the perceptual focus measure. In recently proposed
perceptual focus measure [16], the first image is partitioned into non-overlapping blocks
of 16× 16, and then the Difference of Gaussian (DoG) operator is applied to each block.
The DoG operator is defined as:

DoG(x, y) = G(x, y; σ1)− G(x, y; σ2) (5)

where G(x, y; σ) is defined as

G(x, y; σ) =
1

2πσ2 e−
x2+y2

2σ2 . (6)

It was discovered that the responses of on-center and off-center cells in the receptive
fields of the human visual system closely match the responses of the Laplacian of Gaussian
(LoG) operator [31] on an objects’ edges in an image. However, the direct application of
LoG is inefficient computationally due to its second derivative computation requirement.
Instead, we use the Difference of Gaussians (DoG), which is an effective approximation
of LoG. Further, the DoG operator is a better approximation to the LoG operator if the
ratio between standard deviations is σ2 : σ1 = 1.6 : 1 [32,33]. Usually, for one image, a
scalar measure is computed by combining the responses from all blocks that are utilized to
investigate the sharpest image in the sequence.
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3. Proposed Method

The proposed scheme for depth estimation is shown in Figure 2. The proposed method
consists of three main parts. In the first step, the traditional focus volume is computed, then
in the second step, the perceptual focus factor for each pixel is computed, and finally, in the
third step, the depth map is obtained from the combined and enhanced focus volume.

Figure 2. Our proposed method. ‘CONV’ denotes the convolution of input images with the Direc-
tional Ring Difference Filter (DRDF) kernels, ’PFF’ denotes our Perceptual Focus Factor, and ‘SF’
denotes the Scaling Factor that is used in Equation (12) to combine the Perceptual Focus Factor (PFF),
Focus Volume (FV), and Traditional (’Trad’) FV. ’DoG’ and ’var’ represent the Difference of Gaussians
and variance of the block after applying DoG, respectively.

3.1. Traditional Focus Volume

In the proposed framework, any traditional focus measure operator can be applied to
obtain the traditional focus volume fz(p). In this work, we are using our own proposed
focus measure, the Directional Ring Difference Filter (DRDF) [15], which is an improved and
robust to noise version of the state-of-the-art Ring Difference Filter (RDF) focus measure [34].
DRDF addresses the response cancellation problem encountered in RDF. In DRDF, pixel
focus quality is determined by aggregating responses from multiple kernels in different
directions. DRDF’s kernels hi, i ∈ {1, 2, 3, 4, 5, 6} each of size 5× 5 in six directions can be
defined as:

h1 = [0 0 0 0 0; 0 0 0 0 0; −1 0 2 0 − 1; 0 0 0 0 0; 0 0 0 0 0],
h2 = [0 0 0 0 0; 0 0 0 0 − 1; 0 0 2 0 0; −1 0 0 0 0; 0 0 0 0 0],
h3 = [0 0 0 − 1 0; 0 0 0 0 0; 0 0 2 0 0; 0 0 0 0 0; 0 − 1 0 0 0],
h4 = [0 0 − 1 0 0; 0 0 0 0 0; 0 0 2 0 0; 0 0 0 0 0; 0 0 − 1 0 0],
h5 = [0 − 1 0 0 0; 0 0 0 0 0; 0 0 2 0 0; 0 0 0 0 0; 0 0 0 − 1 0],
h6 = [0 0 0 0 0; −1 0 0 0 0; 0 0 2 0 0; 0 0 0 0 − 1; 0 0 0 0 0].

(7)

Convolving the input image sequence I(c)z (p) with these kernels hi, i ∈ {1, 2, 3, 4, 5, 6}
and aggregating their responses will give us a traditional focus volume fz(p) as:

fz(p) = ∑
c

∑
i
|I(c)z (p)⊛ hi| (8)

3.2. Perceptual Focus Factor

After calculating the traditional FV, the Perceptual Focus Factor (PFF) is computed for
each pixel based on the concept of Perceptual Focus Measures (PFM). In PFM, an image is
divided into non-overlapping blocks, a scalar value per block is computed, and then by
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aggregating responses from all blocks, a scalar measure is obtained for the entire image. In
computing PFF, an image is divided into non-overlapping blocks as in PFM; however, a
measure is computed for each pixel, i.e., a PFF volume of the same size as FV is obtained.
Let b(c)z (i, j) = I(c)z (i : i + m, j : j + n) be a non-overlapping image block having size m× n
at p(i, j) extracted from the original image sequence I(c)z (p). Next, we apply a DoG on
that block. By applying DoG, we successfully extract essential features from each block,
representing them as numerical values that are driven through perceptually based logic
since DoG is correlated with how our human visual system behaves. We aim to utilize it to
influence the traditional focus volume, FV. The DoG responses for the block b(c)z (i, j) can be
computed by applying two Gaussians with different deviation parameters and computing
their difference.

gz(i, j) =
1
3 ∑

c∈{r,g,b}

[
Gσ1(b

(c)
z (i, j))− Gσ2(b

(c)
z (i, j))

]
, (9)

where Gσ1(.) and Gσ2(.) are Gaussians of standard deviations σ1 and σ2, respectively, such
that σ2 > σ1. To influence the traditional focus volume, we assign a scalar number to each
block. Through empirical evaluations, we have determined that taking the variance of all
elements within the DoG-applied block is an effective method for calculating this scalar
value. The variance of the (i, j)th block is computed as:

sz(i, j) =
1

m× n

m

∑
i

n

∑
j
[gz(i, j)− µ]2, (10)

where sz(i, j) is the resultant for the zth image after computing variances for all blocks,
and µ represents the mean of the block gz(i, j). As the variance of the (i, j)th block is a
scalar value, the size of the resultant PFF sz(i, j) is decreased. To address this, we resize
the PFF back to the size of the original image sequence. Finally, to ensure comparability
and consistency, we normalize the PFF by rescaling it to a range between 0 and 1. Thus, the
proposed PFF, which is also a 3D volume and denoted as tz(p), is calculated by up-sampling
the sz(i, j) as:

tz(p) = resize(sz(i, j)), (11)

where resize(.) represents a typical resizing operation in images, such as bilinear or bicubic
interpolation; however, we have used the bicubic for resizing the sz(i, j) to its original
dimension X×Y. The procedure for computing perceptual focus volume tz(p) is summa-
rized in Algorithm 1.

Algorithm 1 Computing perceptual focus factor for input image sequence

Input: Image Sequence: I(c)z (p) , Block Size : m× n
Output: Perceptual Focus Volume : tz(p)
for z← 1 : 1 : Z do

[X, Y]←size(I(c)z (p)) ▷ Image size
for i← 1 : m : X do

for j← 1 : n : Y do
b(c)z (i, j)← I(c)z (i : i + m, j : j + n) ▷ Non-overlapping block
gz(i, j)← 1

3 ∑c∈{r,g,b}

[
Gσ1(b

(c)
z (i, j))− Gσ2(b

(c)
z (i, j))

]
▷ DoG using (9)

sz(i, j)← 1
m×n ∑m

i ∑n
j [gz(i, j)− µ]2 ▷ Variance of block using (10)

end for
end for
tz(p)← resize(sz(i, j), [X, Y]) ▷ up-sampling using (11)

end for
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3.3. Depth Recovery

Next, we would combine two same-sized volumetric data sets fz(p) and tz(p) to
obtain the improved focus volume f́z(p) as:

f́z(p) = exp(tz(p)). fz(p) (12)

where exp(.) is the Exponential function, which returns the power of input to the constant
Euler’s number, having a value of 2.718. Finally, the depth map is extracted from the
improved focus volume using the “winner takes it all” formula. This formula gives depth
for a pixel p by locating the image number that has the highest focus measure value for
that pixel as:

d(p) = arg max
z

( f́z(p)) (13)

4. Results and Discussions
4.1. Experimental Setup

To evaluate the performance of the proposed approach, experiments were conducted
on both synthetic and real-world data sets. The synthetic data sets were sourced from the
4D light field benchmark [35], which includes ground truth depth maps for comparative
analysis. For each synthetic data set, a collection of 30 images with varied focus settings
was produced using the toolbox [36]. Additionally, since Ground Truth (GT) depth maps
are available for the synthetic data sets, we conducted a quantitative comparison between
the estimated depths and the GT depth maps. This was achieved by calculating the Root
Mean Square Error (RMSE) and correlation (CORR) to gauge the similarity between the
estimated depths and the GT depth maps. The RMSE is computed as follows:

RMSE =

√
1

X×Y ∑
p
[D(p)− d(p)]2, (14)

where D(p) and d(p) represent the GT and the estimated depth maps, respectively, and
X×Y represents the total number of pixels in the map. The correlation is computed as,

CORR =
∑p [D(p)− D̄] [d(p)− d̄ ]√

∑p[D(p)− D̄]2
√

∑p[d(p)− d̄ ]2
, (15)

where D̄ and d̄ represent the means of the GT and the estimated depth maps, respectively.
For real-world data sets, we sourced data from [37], which includes data sets of

varying dimensions and image counts. Owing to these variations in dimensions and
image quantities, we selected different block sizes for each real-world dataset, as detailed
in Table 1. Additionally, to evaluate our method’s performance under noisy conditions,
we conducted a qualitative experiment using the Buddha dataset from [38]. This dataset
comprises 29 images, each with a resolution of 768× 768 pixels. The block size selected for
this particular dataset was 64× 64. Lastly, the size of the Difference of Gaussians (DoG)
kernel selected for all datasets and experiments was set at 4× 4.

Table 1. Description of the real dataset.

Dataset Balls Fruits Keyboard Window Ktichen

Number of
Images 25 30 32 27 11

Image Size 360 × 640 360 × 640 360 × 640 360 × 640 518 × 774
Block Size 20 × 64 20 × 64 20 × 64 20 × 64 74 × 86
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4.2. Effect of Block Size

In experiments, we observed that the block size in computing PFF affects the accuracy
of the resultant depth maps. The choice of block size should be chosen according to the
characteristics of the data set, as various scenes necessitate different block sizes for optimal
outcomes due to their dimensions and level of noise. For example, a distant landscape scene
with diverse features would benefit from a larger block size, whereas a close-up image
with detailed elements would require a smaller block size. In this study, we utilized the
two synthetic Pens and Medieval data sets, both featuring subtle changes in the landscape.
We conducted a qualitative analysis, as depicted in Figure 3, comparing the Ground Truth
(GT) with depth maps generated using our method with block sizes of 8× 8, 16× 16,
32× 32, and 64× 64. The differences between these block sizes were highlighted, with
red markings indicating improvements, and black markings indicating defects. It was
observed that block sizes of both 32× 32 and 64× 64 resulted in smoother transitions of
fadedness and more accurate depth maps. However, with the 64× 64 block size, some
blotches appeared due to their larger size, and additional irregular dots were noticed when
a smaller block size of 8× 8 was used. It can be concluded that the usage of a medium-sized
block, such as 32× 32 or 16× 16, as suggested in [16,30], for computing PFF improves the
traditional focus measures for all data sets. The size of the block determines the degree of
improvement. An inappropriate size will improve the traditional focus measure to a lesser
degree. A small-sized block will produce the PFF closer to traditional FM and affects at a
lesser degree whereas, for a larger block size, PFF will severely modify the traditional FM,
so blokish effects may occur.

Figure 3. The depth maps of the synthetic datasets Medieval and Town after applying Perceptual
Focus Factor (PFF) block sizes 8× 8, 16× 16, 32× 32, 64× 64 respectively. The areas marked in black
indicate areas where there was poor performance of the specific block size, while the areas marked in
red represent improvements.

4.3. Comparative Analysis

The performance of the proposed method is evaluated using synthetic and real data
sets. In the first experiment, fourteen synthetic data sets, including Antinous, Boxes, Cotton,
Dino, Dishes, Greek, ‘Medieval’, ‘Museum’, ‘Pens’, ‘Pillows’, ‘Sideboard’, ‘Table’, ‘Town’, ‘Vinyl’,
are used. Each image was 256× 256 pixels in size, and there are 30 images in each data set.
To compute the PFF, a medium block size 32× 32 is used. First, the traditional focus volume
is obtained through the DRDF, and then depth maps are computed from the enhanced
focus volume through PFF. The performance of the proposed method has been thoroughly
tested against five state-of-the-art methods: GLV [39], MCG [40], ML [24], FMSS [41], and
RDF [34]. These five methods are applied to the fourteen synthetic data sets to obtain the
focus volumes, and the depth maps are extracted by obtaining the image numbers with the
best focus measures in the optical direction. As GT maps are available for synthetic data
sets, RMSE and CORR measures are computed for the depth maps obtained through the
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comparative methods and the proposed method. The quantitative comparison in terms
of RMSE and CORR is then shown in Figure 4. In addition, All-in-Focus (AiF) images of
the data sets are shown in the figure. From the figure, it can be observed that the proposed
method consistently achieves lower RMSE values compared to each of the other methods
across almost every data set, with a few exceptions, where it is nearly identical to the
second-best, ML. A similar pattern can be seen with CORR values, where our method’s
CORR is the highest for almost every data set, except in a few instances where it closely
matches that of the second-best.

Figure 4. Root Mean Square Error (RMSE) and correlation (CORR) of synthetic datasets using Focus
Measure (FM). Datasets are labeled on the x-axis of CORR graph.

For qualitative analysis, we present a comprehensive depth map analysis of synthetic
data sets in Figure 5. In addition, All-in-Focus (AiF) images of the data sets are shown in the
figure. In the Antinous data set, our method surpasses others in mitigating depth perception
issues caused by shadows. It also excels in wide landscape images, as demonstrated in the
Medieval data set, where our approach ensures a smooth gradient in the buildings’ depth
map. This results in a more intuitive depth map compared with other methods, which tend
to focus on minor edges and isolate them, an approach not conducive to effective depth
mapping. A similar effect is noted in the Town data set, where our method effectively reduces
noise between buildings and maintains a consistent gradient in the depth map. In scenarios
with extremely noisy backgrounds, like the Pens data set, our method proficiently suppresses
speckle-type noise in the background, which is evident in other methods. Additionally, our
method provides a clearer sense of object locations. In the Vinyl data set, for example, the
stand and vinyl record are distinctly separated in terms of distance from the camera, unlike
other methods that inaccurately portray them at similar distances.

In the second experiment, five real data sets, including Balls, Fruits, Keyboard, Window,
Ktichen, are used. As detailed in Table 1, the number of images and the dimensions of
the images vary among the data sets, so the block sizes for computing PFF are modified
according to the image dimensions. In the proposed method, first, initial focus volume is
obtained through the DRDF and then depth maps are computed from the enhanced focus
volume through PFF. The performance of the proposed method is then thoroughly tested
against five state-of-the-art methods: GLV [39], MCG [40], ML [24], FMSS [41], and RDF [34].
These five methods are applied to the five real data sets to obtain the focus volumes, and the
depth maps are extracted by obtaining the image numbers having the best focus measures
in the optical direction. The depth maps obtained through the comparative methods and
the proposed method are shown in Figure 6. From the figure, it can be observed in the
Balls data set that our method, alongside ML, offers superior depth perception, particularly
evident in the detailed structure of the nearest ball. In the Fruits data set, our approach
significantly improves depth perception by accurately representing darker fruits closer to
the camera. Similarly, in the Keyboard data set, both our method and ML enhance depth
perception, effectively highlighting the nearest keys with greater contrast. It is noteworthy,
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however, that ML achieves the best results in this data set, providing an enhanced gradient
in the depth map. In the Plants data set, MCG struggles due to noise, while ML and
FMSS show relatively better performance. For the Window data set, although GLV, MCG,
and FMSS focus on capturing the intricate structure of nearby objects, our method excels
by creating a more effective gradual fade effect, particularly in the background, thereby
enhancing overall depth perception.

Figure 5. Depth map comparison of synthetic datasets by different methods. The first column
represents an All-in-Focus (AiF) image and the second column represents the ground truth (GT)
depth map.

Figure 6. Depth map comparison of the real-world datasets Balls, Fruits, Keyboard, Plants, and Window
by different methods. The first column represents an All-in-Focus (AiF) image.
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The next experiment is conducted to evaluate the performance of the comparative
methods and the proposed method in noisy conditions. For this, we selected the Buddha
data set, as the images in this data set contain a significant amount of noise. Depth maps
obtained from the comparative methods GLV [39], MCG [40], ML [24], FMSS [41], RDF [34],
and the proposed method are shown in Figure 7. From the figure, it can be observed
when the depth map was extracted; every method except ours found it challenging to
counter noise. ML, in particular, performed the worst in estimating depth, and even RDF,
which performed better in other comparative experiments, suffered heavily from the noise
here. FMSS also struggled with noise. GLV and MCG performed better than the others,
but they were not the best. Our method outperformed the rest, excelling in removing
background noise and providing somewhat smooth depth values to the dice present in the
scene. Hence, it can be concluded that the proposed method is effective in suppressing the
noisy focus measures.

Figure 7. Depth map comparison of noisy data set Buddha.

4.4. Ablation Study

In this section, we analyzed the effect of the PFF. For this, we applied five traditional
focus measure methods: GLV [39], MCG [40], ML [24], FMSS [41], and RDF [34] on the
Medieval data. Then, the initial depth maps are extracted by obtaining the image numbers
containing the best focus measures along the optical axis. The PFF volume for the input
dataset Medieval is computed using a 32× 32 block size, then traditional focus volumes are
scaled using the PFF volume, and depth maps are extracted from the enhanced FV’s. The
resultant initial (without applying PFF) and improved (after applying PFF) depth maps for
the Medieval dataset are shown in Figure 8. It is evident that PFF removes the irregularities
in the depth map obtained from all the methods and provides a better depth perception,
by giving a smooth fade to the depth maps. For instance, in all the methods, PFF tries
to suppress irregular dots of the buildings present in the depth maps and tries to blend
those dots into a more gradual fade. In other words, inaccurate depth values are replaced
with closer-to-real depth values when the depth maps are extracted through the enhanced
focus volumes.

Figure 8. The depth maps of the synthetic dataset Medieval were obtained from different focus
measures: (row-1) depth maps extracted without applying the Perceptual Focus Factor (PFF); (row-2)
depth maps extracted after applying the proposed PFF.



Mathematics 2024, 12, 102 12 of 16

In another experiment, the Focus Measure responses (FM responses) across all frames
in an image sequence are analyzed with and without applying PFF, as shown in Figure 9.
In this analysis, focus curves for specific pixels across all frames in an image sequence are
studied. For this experiment, the traditional focus volume is obtained by applying the
DRDF FM on the synthetic Dino dataset. Then, the PFF volume for the input dataset Dino
is computed using a 32× 32 block size, and an enhanced focus volume is computed. We
randomly selected two pixels from the synthetic Dino dataset, specifically at coordinates
(108,132) and (217,154), highlighted in red and green in the Figure 9a. The first pixel
encompasses shadows, where most FMs typically yield inaccurate focus responses, while
the second pixel involves edges. Initial focus curves obtained through traditional FM DRDF
and the enhanced focus curves through PFF for the pixels (108,132) and (217,154) are shown
in Figure 9b,c. For an FM response, unimodality and narrowness of the curve are preferred,
as they indicate the FM’s confidence in identifying the image frame with maximum focus.
As observed from the figure, for the first pixel, the Perceptual Focus Factor (PFF) based on
an enhanced focus measure provided a narrower indication of the image frame with the
highest focus and aligned more closely with the GT value as compared to the traditional
FM. For the second pixel, the enhanced focus measure through PFF was not only closer to
the GT but also exhibited unimodality, unlike the traditional FM. It shows the effectiveness
and contribution of the PFF toward the improvement of the traditional focus measures.

Figure 9. Analysis of the Focus Measure (FM) response using our method on synthetic data set Dino.
(a) Locations marked by red and green boxes are our target areas that are pixels locations (108,132)
and (217,154). (b) Focus curves for pixel (108,132). (c) Focus curves for pixel (217,154). The blue curve
represents the FM response from the traditional FM, the red curve from the enhanced FM through
Perceptual Focus Factor (PFF), and the yellow line indicates the Ground Truth (GT) value for these
respective pixels.

Finally, to highlight the difference between the depth maps obtained with and without
applying PFF, a quantitative analysis is provided. For this, first, we applied five traditional
focus measures methods: GLV [39], MCG [40], ML [24], FMSS [41], and RDF [34] on all
14 datasets to get the traditional FVs and depth maps extracted from them. The PFF volume
for each dataset is computed using block size 32× 32, and then depth maps are extracted
from the enhanced FVs through PFF. RMSE and CORR measures were computed for the
depth maps obtained with and without enhancement through PFF and recorded in Table 2,
where it is applied to five other methods: GLV [39], MCG [40], ML [24], FMSS [41], and
RDF [34]. The reference table shows the RMSE and CORR values for synthetic data sets,
comparing their performance with and without the application of our PFF, with values
separated by a backward slash. From the table, it is clear that the PFF enhances all methods
across most data sets, underscoring its ability to improve existing techniques. For example,
in the Boxes data set, the CORR value for GLV improved by 29.6%, MCG by 76.5%, and
ML by 19.2%. In the Town data set, the RMSE for RDF changed by 10.7% and for ML by
13.89%. In some cases, as seen with the Table data set, the PFF does not degrade the final
depth map, instead maintaining performance at a level comparable to the original. In these
instances, performance can be further enhanced by adjusting the block size to suit the
specific characteristics of the data set.
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Table 2. Table of the Root Mean Square Error (RMSE) and CORR values before and after applying
our proposed Perceptual Focus Factor (PFF) to different Focus Measure (FM) techniques. The initial
(Ini) values before applying the PFF are listed first, followed by a backward slash ‘\’, and then the
improved (Imp) values achieved after applying the PFF.

RMSE CORR

GLV MCG ML FMSS RDF GLV MCG ML FMSS RDF
Ini\Imp Ini\Imp Ini\Imp Ini\Imp Ini\Imp Ini\Imp Ini\Imp Ini\Imp Ini\Imp Ini\Imp

Antinous 10.6\10.4 11.0\10.7 11.7\10.5 10.5\10.2 10.2\10.0 0.49\0.50 0.44\0.46 0.43\0.51 0.51\0.53 0.52\0.53
Boxes 9.66\9.09 10.6\9.64 7.59\6.97 8.65\8.50 9.00\8.20 0.27\0.35 0.17\0.30 0.52\0.62 0.39\0.42 0.35\0.47
Cotton 9.39\8.78 10.5\9.61 7.83\7.00 8.34\8.14 8.61\8.06 0.52\0.60 0.39\0.52 0.63\0.73 0.60\0.63 0.56\0.64
Dino 7.13\6.66 8.34\7.63 5.14\4.65 6.01\5.91 6.22\5.71 0.47\0.59 0.31\0.53 0.70\0.79 0.60\0.64 0.58\0.71

Dishes 8.76\8.28 9.14\8.34 8.36\7.22 8.19\8.05 7.71\7.03 0.58\0.63 0.52\0.61 0.59\0.71 0.64\0.65 0.66\0.73
Greek 10.3\9.81 10.7\9.73 9.46\8.81 9.86\9.64 9.74\9.04 0.39\0.43 0.34\0.42 0.44\0.50 0.43\0.45 0.41\0.48

Medieval 7.18\6.27 8.52\7.05 5.17\4.36 6.06\5.76 6.66\5.53 0.56\0.68 0.41\0.62 0.79\0.87 0.69\0.72 0.62\0.76
Museum 7.60\7.25 8.72\8.19 6.08\5.69 6.63\6.53 7.34\6.93 0.51\0.56 0.39\0.46 0.67\0.72 0.61\0.63 0.54\0.59

Pens 5.79\5.39 6.57\5.93 5.11\4.84 5.17\5.07 6.13\5.37 0.70\0.73 0.63\0.68 0.76\0.77 0.75\0.76 0.67\0.74
Pillows 7.78\6.95 9.22\8.04 6.38\5.90 6.49\6.26 7.61\7.01 0.46\0.58 0.31\0.48 0.61\0.68 0.61\0.65 0.48\0.56

Sideboard 6.22\5.96 6.90\6.49 5.21\5.02 5.41\5.36 5.85\5.67 0.61\0.65 0.54\0.62 0.71\0.76 0.69\0.71 0.64\0.69
Table 7.52\7.49 8.24\8.10 6.27\6.25 6.87\6.92 6.93\6.93 0.36\0.42 0.26\0.38 0.52\0.59 0.44\0.46 0.43\0.51
Town 10.5\9.79 11.1\9.95 7.85\6.76 9.48\9.29 8.75\7.81 0.09\0.27 0.02\0.29 0.40\0.60 0.21\0.28 0.30\0.49
Vinyl 10.7\9.97 11.4\10.2 9.26\8.40 9.82\9.58 9.84\8.84 0.23\0.42 0.16\0.45 0.40\0.59 0.35\0.41 0.35\0.57

4.5. Computational Complexity

In this section, we analyze the computational cost comparison among the comparative
methods and the proposed method. The computational cost of the proposed method
consists of the cost of computing PFF and the cost of computing traditional focus measures.
The computational time depends on the dimensions and the number of images in the
input sequence. We implemented the focus measures in MATLAB and ran them on the
system having quad core 3.30 GHz CPU with 16 GB memory. The time taken by different
focus measures and the PFF for synthetic and real data sets is recorded in Table 3. GLV,
ML, MCG, and RDF focus measures are efficient compared to DRDF, FMSS, and PFF. The
computational time mainly depends on the number of images, and the dimensions of each
image. In the case of PFF, the block size also affects the computational time. In the case
of real data sets, PFF has a comparable computational cost with other focus measures. In
addition, PFF is more efficient than FMSS, DRDF, and GLV focus measures.

Table 3. Time computed in seconds for different focus measures and the proposed Perceptual Focus
Factor (PFF) for different synthetic and real data sets.

Dataset GLV MCG ML FMSS RDF DRDF PFF

Antinous 0.1100 0.0554 0.0513 0.4031 0.0425 0.1313 0.1756
Boxes 0.1062 0.0549 0.0651 0.4124 0.0361 0.1243 0.1288
Cotton 0.1044 0.0540 0.0567 0.4253 0.0355 0.1306 0.1227
Dino 0.1020 0.0561 0.0624 0.4189 0.0374 0.1308 0.1224

Dishes 0.1146 0.0676 0.0722 0.4111 0.0350 0.1181 0.1251
Greek 0.1039 0.0529 0.0531 0.4084 0.0339 0.1227 0.1306

Medieval 0.1018 0.0523 0.0538 0.4039 0.0338 0.1136 0.1271
Museum 0.1018 0.0523 0.0538 0.4039 0.0338 0.1136 0.1226

Pens 0.1015 0.0512 0.0534 0.4074 0.0355 0.1217 0.1238
Pillows 0.1035 0.0494 0.0540 0.4117 0.0333 0.1204 0.1222

Sideboard 0.1034 0.0509 0.0485 0.3945 0.0351 0.1255 0.1230
Table 0.1058 0.0553 0.0612 0.4054 0.0356 0.1215 0.1222
Town 0.1084 0.0556 0.0572 0.4153 0.0358 0.1236 0.1240
Vinyl 0.1015 0.0510 0.0491 0.3839 0.0342 0.1174 0.1240

Balls 0.7278 0.2928 0.1526 1.3000 0.1629 0.3128 0.4116
Fruits 0.8118 0.3557 0.1705 1.4771 0.1379 0.3478 0.4185
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Table 3. Cont.

Dataset GLV MCG ML FMSS RDF DRDF PFF

Keyboard 0.8600 0.3699 0.1730 1.5042 0.1484 0.3809 0.4679
Window 0.7342 0.3164 0.1487 1.2643 0.1309 0.3078 0.3799
Kitchen 0.5197 0.1939 0.1068 0.9294 0.1010 0.2253 0.0775
Buddha 2.1598 0.7956 0.4134 3.9632 0.3722 0.8161 0.3914

5. Conclusions

This paper introduces a perceptually driven method for depth extraction through
Shape From Focus (SFF). The traditional Focus Volume (FV) obtained from applying tradi-
tional Focus Measures (FMs) on the image sequence is enhanced through the perceptual
focus factor. Our approach leverages the Difference of Gaussians (DoG) operator, which
reflects the human visual system’s method of edge perception in scenes. By applying DoG
to local areas within non-overlapping blocks of the image sequence, we create the Percep-
tual Focus Factor (PFF) for each pixel in the input image sequences. This new metric is
then integrated with the traditional FV, leading to the extraction of a significantly improved
depth map. Our method has been rigorously tested on both synthetic and real-world
datasets, demonstrating a marked improvement in depth extraction accuracy over existing
state-of-the-art SFF methods. Despite obtaining improved depth maps through the pro-
posed method, there are two important issues and concerns. First, as the proposed method
computes the PFF, it takes more time to compute depth maps compared to computing
just focus measures. The computational time depends on the dimensions and the number
of images in the input sequence. Secondly, the size of the block determines the degree
of improvement. An inappropriate size will improve the traditional focus measure to a
lesser degree. Determining an adaptive local block size or an optimal for the whole image
will definitely improve the results. It requires a separate study, where a machine/deep
learning-based model may be developed to determine the optimal or adaptive block size.
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