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Abstract: We investigate the cooling phenomenon of a mechanical oscillator in a double-coupled
cavity optomechanical system. Our model includes two single-mode optical cavities. The left
cavity is an optomechanical system with an optical parametric amplifier, and the right cavity is a
standard optical cavity. The two optical cavities couple with each other by exchanging photons. The
optomechanical system is effectively driven by an input laser field. By solving the linear quantum
Langevin equation of the system under a steady-state condition, we can obtain the position fluctuation
spectrum and momentum fluctuation spectrum of the mechanical oscillator, and then, the expression
of its effective temperature is obtained. Through numerical analysis, we find the change in the
effective temperature of the mechanical oscillator under different physical parameters. The results
show that the cooling of the mechanical oscillator can be significantly improved in the presence of
optical parameter amplification and adjustment of optical cavity parameters. Our cooling solutions
have potential applications for the preparation of nonclassical states of mechanical oscillators, high-
precision measurements, and quantum information processing.
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1. Introduction

In theoretical and experimental fields, the cavity optomechanical system [1,2] has
attracted extensive attention for its wide applications, such as the high-precision detec-
tion of gravitational waves and mass [3,4], mechanical entanglement [5], biological sens-
ing [6], mechanical squeezing [7,8], mechanical displacement [9], quantum information
processing [10], and superpositions of macroscopic quantum states [11]. The research
on optomechanical systems shows that people can use photons, nonclassical states, and
mechanical motion to manipulate and measure quantum effects in quantum regions. The
optomechanical system can constitute a hybrid quantum system [12,13] with other different
physical systems, providing a new approach for us to explore the quantum world. A
specific optomechanical system is mainly composed of a mechanical oscillator and cavity.
In order to observe and measure the quantum effect of macroscopic mechanical systems
experimentally, it is necessary to overcome the thermal noise of the mechanical oscillator
and prepare it in the quantum ground state [14]. Therefore, exploring mechanical oscillator
cooling becomes a crucial adjective, which could be achieved in the optomechanical system,
enhancing the interaction between the optical field and the mechanical motion to reduce
the thermal noise [15].

Currently, considerable progress has been made in the cooling of mechanical oscillators.
Generally, the most frequently used methods are self-cooling [16–22] and active feedback
cooling [23–27]. In the active feedback cooling schemes, a viscous force is applied to a
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mechanical oscillator by measuring its position without generating thermal noise. However,
the measurement accuracy of this method is affected by noise in the feedback loop. The
self-cooling scheme is to achieve cooling by interacting with the mechanical oscillator and
auxiliary system and absorbing energy from the mechanical oscillator. Resolved sideband
cooling [28–30] is a universal study in self-cooling scheme. However, the precondition of
this scheme is that the dissipation coefficient of the optical cavity is much smaller than the
frequency of the mechanical oscillator, which has high requirements for the quality factor
of the optical cavity. Later, people began to explore mechanical oscillator cooling under
unresolved sideband conditions. For example, Guo et al. used electromagnetically induced
transparency to break through the limitation of the unresolved conditions of the sideband
on the fluctuation spectrum of light pressure [31]. Furthermore, Liu et al. demonstrated
that the motional ground state can be achieved in the highly unresolved sideband regime
through coherent auxiliary cavity interferences [32].

Cooling mechanical oscillators to lower temperatures has become a greater focus. A
degenerate optical parametric amplifier [33] has been shown to improve the cooling of
mechanical oscillators. For instance, Huang et al. used parametric to enhance the cavity
cooling of a micromechanical mirror in the dispersive coupling [34]. Further, they investi-
gated the cooling of the mechanical membrane in a dissipative optomechanical system with
a degenerate optical parametric amplifier [35]. Researchers have demonstrated that cou-
pling a degenerate optical parametric with a Fabry–Perot optical cavity can tremendously
improve the cooling of the mechanical oscillator [22,34,36].

This paper analyzes the scheme for improving mechanical oscillator cooling in double-
coupled cavity optomechanical systems with an optical parametric amplifier. The paper
is organized as follows: Section 2 introduces the model of the system and provides the
quantum Langevin equations. In Section 3, we calculate the position fluctuation spectrum
and momentum fluctuation spectrum of the mechanical oscillator and derive the effective
temperature of the mechanical oscillator. In Section 4, we show the effective resonance
frequency and effective damping rate of the mechanical oscillator, and we also represent
how the cooling of the mechanical oscillator can be effectively improved by using an optical
parametric amplifier inside the cavity alongside adjusting the optical cavity parameters.
Some conclusions are presented in Section 5.

2. Model

The model that we consider is a coupled single-mode double-cavity, as shown in
Figure 1. The left and right optical cavities are cavity a1 and cavity a2, respectively. The
left cavity is an optomechanical system and the right cavity is a standard optical cavity.
The two cavities are coupled to each other through photon exchange coupling with the
coupling coefficient J. A degenerate optical parametric amplifier is placed in the left cavity.
The resonance frequency and decay rate of the left cavity are ω1 and κ1, respectively, and
the resonance frequency and decay rate of the right cavity are ω2 and κ2, respectively. The
movable cavity mirror in the left cavity can be regarded as a mechanical oscillator with a
natural frequency of ωm, effective mass m, and damping rate γm. The system is in a state of
thermal equilibrium at temperature T. In addition, the left cavity is driven with an input
laser field with frequency ωL, power P and amplitude ε, which does not interact directly
with the right cavity.

Therefore, the Hamiltonian of the system under the rotational frame of the input laser
frequency ωL can be expressed as:

H = }∆1a†
1a1 + }∆2a†

2a2 +
1
2

(
p2

m + mω2
mq2
)
− }ga†

1a1q + }J
(
a†

1a2 + a1a†
2
)

+i}ε
(
a†

1 − a1
)
+ i}G

(
eiθa†

1
2 − e−iθa2

1
)
.

(1)
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Figure 1. Model diagram of a dual-cavity optomechanical coupling system. The two optical cavities
interact through the coupling coefficient J. A degenerate optical parametric amplifier is placed in
the left cavity. The leftmost movable cavity mirror can be regarded as a mechanical oscillator with a
resonance frequency of ωm. The left cavity is driven by a laser field.

Here a1 and a1
† are the annihilation and creation operators for the field inside the

left cavity, respectively, and a2 and a2
† are the annihilation and creation operators for

the field inside the right cavity, respectively, which satisfy the commutative relationship[
aj, aj

†] = 1(j = 1, 2). ∆1 = ω1 − ωL, where ∆2 = ω2 − ωL are the detuning of the
left cavity and the right cavity to the input laser, respectively. Further, p and q are the
momentum and position operators of the movable cavity mirror, respectively, satisfying
[q, p] = i}. While g = ω1/L is the single-photon optomechanical coupling coefficient, and
L is the length of the two cavities. Then, E = (2κ1P/}ωL)

1/2 is the amplitude of the input
laser, G is the nonlinear gain of the OPA, and θ is the drive field phase of the OPA. In
Equation (1), the first two terms represent the energy of the left cavity and the right cavity,
respectively, the third term represents the energy of the mechanical oscillator, the fourth
term represents the interaction between the mechanical oscillator and the left cavity, the
fifth term represents the interaction between the left cavity and the right cavity, the sixth
term represents the interaction between the left cavity and the input driving light, and
the last term represents the interaction between the left cavity and OPA. The quantum
Langevin equation of the system can be provided by the Heisenberg equation:

.
q = p

m ,
.
p = −mω2

mq + }ga†
1a1 − γm p + ξ,

.
a1 = −(i∆1 + κ1)a1 + iga1q− i Ja2 + 2Geiθa†

1 + ε +
√

2κ1a1,in,
.
a2 = −(i∆2 + κ2)a2 − i Ja1 +

√
2κ2a2,in.

(2)

Here, we introduce the input vacuum noise operators a1,in and a2,in with zero mean
values, and the relevant equations in the time domain are [37]:〈

δa1,in(t)δa†
1,in(t

′)
〉
= δ(t− t′),

〈δa1,in(t)δa1,in(t′)〉 =
〈

δa†
1,in(t)δa1,in(t′)

〉
= 0,〈

δa2,in(t)δa†
2,in(t

′)
〉
= δ(t− t′),

〈δa2,in(t)δa2,in(t′)〉 =
〈

δa†
2,in(t)δa2,in(t′)

〉
= 0.

(3)
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Due to the interaction between the mechanical oscillator and the thermal bath, a force
ξ will be generated, which is a Brownian noise operator, and its mean value is also zero,
and the relevant equation satisfied is [38]:

〈
ξ(t)ξ

(
t′
)〉

=
}γmm

2π

∫
ωe−iω(t−t′)

[
coth

(
}ω

2kBt

)
+ 1
]

dω, (4)

where kB is the Boltzmann constant and T is the bath temperature. By setting all-time
derivatives of the quantum Langevin equation to zero, we can obtain the steady state
average of the system:

ps = 0,

qs =
}g|a1s |2

mω2
m

,

a2s =
−i Ja1s
i∆2+κ2

,

a1s =
2Geiθ ε(∆2

2+κ2
2)+ε(i∆2+κ2)[(κ1−i∆)(κ2−i∆2)]

(κ2
1+∆2)(κ2

2+∆2
2)+2J2(κ1κ2−∆∆2)+J4−4G2(κ2

2+∆2
2)

.

(5)

Here a1s and a2s represent the steady-state amplitude of the two cavity fields, respec-
tively. Moreover, ∆ = ∆1 − gqs is the detuning of the effective cavity, which is generated
under the influence of the radiation pressure and is related to the average displacement of
the mechanical oscillator. We can see that qs 6= 0, indicating that after adding a series of
coupled systems, the mechanical oscillator is moved around the new equilibrium position.

3. Radiation Pressure and Quantum Fluctuations

Since the fluctuation δq = q− qs is the real operator of the mechanical oscillator, and
it is also the object that is processed by cooling the mechanical oscillator, we first define all
the fluctuation operators of the system:

δq = q− qs, δp = p− ps, δa1 = a1 − a1s, δa2 = a2 − a2s. (6)

Substituting the fluctuation operator into the equation, we can get the linear quantum
Langevin equation:

δ
.
q = δp

m ,

δ
.
p = −mω2

mδq + }g
(
a1sδa†

1 + a∗1sδa1
)
− γmδp + ξ,

δ
.
a1 = −(i∆+ κ1)δa1 + iga1sδq− i Jδa2 + 2Geiθδa†

1 +
√

2κ1a1,in,

δ
.
a2 = −(i∆2 + κ2)δa2 − i Jδa1 +

√
2κ2a2,in.

(7)

Here we introduce the quadrature for the two cavity fields δx1 = δa1 + δa†
1,

δy1 = i
(
δa†

1 − δa1
)

and δx2 = δa2 + δa†
2, δy2 = i

(
δa†

2 − δa2
)
, alongside the input noise

quadrature operator: x1,in = a1,in + a†
1,in, y1,in = i

(
a†

1,in − a1,in

)
and x2,in = a2,in + a†

2,in,

y2,in = i
(

a†
2,in − a2,in

)
. Equation (7) can be expressed in matrix form:

.
A(t) = MA(t) + η(t), (8)

here A(t) is a column vector of fluctuations, η(t) is a column vector of noise terms, and
their transpose can be written as:

A(t)T = (δq, δp, δx1, δy1, δx2, δy2),

η(t)T =
(
0, ξ,
√

2κ1x1,in,
√

2κ1y1,in,
√

2κ2x2,in,
√

2κ2y2,in
)
.

(9)
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The matrix M is represented as:

0 1
m 0 0 0 0

−mω2
m −γm }φ }ψ 0 0

−2ψ 0 −(κ1 − 2G cos θ) ∆+ 2G sin θ 0 J
2φ 0 −∆+ 2G sin θ −(κ1 + 2G cos θ) −J 0
0 0 0 J −κ2 ∆2
0 0 −J 0 −∆2 −κ2

, (10)

here φ = g
(
a1s + a∗1s

)
/2 and ψ = g

(
a1s − a∗1s

)
/2i. The solution of Equation (7) is sta-

ble when all the eigenvalues of the matrix have negative real parts. According to the
Rouse-Hurwitz stability criterion [39], we can obtain the stability condition. Since it is too
complicated, it will not be shown here, and we will perform numerical simulations on
the parameters we selected in order to satisfy the stability conditions. By performing the
Fourier transform on the formula, we obtain the position fluctuation of the mechanical
oscillator in the frequency domain:

δq(ω) = χ(ω)[A1(ω)a1,in(ω) + A2(ω)a†
1,in(ω) + A3(ω)a2,in(ω)

+A4(ω)a†
2,in(ω) + Z(ω)ξ(ω)],

(11)

where

χ−1(ω) = m
(
ω2

m − iωγm −ω2)Z(ω)− i}|g0|2
[
v+
(
u−v− + J2)− v−

(
u+v+ + J2)]

−2i}Gv+v−
(

g2
0e−iθ − g∗0

2eiθ
)

,

Z (ω) =
(
u+v+ + J2)(u−v− + J2)− 4G2v+v−, g0 = ga1s, g∗0 = ga∗1s,

u+ = κ1 − iω + i∆, u− = κ1 − iω− i∆, v+ = κ2 − iω + i∆2, v− = κ2 − iω− i∆2,

A1(ω) = 2}g0Ge−iθv+v−
√

2κ1 + }g∗0 v+
√

2κ1
(
u−v− + J2),

A2(ω) = 2}g∗0 Geiθv+v−
√

2κ1 + }g0v−
√

2κ1
(
u+v+ + J2),

A3(ω) = −2i}g0 JGe−iθv−
√

2κ2 − i J}g∗0
(
u−v− + J2)√2κ2,

A4(ω) = 2i}g∗0 JGeiθv+
√

2κ2 + i J}g0
(
u+v+ + J2)√2κ2.

(12)

In Equation (11), the first four terms are caused by the input vacuum noise caused by
mutual coupling in the system, and the last term is derived from the thermal noise in the
environment. Here χ(ω) is the susceptibility of the mechanical oscillator in the presence of
the coupled system, which can be written as:

χ(ω) =
1

m
[
ωe f f (ω)2 − iωγe f f (ω)−ω2

] , (13)

where ωe f f (ω) and γe f f (ω) are the effective resonance frequency and effective damping
rate of the mechanical oscillator, respectively, and they can be expressed as:

ωe f f (ω) =
{

ω2
m − Re

[
B1(ω)+B2(ω)

mZ(ω)

]} 1
2 ,

γe f f (ω) = γm + Im
[

B1(ω)+B2(ω)
mωZ(ω)

]
,

(14)

here,
B1(ω) = i}|g0|2v+

(
u−v− + J2)− i}|g0|2v−

(
u+v+ + J2),

B2(ω) = 2i}Gv+v−
(

g2
0e−iθ − g∗0

2eiθ). (15)

We note that the effective resonance frequency ωe f f (ω) and the effective damping rate
γe f f (ω) of the mechanical oscillator are related to the enhanced optomechanical coupling



Mathematics 2023, 11, 2218 6 of 12

coefficient, the parametric gain coefficient G of the OPA, and the phase θ. In the case
of an uncoupled system (g = 0), the mechanical oscillator performs Brownian motion,
and its effective susceptibility χ(ω) = m−1(ω2

m − iωγm −ω2)−1 is a standard Lorentzian
function [40]. The position fluctuation spectrum of the mechanical oscillator is defined as:

2πSq(ω)δ(ω + Ω) =
1
2
[〈δq(ω)δq(Ω)〉+ 〈δq(Ω)δq(ω)〉], (16)

whereby we introduce the non-zero correlation of the noise term in the frequency domain:〈
a1,in(ω)a†

1,in(−Ω)
〉
= 2πδ(ω + Ω),〈

a2,in(ω)a†
2,in(−Ω)

〉
= 2πδ(ω + Ω),

〈ξ(ω)ξ(Ω)〉 = 2π}γmmω
[
1 + coth

(
}ω

2kBT

)]
δ(ω + Ω),

(17)

then, we obtain the position fluctuation spectrum of the mechanical oscillator:

Sq(ω) = χ(ω)χ(−ω)

[
A12(ω) + A34(ω) + }mωγmZ(ω)Z(−ω)coth

(
}ω

2kBT

)]
, (18)

where
A12(ω) =

A1(ω)A2(−ω)+A1(−ω)A2(ω)
2 ,

A34(ω) =
A3(ω)A4(−ω)+A3(−ω)A4(ω)

2 .
(19)

In Equation (18), the first two terms are the contribution of the input vacuum noise,
and the last term is the contribution of the thermal noise. When we take the Fourier
transform of

·
δq = δp/m in Equation (7), we can get Sp(ω) = m2ω2Sq(ω), which makes the

momentum fluctuation spectrum of the mechanical oscillator Sp(ω) = m2ω2Sq(ω). For a
system in thermal equilibrium, we can use the energy equipartition theorem to define the
effective temperature kBTe f f = mω2

m
〈
q2〉/2 +

〈
p2〉/2m, which is determined by the total

energy of the mechanical oscillator. Note, we are dealing with a drive system here, and
mω2

m
〈
q2〉/2 6=

〈
p2〉/2m [34], where

〈
q2〉 = 1

2π

∫ ∞
−∞ Sq(ω)dω,

〈
p2〉 = 1

2π

∫ ∞
−∞ Sp(ω)dω.

Through analysis, we find that the cooling of the mechanical oscillator is related to the
decay rate, detuning, coupling coefficient, and OPA gain coefficient of the two cavities.

4. Results and Discussions
4.1. Effective Resonance Frequency and Effective Damping Rate of Mechanical Oscillator

Firstly, we show the effect of coupled dual cavity and OPA on the effective resonance
frequency and effective damping rate of the mechanical oscillator. In the numerical calcula-
tions we have chosen some similar parameters that have been used in past experiments:
m = 145 ng, L = 25 mm, ωm/(2π) = 215 kHz, P = 0.2 Mw, λL = 2πc/ωL = 1064 nm, and
mechanical quality factor Q = ωm/γm = 8000. We take the same value for the decay rate of
the two cavities κ1 = κ2 = ωm; therefore, our system is in an unresolved sideband condition.
We plotted the normalized effective resonance frequency ωe f f (ω)/ωm and normalized
effective damping rate γe f f (ω)/γm of the mechanical oscillator versus the normalized
frequency ω/ωm for different coupling coefficients J and parametric gain G. We take the
cavity detuning of the two cavities as ∆ = 1.2ωm, ∆2 = 2ωm, and the parametric phase
θ = 0.

In Figure 2, we fixed J = 1.5κ1 and plotted the curves of the normalized effective reso-
nance frequency ωe f f (ω)/ωm, which normalized the effective damping rate γe f f (ω)/γm
versus the normalized effective resonance frequency ωe f f (0)/ωm, when G = 0 (red solid
line), G = 0.15κ1 (green solid line), and G = 0.19κ1 (black solid line), respectively. Accord-
ing to Figure 2a,b, it can be seen that both the normalized effective resonance frequency
and the normalized effective damping rate are symmetrically distributed within the se-
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lected interval as the normalized effective frequency changes, and are symmetric about
the longitudinal axis. When G = 0, there is no optical parametric amplifier placed in
the left cavity. In Figure 2a, while ω is from −7ωm to −5ωm and from 5ωm to 7ωm, the
normalized effective resonance frequency of the mechanical oscillator remained basically
unchanged. Then, as the value of ω increases in the left half-axis and decreases in the
right half-axis, the normalized effective resonance frequency will suddenly decrease. When
ω = 0, the normalized effective resonance frequency has a minimum value. When an
optical parametric amplifier is placed in the left cavity, the image of the normalized effec-
tive resonance frequency still shows a symmetrical distribution. However, the difference
between this situation and the absence of an optical parametric amplifier in the cavity
is that when the normalized effective resonance frequency reaches a subpeak, it rapidly
decreases and reaches a minimum value. It is worth noting that when G = 0.19κ1, its
normalized effective resonance frequency is lower than the value when G = 0.15κ1. In
Figure 2b, when G = 0, the normalized effective damping rate of the mechanical oscillator
shows three peaks in the selected region, with two subpeaks appearing at approximately
ω = −3ωm and ω = 3ωm, with the maximum value appearing at ω = 0. However, the
difference between the maximum and sub-maximum values is not significant, and as it
extends along the left and right half axes, the value of the normalized effective damping
rate gradually approaches zero. After adding OPA, the overall trend of the normalized
effective damping rate is similar to without OPA, yet the difference is that the peak value
of the normalized effective damping rate suddenly increases several times. Moreover, the
peak value at G = 0.19κ1 is greater than at G = 0.15κ1, and it is found that this pattern
corresponds to the normalized effective resonance frequency. That is, at ω = 0, the larger
the normalized effective frequency ωe f f (0)/ωm of the mechanical oscillator, the smaller its
normalized effective damping rate γe f f (0)/γm. Figure 2 also shows that with the increase
of parameter gain G, the normalized effective resonance frequency ωe f f (0)/ωm decreases,
while the normalized effective damping rate increases γe f f (0)/γm. However, it is worth
noting that a larger value of G is not necessarily better, which indicates that adding OPA to
the dual cavity can effectively assist in the cooling of the mechanical oscillator. Similarly, we
also selected J = 1.25κ1, ∆ = 0.9ωm, and ∆2 = 2ωm, as well as the parameter phase θ = 0,
to observe the changes in the normalized effective resonance frequency and normalized
effective damping rate of the mechanical oscillator by increasing the parameter gain G. As
shown in Figure 3, it can be observed that the change in curves presented in Figure 3 is
similar to Figure 2. In addition, the influence of the values on the normalized effective
resonance frequency and normalized effective damping rate is also discussed. It is found
that when θ = 2kπ(k ∈ N), the normalized effective resonance frequency achieves the
minimum value, while the normalized effective damping rate reaches the maximum value.
Therefore, in the following discussion, we take θ = 0 for simplicity.

4.2. Cooling the Mechanical Oscillator

We assumed that the initial environment temperature is T = 300K, which means
that the thermal phonon number of the mechanical oscillator is nth

m = 2.90743 × 107,
where nth

m = 1/{exp[}ωm/(kBT)]− 1}. We plotted the relationship between the effective
temperature of the mechanical oscillator and the normalized detuning ∆/ωm of the left
cavity. We fixed J = 1.5κ1 and plotted the curves when G = 0, G = 0.15κ1, and G = 0.19κ1,
respectively, as shown in Figure 4.
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Figure 2. (a) The normalized effective resonance frequency ωe f f (ω)/ωm of the mechanical oscillator
as a function of the normalized frequency ω/ωm for different parametric gains G; (b) The normalized
effective damping rate γe f f (ω)/γm of the mechanical oscillator as a function of the normalized
frequency ω/ωm. The red curve, green curve, and black curve correspond to G = 0, G = 0.15κ1, and
G = 0.19κ1, respectively. Where ∆ = 1.2ωm, ∆2 = 2ωm, J = 1.5κ1, and θ = 0.

Figure 3. (a) The normalized effective resonance frequency ωe f f (ω)/ωm of the mechanical oscillator
as a function of the normalized frequency ω/ωm for different parametric gains G; (b) the normalized
effective damping rate γe f f (ω)/γm of the mechanical oscillator as a function of the normalized
frequency ω/ωm. The red curve, green curve, and black curve correspond to G = 0, G = 0.05κ1, and
G = 0.12κ1, respectively. Where ∆ = 0.9ωm, ∆2 = 2ωm, J = 1.25κ1, and θ = 0.

Figure 4. The effective temperature Te f f (K) of the mechanical oscillator as a function of the nor-
malized detuning ∆/ωm of cavity a1 for different parameter gains G: (a) G = 0 (red dashed curve),
0.15κ1 (black dot-dashed curve); (b) G = 0 (red dashed curve), 0.19κ1 (black dot-dashed curve).
Where J = 1.5κ1.
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It can be seen that when the parameter gain G exists, the effective temperature of
the mechanical oscillator is significantly improved. As the parameter gain increases, the
cooling effect of the mechanical oscillator becomes more obvious, and the oscillator has a
lower temperature. Furthermore, for the different parametric gain, the process of cooling
corresponds to different ranges of the detuning of the effective cavity. For the parametric
gain G = 0.15κ1, the temperature can drop to 0.212K, when ∆ = 1.35ωm. For the parametric
gain G = 0.19κ1, the effective temperature can arrive at 0.135K, when ∆ = 1.6ωm. Similarly,
we also plotted the effective temperature with or without the parametric gain G, when
J = 1.25κ1 and J = κ1, as shown in Figure 5.

Figure 5. The effective temperature Te f f (K) of the mechanical oscillator as a function
of the normalized detuning ∆/ωm of cavity a1 for different parameter gain G = 0
(red dashed curve), 0.05κ1 (black dotted curve), 0.12κ1 (blue dot-dashed curve). Where J = 1.25κ1

for (a) and J = κ1 for (b).

According to the normalized effective mechanical damping γe f f (ω)/γm in
Figures 2 and 3, we can know that γe f f (ω)/γm significantly increases when a parametric
gain G is introduced, which means that the damping feedback force on the mechanical
oscillator increases; thus, adding OPA can improve the cooling of the mechanical oscillator.
In Figure 5a, when J = 1.25κ1 and ∆ = 0.8ωm, then, G = 0, G = 0.05κ1, and G = 0.12κ1,
the effective temperature of the mechanical oscillator is 0.548K, 0.437K, and 0.298K, respec-
tively. When J = κ1 and ∆ = 0.5ωm, then, G = 0, G = 0.05κ1 and G = 0.1κ1, the effective
temperature of the mechanical oscillator is 0.594K, 0.469K, and 0.349K, respectively.

In addition, we also discussed the effect of the decay rate of the right cavity on the
mechanical oscillator cooling. In the case of J = 1.25κ1, G = 0, and J = 1.25κ1, G = 0.05κ1,
we chose parameter κ2 with different values κ1, 1.5κ1, 2κ1, and explored the relationship
between the temperature of the mechanical oscillator and normalized detuning ∆/ωm of
the left cavity, as shown in Figure 6. With the increase in the decay rate of the right cavity,
the cooling of the mechanical oscillator became more obvious. In addition, with or without
the existence of the parameter gain, the appearance of the lowest temperature corresponds
to different detuning.

We found that with the increase of κ2, the cooling effect of the mechanical oscillator
was enhanced. In the same way, we also found a similar rule in the case of J = 1.5κ1, G = 0,
and J = 1.5κ1, G = 0.15κ1, as shown in Figure 7. Under appropriate parameter choices,
a lower temperature cooling process can be achieved when the decay rate of the right
cavity gradually increases. From Figure 7a,b, in this case we can find that the presence of
parametric gain has little effect on the cooling of the mechanical oscillator, and the minimum
temperature for both processes is around 0.2K. Comparing Figure 7 with Figure 6, the
cooling process has a strong dependence on the coupling between the two cavities. In
Figure 7, we chose a larger coupling between the two cavities, and the cooling effect was
reduced, as shown in Figure 6, where the coupling between the two cavities demonstrates
smaller values. Thus, the parameter choices during the cooling process are very strict.
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Figure 6. The effective temperature Te f f (K) of the mechanical oscillator as a function of
the normalized detuning ∆/ωm of cavity a1 for different decay rates of the right cavity
κ2 = κ1 (red dashed curve), 1.5κ1 (green dotted curve), 2κ1 (blue dot-dashed curve). Where (a):
J = 1.25κ1, G = 0; (b): J = 1.25κ1, G = 0.05κ1.

Figure 7. The effective temperature Te f f (K) of the mechanical oscillator as a function of
the normalized detuning ∆/ωm of cavity a1 for different decay rates of the right cavity
κ2 = κ1 (red dashed curve), 1.5κ1 (green dotted curve), 2κ1 (blue dot-dashed curve). Where (a):
J = 1.5κ1, G = 0; (b): J = 1.5κ1, G = 0.15κ1.

5. Conclusions

In conclusion, we investigated mechanical oscillator cooling in two optical cavities,
where one optical cavity is an optomechanical system and the other is a standard optical
cavity. Photon exchange coupling existed between the two cavities. In addition, we placed
an optical parametric amplifier in the left cavity. When the optomechanical system is driven
by an input laser, we discussed the cooling of the mechanical oscillator under this condition
using different parameters. Our study shows that we can improve the cooling effect of the
mechanical oscillator under unresolved conditions. For appropriate physical parameters,
we demonstrated that the cooling effect of the mechanical oscillator can also be improved
with an increase in the gain factor of the optical parametric amplifier. In addition, we can
also see that the mechanical oscillator can be cooled to a lower temperature by adjusting
the decay rate of the right cavity. Our studies show that the photon exchange coupling
between two cavities can also affect the cooling of the mechanical oscillator. Recently,
with the development of micro/nano-processing technology, the experimental progress
of cavity optomechanical systems has also developed rapidly [2–5], which provides an
ideal platform for the study of quantum nonlinear phenomena in cavity optomechanical
systems. A scheme for cooling the mechanical resonator close to its ground state, via
an electromagnetically-induced-transparency-like mechanism in a double-cavity optome-
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chanical system is proposed in ref. [31]. Our theoretical model is based on these research
developments; therefore, our study has feasibility in these experiments.
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