
Citation: Wang, Z.; Ouyang, D.;

Wang, Y.; Liang, Q.; Huang, Z.

Efficient and Effective Directed

Minimum Spanning Tree Queries.

Mathematics 2023, 11, 2200. https://

doi.org/10.3390/math11092200

Academic Editor: Mikhail Goubko

Received: 3 April 2023

Revised: 1 May 2023

Accepted: 2 May 2023

Published: 6 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Efficient and Effective Directed Minimum Spanning
Tree Queries
Zhuoran Wang † , Dian Ouyang *,† , Yikun Wang , Qi Liang and Zhuo Huang

Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 511400, China;
wzrbill@e.gzhu.edu.cn (Z.W.); yikun.wang@e.gzhu.edu.cn (Y.W.); qiliang@e.gzhu.edu.cn (Q.L.);
huangzh1229@e.gzhu.edu.cn (Z.H.)
* Correspondence: dian.ouyang@gzhu.edu.cn
† These authors contributed equally to this work.

Abstract: Computing directed Minimum Spanning Tree (DMST) is a fundamental problem in graph
theory. It is applied in a wide spectrum of fields from computer network and communication protocol
design to revenue maximization in social networks and syntactic parsing in Natural Language
Processing. State-of-the-art solutions are online algorithms that compute DMST for a given graph
and a root. For multi-query requirements, the online algorithm is inefficient. To overcome the
drawbacks, in this paper, we propose an indexed approach that reuses the computation result to
facilitate single and batch queries. We store all the potential edges of DMST in a hierarchical tree
in O(n) space complexity. Furthermore, we answer the DMST query of any root in O(n) time
complexity. Experimental results demonstrate that our approach can achieve a speedup of 2–3 orders
of magnitude in query processing compared to the state-of-the-art while consuming O(n) index size.

Keywords: directed minimum spanning tree; indexed approach; batch query

MSC: 05C20

1. Introduction

Finding a Directed Minimum Spanning Tree (DMST), which is also known as the
Minimum Cost Arborescence problem, in a given directed graph is one of the fundamental
problems in graph theory. For a directed graph G, given root r, the query aims to find a
DMST rooted at r that connects all the vertices.

DMST can be applied to many fields. In communication, it is implemented for
minimum cost connectivity [1,2] and control [3]. In the database, it is utilized for reach-
ability queries [4,5]. In natural language processing, it is a classic dependency parsing
algorithm [6–9]. In visualization, it captures information [10,11] and facilitates genetic anal-
ysis [12–14]. In social networks, it evaluates influence [15] and information flows [16,17].

Chu-Liu and Edmonds [1,18] proposed an algorithm that answers the query in O(mn)
time complexity, where n is the number of vertices in the graph and m is the number of
edges. Their algorithm is a two-phase algorithm that involves contraction and expansion.
Tarjan [19] then proposed a faster implementation in O(m log n) time for sparse graphs
and O(n2) for dense ones. Gabow et al. [20] improved their algorithms by implementing
a Fibonacci heap. By utilizing the O(1) unite operation feature and a depth-first strategy,
their algorithm is able to return a DMST in O(m + n log n) time.

Motivation. All of the above algorithms are online algorithms. For a series of queries
on the same graph with different roots, they have to repeat the computing procedure for
every single root in the graph. However, we find that for different roots, the corresponding
DMSTs always contain edges of minimum weight related to vertices. We build an index
that chooses and stores the edge of the minimum weight for each vertex. Therefore,

Mathematics 2023, 11, 2200. https://doi.org/10.3390/math11092200 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11092200
https://doi.org/10.3390/math11092200
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0000-9569-142X
https://orcid.org/0000-0002-9472-4389
https://orcid.org/0009-0000-7619-9907
https://doi.org/10.3390/math11092200
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11092200?type=check_update&version=2

Mathematics 2023, 11, 2200 2 of 17

the computing time for the DMST query can be saved by only referring to the edges in the
index instead of searching the original graph.

Our Idea. In this paper, we propose an index-based approach for the DMST problem
rooted at any vertex on the given directed graph. We first keep track of all potential edges
of any DMST in the given graph and store them in a hierarchical tree. Then we find the
DMST of the given root by choosing edges in the tree index. The index computing time is
O(mn), which is the same time cost as [1,18]. The query time for any given root is O(n).
Furthermore, the space complexity is O(n).

The contribution of this paper can be summarized as follows:

1. We are the first to propose an efficient indexed approach for the DMST problem. We
can answer a single query at any root in the graph in O(n) time. Furthermore, we can
process batch queries even faster.

2. We prove the correctness of our algorithms. Furthermore, we prove that both single
and batch algorithms take worst-case O(n) space and time complexity.

3. We conduct our algorithms on different directed graph datasets to show the efficiency
and effectiveness of our algorithms.

2. Related Work

DMST can be applied to a wide spectrum of fields. Since the directed maximum
spanning tree can be found with the same algorithm by trivially negating the edge cost, we
show its applications as follows:

Communication. DMST of a communication network means the lowest cost way to
propagate a message to all other nodes in G [1]. To address the connectivity issue in
heterogeneous wireless networks, N. Li et al. [2] proposed a localized DMST algorithm
that preserves the network connectivity. The problem of containment control with the
minimum number of leaders can be converted into a directed minimum spanning tree [3].

Database Management. To efficiently answer reachability queries, Jin et al. [5] created a
path-graph and formed a path-tree cover for the directed graph by extracting a maximum
directed spanning tree. Further, they introduced a novel tree-based index framework that
utilizes the directed maximal weighted spanning tree algorithm and sampling techniques
to maximally compress the generalized transitive closure for the labeled graphs [4].

Natural Language Processing. To generalize the projective parsing method to non-
projective languages, McDonald et al. [7] formalized weighted dependency parsing as
searching for maximum spanning trees in directed graphs. Furthermore, Smith et al. [8]
found a directed maximum spanning tree for maximum a posteriori decoding. Moreover,
in [9], the authors couched statistical sentence generation as a spanning tree problem and
found the DMST of a dependency tree with maximal probability. Yang et al. [6] used
DMST as a tool in the evaluation of the induced structure of their proposed structured
summarization model.

Visualization. For the purpose of capturing 3D surface measurements with structured
light, Brink et al. [10] considered all connections and adjacencies among stripe pixels in the
form of a weighted directed graph and indexed the patterns by a maximum spanning tree.
Mahshad et al. [11] applied DMST in handwritten math formula recognition. DMST is
implemented in GrapeTree [12] to visualize genetic relations and helps genetic analysis in
lineage tracing [13] and cancer evolution [14].

Social Networks. For social network hosts to achieve maximum revenue in viral market-
ing, Zehnder [15] extracted a DMST to generate a most influential tree, which approximates
a social network while preserving the most influential path. To contrast the spread of mis-
information in online social networks, Marco et al. [16] modeled source identification as a
maximal spanning branching problem. Furthermore, Peng et al. [17] extracted important
information flows and the hierarchical structure of the networks with DMST.

Mathematics 2023, 11, 2200 3 of 17

3. Problem Statement

Let G = (V, E) be a directed graph where V(G) is the set of vertices and E(G) is the
set of arcs. Arc is a directed edge starting from u to v. We use V and A to denote V(G) and
E(G), and n = |V| and m = |E| to denote the number of vertices and arcs in the directed
graph. We use edge to denote arc if the context is clear. We use e = 〈u, v〉 to denote the arc,
where u is the tail of the arc, denoted as tail(e), and v is the head, denoted as head(e). We
use in-edge to denote any arc incident on a vertex as the head and out-edge to denote any
arc direct away from a vertex as the tail. Each arc 〈u, v〉 is associated with a positive cost
φ〈u, v〉. For each v ∈ V, we use in(v) to denote all the in-edges of v, and we use out(v) to
denote all the out-edges of v. A path is a sequence of vertices p = {v1, v2, . . . , ve}, where
〈vi, vi+1〉 ∈ E and ∀vi, vj ∈ p, vi 6= vj. The summary of notations is in Table 1. If there is no
path from a vertex to any other vertices in the graph, the DMST rooted at the vertex will
cost infinity, which is meaningless. Therefore, for simplicity, in the rest of this paper, we
assume that G is strongly connected. As we can obtain the maximum directed spanning
tree by simply negating each edge, we focus on answering the minimum one.

Table 1. The summary of notations.

Notation Definition

G = (V, E) The directed graph G, vertex set V and arc set E

n, m number of vertices n, number of arcs m

e = 〈u, v〉 arc e, from u to v, where u is tail, v is head

φ〈u, v〉 cost of arc 〈u, v〉

head(e), tail(e) head and tail of the arc e

in(v), out(v) all the in-edges whose head is v, all the out-edges whose tail is v

T , Tv any DMST of graph G, DMST rooted at v

H hierarchical tree of G containing potential DMST arcs

ci , TNi , TN(v) cycle, its corresponding tree node, and tree node containing v

C set of cycles

Problem Definition. Given a directed graph G = (V, E) and a root vertex r ∈ V,
a Directed Spanning Tree is an acyclic subgraph T of G that has all the vertices of G.
For each vertex v ∈ T and v 6= r:

(1) There is a path starting from r to v.
(2) v has only one in-edge.
A Directed Minimum Spanning Tree is such a Directed Spanning Tree of the minimum

total edge cost.

Example 1. In Figure 1, we show a directed graph G with 7 vertices and 15 edges. In Figure 1a,
we number each edge of G. Furthermore, in Figure 1b, we show the cost of each edge. In Figure 1c,
given root v1, we show the directed minimum spanning tree Tv1 of G rooted at v1. Furthermore, its
total cost is 29. For each vertex v ∈ Tv1 , v 6= v1 there is a path from v1 to v, and there is only one
in-edge of each vertex in Tv1 except v1.

Mathematics 2023, 11, 2200 4 of 17

A1

A4

A13

A12

A9

A2 A7

A8

A3

A5

A6

(a) (b) (c)

v1

v5

v4

v2

v3 v6

v7 A15

A14

A11

A10

9

3

4

6

8

3 4

3

5

7

9

v1

v5

v4

v2

v3 v6

v7 8

4

9
5

A1

A4

A13

A12

A9

A2 A7

A8

A3

A5

A6

v1

v5

v4

v2

v3

v7 A15

A14

A11

A10

v6

Figure 1. (a) The directed graph G = (V, E) (b) the cost of each edge (c) the DMST rooted at v1.

4. Existing Solution

In this section, we take a review of Chu-Liu and Edmonds’ algorithm (CLE) that runs
in O(mn) time, and our indexed approach is based on the observations. Given a directed
graph G = (V, E) and a root vertex r ∈ V, CLE returns the Directed Minimum Spanning
Tree T of r in a two-phase recursive manner. For each round of recursion, CLE chooses
the minimum in-edges of each vertex except r, and checks if these in-edges are a cycle.
If no cycle is found, then the edges chosen this round including the root vertex r are a
DMST. Otherwise, the cycles are contracted to a new vertex and the algorithm goes to the
next round.

Contraction Phase. For each round, the algorithm first selects minimum in-edges of
each vertex v ∈ V \ r, then finds cycles C of the selected edges. Each such cycle ci ∈ C
found this round is contracted to a new vertex v′. All vertices v′ and v ∈ V and v /∈ C
will be added to the new vertex set V′. The cost of edges 〈u, v〉, v /∈ C remains the same.
The cost of edges 〈u, v〉, u /∈ C, v ∈ C will be updated as φ〈u, v〉 − min{φ(in(v))}. All
edges will be added to a new edge set E′, and now we have G′ = (V′, E′). The algorithm
finds and contracts cycles in a recursive manner until there are no cycles found, as the
in-edge of root r is not considered. Then the algorithm starts to expand T of this round.

Expansion Phase. For the current round, the algorithm starts from root r and breaks
cycles. For each 〈u, v〉 ∈ T, u /∈ ci, v ∈ ci, ci ⊂ C, the algorithm recovers its original cost,
deletes the in-edge {〈w, v〉|w ∈ ci} incident on v in cycle ci and adds it to T. Furthermore,
the algorithm adds the edges in ci except {〈w, v〉|w ∈ ci} to T. The algorithm returns T to
the previous round until the final T is found. Here is the framework of the Algorithm 1:

Algorithm 1: CLE(G, T, C, r)
Input: Directed graph G = (V, E), T ← ∅, C ← ∅, root r ∈ V
Output: Directed Minimum Spanning Tree T

1 {G′, T, C} ← Contraction(G, T, C, r);
2 if C 6= ∅ then
3 return CLE(G′, T, C, r);

4 T ← Expansion(G′, T, C, r);
5 return T;

Example 2. We show the contraction and expansion procedure of CLE algorithm at root v1 in
Figure 2. We denote the edge j that is updated in the ith round as Ai

j. In (a), for the first round,
bold lines are the minimum in-edges of each vertex except the root v1. In (b) and (c), {v2, v3} and
{v4, v5, v6} are the cycles detected in the first round and contracted to a vertex. Then, the in-edge of
each cycle is updated, shown by the dashed line. By now, G is contracted to G′. In (d), for the second
round, in-edges of G′ have no cycle. Furthermore, the contraction phase ends. The expansion phase
starts from (e). In (e), for graph G′, starting from out-edges of root v1, A1

3 is the only out-edge that
starts from the root. A1

3 recovers its original cost by adding back cost of A8 and breaks the cycle by
deleting A8. In (f), A1

13 recovers its cost by adding back cost of A4 and breaks the cycle by deleting
A4. Furthermore, the DMST rooted at v1 is found.

Mathematics 2023, 11, 2200 5 of 17

By reviewing Chu-Liu and Edmonds’ algorithm, we have the following observations:

Observation 1. The cycles detected in each round have a hierarchical structure. CLE contracts
and expands the cycles of the graph in a recursive manner, and generates a hierarchical structure
naturally. The cycles contracted in the previous round may be a vertex of the cycles contracted in
this round. Therefore, cycles of G and G′ in each round can form a hierarchical structure. We can
build a hierarchical tree by trivially adapting the contraction phase, detailed in Section 5.

Observation 2. In the expansion phase, for each cycle to break, we only need to delete one edge with
both ends in the cycle. Every vertex in T has only one in-edge. The cycle ci ⊂ C will be contracted
to a vertex v′ and there will be only one minimum in-edge of v′ incident on vk ∈ ci. Furthermore,
vk has an in-edge 〈vk−1, vk〉 of ci. We delete 〈vk−1, vk〉 so that vk has only one in-edge.

(a) (b) (c)

v1

v5v2

v3

v1

v5

v4

v2

v3

v6

v1

v5v2

v3

v4

v6

v7

A11-A10

v7

v6

v4

v7

1A 3A

6A 2A
7A

10A5A4A
8A

9A 11A

12A
15A

14A13A

6A 2A
7A

8A10A

11A

- 5A1A - 5A1A

9A -
4A

9A -
4A

13A 4A-13A 4A-

12A
15A

14A

3A
1

1A 3A -
8A3A -
8A

-
6A

7A-6A
7A

1

9A

12A 15A - 10A15A - 10A

2A

1

13A 14A

A8

(d) (e) (f)

v1

v5v2

A14

v1

v5

v4

v2

v3

v6

v1

v5

v4

v3

v4

v6

v7v7

v6

v7

v2

1

1A 1

3A

2A1

6A

1

9A
1

11A
1

13A 14A

1

15A
12A

1

1A

2A
6A

1

9A

12A 15A

8A

1

13A 14A

3A

7A

10A

2A
7A

12A 15A

11A

3A
1A

6A

10A
11A

9A5A4A

v3 13A

Figure 2. Contraction and expansion for CLE rooted at v1. (a) minimum in-edges chosen in the
1st round contraction phase (b,c) detected cycles and updated edges in the 1st round (d) no cycle
detected in the 2nd round, and contraction phase ends (e,f) edges chosen and cycles broken in the
expansion phase.

5. Our Approach

In this section, we will first analyze the drawbacks of the CLE algorithm and show
the hierarchical tree of the indexed edges. Then, we expand the DMST with reference to
the index. Finally, we elaborate on our approach to constructing the index and prove the
correctness of our indexed algorithm.

5.1. Hierarchical Tree

Drawbacks of the CLE algorithm. We discuss the drawbacks of the CLE algorithm
in terms of search space and result reuse.

Search space. For each query, CLE has to find the minimum in-edge of each vertex and
retrieve cycles from the original graph. Therefore, CLE suffers from a large search space
and spends O(mn) time for the edges and cycles.

Result reuse. For a new query, CLE has to restart and recompute the minimum in-edges
and detect cycles. The minimum in-edges computed last time are wasted.

Mathematics 2023, 11, 2200 6 of 17

Example 3. For example, in Figure 3, we show the first round contraction of CLE algorithm rooted
at v7. In (a), for the first round, we show the minimum in-edges of each vertex in bold lines except
root v7. In (b) and (c), {v2, v3} and {v4, v5, v6} are the cycles detected in the first round and
contracted to a vertex. Then the in-edge of each cycle is updated, shown by the dashed line. Now
we compare with the contraction phase in Figure 2 of root v1. It is obvious that edges that form
the cycles {v2, v3} and {v4, v5, v6} can be reused, though the DMST for root v1 and v7 choose to
delete different edges.

(a) (b) (c)

v1

v5v2

v3

v1

v5

v4

v2

v3

v6

v1

v5v2

v3

v4

v6

v7

A11-A10

v7

v6

v4

v7

1A 3A

6A 2A
7A

10A5A4A
8A

9A 11A

12A
15A

14A13A

6A 2A
7A

8A10A

11A

- 5A1A - 5A1A

9A -
4A

9A -
4A

13A 4A-13A 4A-

12A
15A

14A

3A
1

1A 3A -
8A3A -
8A

-
6A

7A-6A
7A

1

9A

12A 15A - 10A15A - 10A

2A

1

13A 14A

Figure 3. First round contraction for CLE rooted at v7. (a) minimum in-edges chosen in the 1st round
contraction phase (b,c) detected cycles and updated edges in the 1st round.

To solve these drawbacks, if we are able to identify the reusable edges and cycles and
store them before expansion, we can choose to delete the useless edges for any given root
and reduce the search space. Therefore, we propose an index that reuses the edges and
cycles in the contraction phase with a trivial adaption and stores the potential edges on
the hierarchical tree. By referring to the hierarchical tree, we can retrieve the DMST for
any given root instead of searching the entire graph. Therefore, we dramatically reduce
the search space for finding the DMST. We make a trivial adaption by the contracting root
to a vertex, and index the reusable edges and cycles on a hierarchical tree based on the
following lemmas:

Lemma 1. For a given root r, contracting r to a vertex at any round still generates correct results.

Proof. For the final round h of CLE, as we suppose the graph is strongly connected, we
add back the in-edge of the root, and the graph will be contracted to a single vertex. When
the expansion starts, the in-edge of the root is removed and the lemma is true. Suppose
the lemma is true for round 2 = h − (h − 2). For round 1, the root r is contracted to a
new vertex r′, since it is true for round 2; therefore, for root r′ the expansion generates the
correct result. Now by deleting the in-edge of r, we still obtain the correct result. Therefore,
the lemma still holds for any round in which the root is contracted.

Example 4. We show contraction with root in Figure 4. In (a), for the first round, we find cycle
c1 = {v4, v5, v6}, c2 = {v2, v3}, and adapt in-edges of c1, c2, A3 → A1

3, A6 → A1
6, A11 → A1

11,
A15 → A1

15, A1 → A1
1, A9 → A1

9, A13 → A1
13. In (b), for the second round, we find cycle

c3 = {c1, v1}, and adapt in-edges of c3, A1
6 → A2

6, A1
11 → A2

11, A1
15 → A2

15. In (c), for the third
round, we find cycle c4 = {c3, v7}, and adapt in-edges of c4, A2

6 → A3
6, A2

11 → A3
11, A12 → A3

12.
Furthermore, next round we will find c5 = {c4, c1}. c5 is not shown since it is only a single vertex.

Mathematics 2023, 11, 2200 7 of 17

(a) (b) (c)

v1

v5

v4

v3

v7

v1

v5

v4

v3

v7

A14

v6

v1

v5

v4

v3

v7

v6

v2

v6

v2 v2

1

1A
1

3A

1

6A

1

9A
1

11A
1

13A

12A 1

15A

14A

2A

1

1A

1

6A

1

9A

12A

1

13A

1

1A

1

9A

1

13A

2

11A

2

15A

3

6A

3

11A

3

12A

Figure 4. Contract root. (a) cycles detected and contracted in the 1st round contraction phase
(b) cycles detected and contracted in the 2nd round (c) cycles detected and contracted in the 3rd round.

Lemma 2. For any two queries with r1 and r2, r1 6= r2, the cycles detected in their contraction
phase can be reused.

Proof. Since we proved in the previous lemma that contracting root at any round still
generates the correct result, we follow the contraction of r1 and reuse the cycles detected in
its contraction phase. We prove this lemma by contradiction. Suppose that the detected
cycles of r1 can not be reused. Then for r2, there should be a set of new edges that contracts
r2 with less cost. However, this contradicts that for each round we find the minimum
in-edges of each vertex. Therefore, the lemma holds.

For each cycle, it is related to a tree node in the hierarchical tree index H. We denote
the correspondent tree node of ci as TNi. Furthermore, we denote the tree node of the first
cycle that contracts vertex v as TN(v); see also Table 1. Suppose cycle ci, cj corresponds
to TNi, TNj. Furthermore, TNj is the parent tree node of TNi. Furthermore, suppose
ci is contracted to a vertex v′ and v′ is a member of TNj. In the tree node TNj, v′ has
an minimum in-edge 〈u′, v′〉 and an out-edge 〈v′, w′〉. Then, edge 〈u′, v′〉 incidents on a
member vertex of TNi, and 〈v′, w′〉 incidents on a member vertex of TNj. Therefore, we
link the child tree node and its parent tree node. Furthermore, we denote the vertices and
edges that link child tree nodes and their parents as linking vertices and linking edges.

Example 5. In Figure 5, we show the hierarchical tree of Example 4. Furthermore, we mark the
linking edge and linking vertex between the child tree node and its parent. In the first round, we
detect cycles c1 = {v4, v5, v6} and c2 = {v2, v3}. Then, we build tree node TN1 and TN2. In the
second round, we detect cycle c3 = {v1, c1}. Furthermore, we build tree node TN3. c1 is a member
of TN3, the in-edge of c1 incident c1 on v5 and the out-edge of c1 is A2. Therefore, we link TN1
with TN3 by linking edges A1

3 and A2 and linking vertices v5 and v1. Repeat this procedure on each
tree node and we have H in Figure 5.

Mathematics 2023, 11, 2200 8 of 17

v4

v5

v6

TN1

v4

v5

v6

TN1

v2 v3

TN2

v2 v3

TN2

v1

TN3

C1
v1

TN3

C1

v7

TN4

C3
v7

TN4

C3

TN5

C2C4

TN5

C2C4

Round 1

Round 2

Round 3

Round 4

,1

3 5A v ,2 1A v

,2

15 6A v ,14 7A v

,3

11 6A v ,3

11 6A v,1

13 3A v

Figure 5. Hierarchical tree.

5.2. Expansion

Now that we have all the potential edges of DMST at an arbitrary root in graph G in
H, we need to find all the edges of T for any given root. However, the vertices and cycles
are in a hierarchical index structure. We have to design an order of expansion so that we
can recover the DMST of any given root and ensure correctness.

Suppose there is only one tree node in the hierarchical tree. For any given root r,
we just need to delete the in-edge of r, break the cycle, and find the DMST rooted at r.
For more tree nodes in H, the cycles are organized hierarchically. We can expand r following
Lemma 1. We first locate the tree node of r, TN(r), then break TN(r) as we do with only
one tree node. If TN(r) is not the root node of the hierarchical tree, we find the parent tree
nodes of TN(r) along the linking edges and expand each parent tree node by regarding the
linking vertex as the new root. If TN(r) has child tree nodes, we find its child tree nodes
along the linking edges and expand each child tree node by regarding the linking vertices
as the new root.

Example 6. Given root v1, we first locate its tree node TN(v1), delete A2 and break c1 and delete
A8. Then c3 in TN4 is the root in round 3, and we delete A2

15. Then c4 in TN5 is the root in round
4, we delete A3

11, break c2 and delete A4. Now we have Tv1 of total weight 29.

Here is how we expand with reference to the index in detail:
Delete the in-edge of the root. For any given root vertex r in H, we first locate the

tree node TN(r) it is in. TN(r) is a cycle. Starting from r, we traverse along the out-edges
of each vertex in the cycle and delete the in-edge of the root r in the cycle to break the cycle.

Locate new roots. In the traversing procedure in TN(r), when meeting a linking edge
el and linking vertex vl , we treat vl as the new root in the child tree node TN(vl) and repeat
the procedure in TN(vl). Then we go up to the parent of TN(r) along the linking edge,
treat the linking vertex as the new root, and repeat the procedure.

In Algorithm 2, starting from root v and tree node tnv (line 3), we first break the cycle
by removing the in-edge of root vertex v (line 5). We put all the linking edges in TN(v) in
queue Q (line 8) and add them to T (line 9). If TN(v) is not the root node (line 10), we put
its parent tree node TN(pv) and its linking vertex v′ to queue Q (line 12). From the view

Mathematics 2023, 11, 2200 9 of 17

of tree H, in each round we put all its neighbors, its child nodes, and parent node in the
queue. It traverses the tree in a BFS manner.

Algorithm 2: Expansion(H, r)
Input: H is the hierarchical tree
Output: T is Directed Minimum Spanning Tree

1 Q← ∅; D ← ∅; T ← ∅; Q← Q ∪ {TN(r), r}
2 while Q 6= ∅ do
3 {TN(v), v} ← Q. f ront
4 foreach 〈u, w〉 ∈ TN(v) do
5 if w 6= v then
6 if TN(w) ∈ D then
7 continue

8 Q← Q ∪ {TN(w), w′}/ / w′ is the linking vertex in TN(w)
9 T ← T ∪ 〈u, w〉

10 if TN(v) 6= root o f H then
11 {TN(pv), v′} ← parent o f TN(v) and its linking vertex in TN(pv)
12 Q← Q ∪ {TN(pv), v′}
13 D ← D ∪ TN(v)

14 return T

For the FindCycle procedure, shown in Algorithm 3, we use all the minimum in-edges
MI found this round and return the set of cycles. For each v ∈ MI (line 2), we start
traversing backward along the minimum in-edge of v, and dye the vertices met with color
i (lines 13–14). If we encounter any vertex with the same color of i, then a cycle is found
(lines 4–5). We put all the vertices of color i in the cycle ci (lines 7–10). Then we start from
the next vertex in MI until all the vertices in MI are visited.

Algorithm 3: FindCycles(MI)
Input: MI minimum in edges of each vertex
Output: C the set of cycles of MI

1 mark← 0; i← 0
2 foreach v ∈ MI do
3 while 〈u, v〉 ∈ MI do
4 if mark[v] > 0 then
5 if mark[v] == i then
6 v0 ← v
7 while u 6= v0 do
8 ci ← 〈u, v〉
9 v← u

10 〈u, v〉 ← min{e|e ∈ in(v)}
11 C ← ci

12 break

13 mark[v]← i
14 v← u

15 i++

16 return C

Example 7. For the original graph in Figure 1, we have the hierarchical tree H in Figure 5. We
show how we search for Tv1 in the expansion phase. For root v1, we add A3 to T then we enqueue

Mathematics 2023, 11, 2200 10 of 17

{TN1, v5} and {TN4, C3}. Next round, for {TN1, v5} we add A7 and A10 to T. Next round,
for {TN4, C3} we add A14 to T then enqueue {TN5, C4}. Next round, for {TN5, C4} we add
A13 to T and enqueue {TN2, v3}. Next round, for {TN2, v3} we add A5 to T. By now, we have
obtained the DMST Tv1 at root v1.

Theorem 1. Algorithm 2 correctly computes the DMST at given root r.

Proof. Firstly, our algorithm traverses the hierarchical tree in a BFS manner. If BFS can
traverse the entire tree, so can our algorithm. Therefore, our algorithm breaks all the cycles
and returns a tree. Secondly, we prove this by contradiction. Suppose our algorithm returns
T′ larger than T. This indicates that some edges of T′ are not the minimum in-edges of
vertices in T′. It contradicts the fact that edges in H are the minimum in-edge related to
each vertex found in each round in H. Therefore, our algorithm correctly computes the
DMST at root r.

Theorem 2. The query time of the expansion phase is O(n).

Proof. There are at most n− 1 cycles and at most 2(n− 1) edges in H. We have to delete
at most n− 1 edges and add at most n− 1 edges to obtain DMST. We traverse H in O(n)
time and add edges to T in O(n− 1) time. Therefore, the query time of the expansion phase
is O(n).

5.3. Hierarchical Tree Construction

The construction of the hierarchical tree is detailed as follows:
Contract the root. We do not specifically exclude the root vertex from the contraction

phase. As we assume the graph is strongly connected, the graph will finally contract to a
single vertex. The algorithm still generates the correct result as proved in Lemma 1.

Store potential tree edges. To reuse the edges and cycles in the contraction phase, we
store all the edges that will be tree edges of any root. We store every edge of each cycle
when we contract, and delete the edges that will not be in the tree when we query.

For each round of contraction, we select minimum in-edges of each vertex, find cycles,
contract cycles into vertices and update corresponding in-edges in a recursive manner.
The cycles are naturally hierarchical (Observation 1). We, therefore, build a hierarchical
tree H with each tree node corresponding to a cycle. Then by linking child tree nodes and
their parent tree nodes, we construct a tree H of cycles. Here, we build the hierarchical tree.

Find cycles. For round i, we first choose the minimum in-edge of each vertex, then
we find cycles of this round.

Build the tree node. The cycles found in round 1 will be leaf nodes. For round i, we
store all vertices in cycle ci ⊂ C found this round into tree node TNj. Furthermore, we
contract the cycle to a new vertex.

Build Tree H. For round i, if TNj is not a leaf node, we link it with its child nodes by
linking edges with linking vertices. Finally, we build the hierarchical tree of cycles H.

We introduce our contraction algorithm in Algorithm 4. For each round, we find
minimum in-edges incident on v and find cycles. If no cycle is found this round, we
have contracted the graph into a single vertex (lines 3–8). For every in-edge whose head
is a vertex in cycles and a tail out of cycles found this round, we update their cost and
add them to the new edge set E′ (lines 9–11). After that, we contract cycles into a vertex
and add it to the new vertex set V′ (lines 12–13). We then add the vertices not in cycles
and their minimum in-edge to the new graph G′, update the graph G, and put cycles to
corresponding tree nodes (lines 14–18). Finally, the algorithm returns the hierarchical tree
of the cycles.

Lemma 3. We have to contract at most n− 1 cycles in the directed graph G.

Mathematics 2023, 11, 2200 11 of 17

Proof. Lemma 3 is true for |V| = 1. Suppose it is true for |V| = n− 1, and at most n− 2
cycles are contracted. When |V| = n and V = {v1, ..., vn−1, vn}, we first pick any n− 1
vertices V′ = {v1, ..., vn−1}. V′ can contract to a vertex v′, and at most n− 2 cycles are
contracted. As the graph will finally contract to a single vertex, the contracted vertex v′

and the left vertex vn can contract to a cycle. Therefore, Lemma 3 holds.

Lemma 4. We have to store at most 2(n− 1) potential tree edges in the hierarchical tree H.

Proof. According to Lemma 3, there will be at most n − 1 cycles in the directed graph.
Each cycle has at least two edges. Therefore, we need to store at most 2(n− 1) edges.

Lemma 5. We have to delete at most n− 1 edges from the hierarchical tree H to obtain DMST.

Proof. For the directed graph G with n vertices, the DMST contains n− 1 edges. The DMST
contains n vertices each vertex has an in-edge except the root vertex, and the DMST has
n− 1 edges. According to Lemma 4, we store at most 2(n− 1) edges in the hierarchical
tree H, therefore we have to delete at most n− 1 edges from H.

Algorithm 4: Contraction(G)

Input: Directed graph G = (V, E)
Output: Hierarchical Tree H

1 C ← ∅
2 while true do
3 MI ← ∅
4 foreach v ∈ V do
5 MI ← MI ∪ {min{e ∈ in(v)}}
6 C′ ← FindCycles(MI)
7 if C′ is ∅ then
8 break

9 foreach v ∈ V \ C′ and u ∈ C′ do
10 φ〈v, u〉 ← φ〈v, u〉 − φ(min{e|e ∈ in(u)})
11 E′ ← E′ ∪ 〈v, u〉
12 foreach ci ⊂ C′ do
13 V′ ← V′ ∪ (v′ ← ci)

14 foreach v ∈ V and v /∈ C′ do
15 V′ ← V′ ∪ v
16 E′ ← E′ ∪min{e|e ∈ in(v)}
17 G = (V, E)← G′ = (V′, E′)
18 H ← H ∪ C′

19 return H

6. Batch Query

In this section, we process a sequence of query vertices in a batch by utilizing the
unaffected edges of different query vertices. Furthermore, we discuss the query scheduling
to minimize the total query cost.

6.1. Batch Query Processing

For a sequence of query vertices, the two distinct query vertices may share many
common edges. If we process each vertex independently, we have to break all the cycles
and delete the edges for each query, which is costly.

Mathematics 2023, 11, 2200 12 of 17

Example 8. In Figure 5, for query vertex v4, Tv4 and next query vertex v5, Tv5 . The difference
between Tv4 and Tv5 are only the in-edges of v4 and v5. Actually, to obtain Tv5 , we only need to add
A7 and delete A8 from Tv4 .

Observation 3. We derive this observation from Observation 2 and the expansion phase. For two
distinct query vertices qi and qi+1, given a cycle c they both have to break in their expansion phase,
we identify the new roots vi, vj ∈ c, j 6= i for them. qi breaks the cycle c at vertex vi, the in-edge of
vi will be deleted. qi+1 breaks the cycle at vj and delete its in-edge. The edge difference of qi and
qi+1 breaking cycle c are the in-edges of vi and vj in cycle c.

From the child tree node to the parent tree node, there is a linking vertex, and we treat
it as the new root to break the parent tree node in the expansion phase if there is a query
vertex in the child tree node. Therefore, different vertices in the parent tree node are related
to different child tree nodes. Furthermore, vertices in the ancestor tree node are related to a
subtree of child nodes.

Lemma 6. Given qi, Tqi , qi+1, Tqi+1 , the difference between Tqi and Tqi+1 are in the subtree rooted
at qi and qi+1’s Least Common Ancestors (LCA) in the hierarchical tree H.

Proof. We prove this by contradiction. TN(qi) and TN(qi+1) have linking vertices in their
parent tree nodes. In their LCA tree node TNlca, their parent tree nodes have different
linking vertices vi and vi+1 related to qi and qi+1 as the new roots. Suppose parent of TNlca
is TNp, the linking vertex from TNlca to TNp is vlca ∈ TNp. Suppose an arbitrary edge with
a head vertex va 6= vlca and a tail vertex vb in TNp is affected. Based on Observation 3,
the in-edge of va and in-edge of vlca are affected. It indicates that there is one query vertex
from a subtree of TNp related to va and one query vertex from a subtree of TNp related to
vlca, which contradicts that both qi and qi+1 are in the subtree related to vlca, and no query
vertex is related to va.

From Lemma 6, we reduce the edges to be updated from the entire DMST to the
subtree of the DMSTs of two distinct query vertices. Furthermore, we have to identify the
cycles and edges to be updated. Based on Observation 3, only two edges are affected in
each cycle related to the query vertex. Therefore, we only need to decide on the affected
cycles and find the root vertex related to the query vertices when we break the cycles.

We identify the affected cycles by traversing along the linking edges and decide the
new roots in each cycle by linking vertices. For two query vertices qi, qi+1, we discuss the
update from qi+1 to qi as the operations are symmetric. If qi, qi+1 are in the same tree node,
we just update their in-edges. Otherwise, in their LCA tree node TNlca, we find the in-edge
Alca of the new root related to qi in TNlca, and identify the head(Alca) as the new root in
TN(head(Alca)). Then we repeat the above procedure with qi and head(Alca). Finally, we
will identify all the affected edges and cycles and report the correct result.

We introduce our batch query algorithm in Algorithm 5. We find the LCA of two
query vertices and their corresponding vertices in their LCA (line 3). Then we update the
affected edges in their LCA cycle (lines 4–7). We locate the new roots in the next affected
cycles (lines 8–9). Furthermore, we process the affected edges of cycles in a recursive way
until all affected cycles are traversed (lines 10–13).

Mathematics 2023, 11, 2200 13 of 17

Algorithm 5: BatchExpansion(T, qi, qi+1)

Input: DMST T of previous query vertex qi, and next query vertex qi+1
Output: T of next query vertex qi+1

1 if qi is qi+1 then
2 return T

3 {vqi , vqi+1} ← lca(qi, qi+1)/ / linking vertices related to TN(qi) and TN(qi+1)
4 eqi ← min{e|e ∈ in(vqi)}
5 T ← T ∪ eqi

6 eqi+1 ← min{e|e ∈ in(vqi+1)}
7 T ← T \ eqi+1

8 q′i+1 ← head(eqi)

9 q′i ← head(eqi+1)
10 if q′i+1 and qi is not in same cycle then
11 BatchExpansion(qi, q′i+1)

12 if q′i and qi+1 is not in the same cycle then
13 BatchExpansion(q′i, qi+1)

14 return T

Example 9. In Figure 5, for query vertex v7 and next query vertex v1, the LCA of them is TN4.
We first update the edges from v1 to v7. In TN4, v7 and C3 are affected. A14 is added and A15
is deleted. v7 and head(A14) = v7 are in the same cycle, and the procedure terminates. Then we
update the edges from v7 to v1. The LCA of head(A15) = v6 and v1 is TN3. In TN3, v1 and C1
are affected. A3 is added and A2 is deleted. v1 and head(A2) = v1 are in the same cycle, and the
procedure terminates. The LCA of head(A15) = v6 and head(A3) = v5 is TN1. In TN1, v5 and
v6 are affected. A10 is added and A8 is deleted. By now, we correctly update edges and obtain Tv1

from Tv7 .

Theorem 3. Algorithm 5 correctly update all the changed edges.

Proof. Based on Observation 3 and Lemma 6, we need to process all affected edges of the
cycles contained in the sub-tree of the LCA. Algorithm 5 first finds the LCA of two query
vertices and then traverses all the cycles in a recursive way. Therefore, all the cycles of the
sub-tree and the affected edges are correctly updated.

Theorem 4. Algorithm 5 runs in worst-case O(n) time complexity.

Proof. We locate LCA in O(1) time [21]. Suppose the LCA of qi and qi+1 is the root of H,
and there are only two edges in each child cycle. Therefore, the worst-case time complexity
is the same as re-running a single query by Algorithm 2.

6.2. Query Scheduling

An optimal query scheduling can minimize the total cost of batch queries. However,
obtaining an optimal order of query sequence is costly.

Instead, we adopt a simple heuristic method of query scheduling. We order the query
sequence by its proximity. The closer the two vertices in the tree nodes of H, the lower the
cost of querying the next root vertex. We traverse H post-order and label the tree node
with the traversing order. Then we sort the query sequence by their corresponding traverse
order. The total cost is O(n + k log k) time complexity and O(n) space complexity, where k
is the size of the query sequence and n is the number of cycles. We evaluate the post-order
query scheduling in the experiment.

Theorem 5. Post-order query scheduling is a two-approximation of optimal query scheduling.

Mathematics 2023, 11, 2200 14 of 17

Proof. Suppose the optimal sequence of query scheduling is S = {q1, q2, . . . , qk−1, qk},
and they correspondent to tree nodes TN(q1), TN(q2), . . . , TN(qk−1) and TN(qK). The op-
timal scheduling is a path on H that starts from TN(q1) and ends at TN(qk). We denote the
path as R. For a Steiner Tree that spans all the corresponding tree nodes in S, we denote the
minimum one as MST. Both R and MST are connected graphs while MST is the minimum
one. Therefore, we have R ≥ MST. For the post-order traverse on the MST, denoted as PO,
edges will be visited at most twice. So we have MST ≥ 1

2 PO. Therefore, we have R ≥ 1
2 PO,

and the post-order query scheduling is a two-approximation of optimal scheduling.

7. Experiment

All algorithms were implemented in C++ and compiled with GNU GCC 4.4.7. All
experiments were conducted on a machine with an Intel Xeon 2.8GHz CPU and 256 GB
main memory running Linux (Red Hat Linux 4.4.7, 64bit).

In Table 2, we use the open source direct graph dataset from SNAP (https://snap.
stanford.edu/data/, last time accessed 19 February 2023) and KONECT (http://konect.cc/,
last time accessed 19 February 2023). We extracted the Strongly Connected Component
from these directed datasets and removed all the self-loops. If the dataset was unweighted,
we assigned random weights to the edges. We randomly generated 1000 queries and show
the average cost as query time.

Exp-1. Index size and indexing time. We show the number of edges “EdgeNum” in
the hierarchical tree of each dataset, the number of cycles “CycleNum”, and the preprocess-
ing time “Pre” Figure 6. The number of edges and cycles in the hierarchical tree TH grows
linearly with the size of the graph. For example, for dataset UA, the number of edges is
2492, and the number of cycles is 1091, and for dataset SP, the number of edges in the tree
is 2,210,189, and the number of cycles in the tree is 905,654.

Table 2. Dataset.

Name Abbrv Type #Vertices #Edges

US airports UA Infrastructure Network 1402 28,032

p2p-Gnutella30 PG Computer Network 13,375 37,942

soc-Epinions1 SE Online Social Network 32,223 443,506

wiki-Talk WT Communication Network 111,881 1,477,893

web-BerkStan WB Hyperlink Network 334,856 4,523,219

soc-Pokec SP Online Social Network 1,304,536 29,183,654

10
3

10
4

10
5

10
6

10
7

UA PG SE WT WB SP
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

dataset

index size preprocessing time

EdgeNum
CycleNum

Pre

Figure 6. Indexsize and preprocessing time.

https://snap.stanford.edu/data/
https://snap.stanford.edu/data/
http://konect.cc/

Mathematics 2023, 11, 2200 15 of 17

Exp-2. Compare the single query time. In this experiment, we show the single
query time of Chu-Liu and Edmonds’ as “CLE”. We also show the single query time of
Gabow [20] implemented with a Fibonacci heap as “Gabow”. Furthermore, we show
the average single query time of ours as “single” in Figure 7. The processing time of
CLE increases dramatically as the size of datasets increases, owing to the O(mn) time
complexity. Though Gabow shows good performance in relatively small graphs, it suffers
from an increasing number of edges when the graph size grows. Meanwhile, our single
query time is linear to the growth of graph size because of O(n) time complexity. For dataset
UA, CLE’s single query time is 0.1100 s. Gabow’s single query time is 0.0070 s. Our single
query time is 0.0016 s. For dataset PG, CLE’s single query time is 3.8600 s. Gabow’s single
query time is 0.01100 s. Our single query time is 0.0142. For dataset SE, CLE’s single query
time is 41.0300 s. Gabow’s single query time is 0.0770 s. Our single query time is 0.04060s.
For dataset WT, CLE’s single query time is 706.92. Gabow’s single query time is 0.3640 s.
Our single query time is 0.1607 s. For dataset WB, CLE’s single query time is 3918.85 s.
Gabow’s single query time is 660.6230 s. Our single query time is 0.4851 s. For dataset SP,
CLE’s single query time is 251,089 s. Gabow’s single query time is 1371.1320s. Our single
query time is 2.0151 s. We can see that our single query time shows better performance
than the online ones.

Exp-3. Compare single and batch query time. In this experiment, we compare the
performance of our single query and batch query algorithms. The single query time grows
linearly with the increase in the graph size. In the meantime, the batch query time is
affected by the size and structure of the graph. As the batch query is related to the size of
cycles of each dataset, more cycles in the graph indicate a greater time cost in query time.
Though a larger graph size indicates more cycles, the number of cycles is related to the
structure of the graph. Despite this, the batch query time is at least an order of magnitude
faster than the single query.

CLE Gabow Single

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

UA PG SE WT WB SP
graph size

running time(sec)

Figure 7. Compare single query time.

Exp-4. Query scheduling of batch query. To evaluate the effect of query scheduling
on the batch query. We conduct our experiment on different order schemes. We show the
average number of updated edges of the random order as “Rand”, the average number
of updated edges of scheduling by the node ID as “Node”, and the average number of
updated edges of post-order traverse as “Post”. Furthermore, we construct a relatively
worse case by selecting the next query vertex with less proximity to the previous one. We
denote such a worse case as “Worse”. The results are shown in Figure 8. For all the datasets,
random query scheduling updates a similar number of edges as the constructed relatively
worse case. Furthermore, post-order scheduling performs slightly better than the sequence
ordered by node ID. Both the post-order and node ID order are better than random order

Mathematics 2023, 11, 2200 16 of 17

and the worse case. The good performance of scheduling by the node ID shows the close
relationship between cycles during the construction of hierarchical tree H (Figure 9).

Single Batch

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

UA PG SE WT WB SP
graph size

running time(sec)

Figure 8. Compare single and batch query time.

10
1

10
2

10
3

10
4

10
5

UA PG SE WT WB SP
dataset

updated edges

Rand
Node
Post

Worse

Figure 9. Average updated edges of scheduling.

8. Conclusions

We propose an indexed approach to answer the Directed Minimum Spanning Tree
query of any root. We first pre-process the directed graph in O(mn) time. In the procedure,
we build a hierarchical tree that stores all the edges of potential DMST with a space
complexity of O(n). In the expansion phase, starting from the given root, we traverse
all of its out-edges on H in a BFS manner to obtain the DMST. Then, we propose a
batch expansion algorithm by utilizing the shared edges of two query vertices. The time
complexity of both expansion algorithms is O(n).

Author Contributions: Methodology, D.O.; Writing—original draft, Z.W.; Writing—review & editing,
Y.W., Q.L. and Z.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Guangzhou Research Foundation grant number SL2022A04J01445
and 202201020165.

Data Availability Statement: Not applicable.

Mathematics 2023, 11, 2200 17 of 17

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References
1. Edmonds, J. Optimum branchings. J. Res. Natl. Bur. Stand. B 1967, 71, 233–240. [CrossRef]
2. Li, N.; Hou, J.C. Topology control in heterogeneous wireless networks: Problems and solutions. In Proceedings of the IEEE

INFOCOM 2004, Hong Kong, China, 7–11 March 2004; Volume 1.
3. Gao, L.; Zhao, G.; Li, G.; Liu, Y.; Huang, J.; Deng, L. Containment control of directed networks with time-varying nonlinear

multi-agents using minimum number of leaders. Phys. A Stat. Mech. Its Appl. 2019, 526, 120859. [CrossRef]
4. Jin, R.; Hong, H.; Wang, H.; Ruan, N.; Xiang, Y. Computing label-constraint reachability in graph databases. In Proceedings of

the 2010 ACM SIGMOD International Conference on Management of Data, Indianapolis, IN, USA, 6–10 June 2010; pp. 123–134.
5. Jin, R.; Xiang, Y.; Ruan, N.; Wang, H. Efficiently answering reachability queries on very large directed graphs. In Proceedings of

the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, DC, Canada, 9–12 June 2008; pp. 595–608.
6. Liu, Y.; Titov, I.; Lapata, M. Single Document Summarization as Tree Induction. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT,
Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics: Toronto, ON, Canada, 2019; pp. 1745–1755.

7. McDonald, R.; Pereira, F.; Ribarov, K.; Hajic, J. Non-projective dependency parsing using spanning tree algorithms. In
Proceedings of the Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing, Vancouver, DC, USA, 6–8 October 2005; pp. 523–530.

8. Smith, D.A.; Smith, N.A. Probabilistic models of nonprojective dependency trees. In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), Prague,
Czech Republic, 28–30 June 2007; pp. 132–140.

9. Wan, S.; Dras, M.; Dale, R.; Paris, C. Improving grammaticality in statistical sentence generation: Introducing a dependency
spanning tree algorithm with an argument satisfaction model. In Proceedings of the 12th Conference of the European Chapter of
the ACL (EACL 2009), Athens, Greece, 30 March–3 April 2009; pp. 852–860.

10. Brink, W.; Robinson, A.; Rodrigues, M.A. Indexing Uncoded Stripe Patterns in Structured Light Systems by Maximum Spanning
Trees. In Proceedings of the BMVC, Leeds, UK, 1–4 September 2008; Citeseer: Princeton, NJ, USA, 2008; Volume 2018, pp. 1–10.

11. Mahdavi, M.; Sun, L.; Zanibbi, R. Visual Parsing with Query-Driven Global Graph Attention (QD-GGA): Preliminary Results for
Handwritten Math Formula Recognition. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR Workshops 2020, Seattle, WA, USA, 14–19 June 2020; pp. 2429–2438.

12. Zhou, Z.; Alikhan, N.F.; Sergeant, M.J.; Luhmann, N.; Vaz, C.; Francisco, A.P.; Carriço, J.A.; Achtman, M. GrapeTree: Visualization
of core genomic relationships among 100,000 bacterial pathogens. Genome Res. 2018, 28, 1395–1404. [CrossRef] [PubMed]

13. Horns, F.; Vollmers, C.; Croote, D.; Mackey, S.F.; Swan, G.E.; Dekker, C.L.; Davis, M.M.; Quake, S.R. Lineage tracing of human B
cells reveals the in vivo landscape of human antibody class switching. eLife 2016, 5, e16578. [CrossRef]

14. Beerenwinkel, N.; Schwarz, R.F.; Gerstung, M.; Markowetz, F. Cancer evolution: Mathematical models and computational
inference. Syst. Biol. 2015, 64, e1–e25. [CrossRef] [PubMed]

15. Zehnder, B. Towards Revenue Maximization by VIRAL marketing: A Social Network Host’s Perspective. Master’s Thesis, ETH,
Zürich, Switzerland, 2014.

16. Amoruso, M.; Anello, D.; Auletta, V.; Cerulli, R.; Ferraioli, D.; Raiconi, A. Contrasting the Spread of Misinformation in Online
Social Networks. J. Artif. Intell. Res. 2020, 69, 847–879. [CrossRef]

17. Yue, P.; Cai, Q.; Yan, W.; Zhou, W. Information Flow Networks of Chinese Stock Market Sectors. IEEE Access 2020, 8, 13066–13077.
[CrossRef]

18. Chu, Y.J. On the shortest arborescence of a directed graph. Sci. Sin. 1965, 14, 1396–1400.
19. Tarjan, R.E. Finding optimum branchings. Networks 1977, 7, 25–35. [CrossRef]
20. Gabow, H.N.; Galil, Z.; Spencer, T.H.; Tarjan, R.E. Efficient algorithms for finding minimum spanning trees in undirected and

directed graphs. Comb 1986, 6, 109–122. [CrossRef]
21. Bender, M.A.; Farach-Colton, M. The LCA problem revisited. In Proceedings of the LATIN 2000: Theoretical Informatics: 4th

Latin American Symposium, Punta del Este, Uruguay, 10–14 April 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 88–94.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.6028/jres.071B.032
http://dx.doi.org/10.1016/j.physa.2019.04.095
http://dx.doi.org/10.1101/gr.232397.117
http://www.ncbi.nlm.nih.gov/pubmed/30049790
http://dx.doi.org/10.7554/eLife.16578
http://dx.doi.org/10.1093/sysbio/syu081
http://www.ncbi.nlm.nih.gov/pubmed/25293804
http://dx.doi.org/10.1613/jair.1.11509
http://dx.doi.org/10.1109/ACCESS.2020.2966278
http://dx.doi.org/10.1002/net.3230070103
http://dx.doi.org/10.1007/BF02579168

	Introduction
	Related Work
	Problem Statement
	Existing Solution
	Our Approach
	Hierarchical Tree
	Expansion
	Hierarchical Tree Construction

	Batch Query
	Batch Query Processing
	Query Scheduling

	Experiment
	Conclusions
	References

