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Abstract: The magneto-hydrodynamic dual convection stagnation flow pattern behavior of a Tangent
Hyperbolic (TH) fluid has been reported in this study. The radiation, Joule heating, and heat
generation/absorption impacts have also been analyzed. The flow-narrating differential equations,
which are constrained by a thermal and solutal stratified porous medium, are transmuted into a
system of nonlinear differential equations. To provide a numerical solution to the flow problem, a
computational model is created. Numerical solutions are obtained using the fifth-order exactness
program (Bvp5c), and for validation of the results, a comparison is also made with the methodology of
the Runge–Kutta fourth order. The physical implications are appraised and depicted using diagrams
or tables against flow-controlling parameters, such as Hartmann number, porosity parameter, solutal
stratification, the parameter of curvature, temperature stratification, local Weissenberg number,
Schmidt number, etc. It has been observed that in the appearance of Joule heating phenomena, the
fluid temperature is a lowering function of thermal stratification. The findings are compared to the
existing literature and found to be consistent with earlier research.

Keywords: stagnation point flow; thermal stratification; solutal stratification; MHD tangent
hyperbolic fluid; dual convection; Runge–Kutta fourth-order method; Bvp5c

MSC: 65L06; 76D05; 76D50; 76S05; 76W05; 80A05

1. Introduction

In many engineering and industrial applications, the study of a viscous or non-
Newtonian fluid’s stagnation-point flow is crucial. Transpiration cooling, developing
thrust bearings, recovering thermal oil, reducing drag, and radial diffusers are all made
easier with an understanding of the stagnation flow. Additionally, a stretching and contract-
ing surface is frequently used to study stagnation-point flow. Nadeem et al. [1] described
approaches for boundary layer motion using HAM in the vicinity of the stagnation point
towards a stretching sheet, whereas Bachok et al. [2] examined the two-dimensional steady
nanofluid stagnation-point flow in the existence of a sheet’s expansion or contraction. Pal
and Mandal [3] numerically investigated the flow at the stagnation point across a stretching
or contracting surface with heat emission and dissipation of viscous fluid in a pore media.
In their study, Zaimi and Ishak [4] managed to prove the occurrence of two opposing flow
solutions by examining partial slip and its consequences on the transmission of heat and
stagnation-point flow caused by a sheet that extends vertically. Hayat et al. [5] studied
Soret–Dufour’s implications on the flow over the stagnation point for a hyperbolic tangent
fluid. According to Khan et al. [6], activation energy has an impact on the cross-nanofluid
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flow at nonlinear radiative stagnation points. On the issue of flow at the stagnation point
in magnetohydrodynamics towards a surface that stretches and contracts in a permeable
media, Khashi’ie et al. [7] looked into joint influences of double stratification (a system with
two layers) and convection. Barnoon et al. [8] presented an entropy generation analysis
of different nanofluid flows in the space between two concentric horizontal pipes in the
presence of a magnetic field using single-phase and two-phase approaches simultaneously.
When there are two separate layers in a pore media, Adigun et al. [9] studied the slip-flow
of viscoelastic nanomaterials close to the stagnation point in the appearance of MHD across
an angled stretched cylindrical surface. MHD flow of a fluid (hyperbolic tangent) at its
stagnation point was explained by Arshad and Ashraf [10] using viscous dissipation and
chemical reaction. By combining the consequences of Soret and Dufour, Ali et al. [11]
examined the 3D flow of MHD hyperbolic tangent nano liquid in the form of a convective
stretched sheet. Babu et al. [12] analyzed heat and mass transfer on unsteady magnetohy-
drodynamics (MHD) convective flow of Casson hybrid nanofluid over a permeable media
with ramped wall temperature. Venkateswarlu et al. [13] elaborated MHD flow of MoS2
and MgO water-based nanofluid through a porous medium over a stretching surface with
Cattaneo–Christov heat flux model and convective boundary condition.

When two layers of the same liquid flow independently at low velocities with sig-
nificant temperature differences, a thermally stratified flow develops. The lower location
along the surface is occupied by the colder (heavier) fluid, whereas the top position is
occupied by the hotter (lighter) fluid. Thermal stratification has been observed in pressur-
ized water reactors, nuclear power plants, lines for removing residual heat and cooling the
core in case of emergency, and other applications. In the recent decade, Mukhopadhyay
and Ishak [14] explored the issue of grouped convectional flow, considering a stretching
cylindrical surface placed within a thermally stratified medium. Hayat et al. [15] summa-
rized the effects of temperature and concentration stratifications on Jeffrey fluid motion
caused by a sheet’s elongation under radiative conditions. Using the Keller box method,
Malik et al. [16] performed a mathematical investigation on the MHD flow of TH-fluid
across a cylinder due to its extending nature. By using a stretching cylinder, Rehman [17]
addressed a numerical communication on magnetohydrodynamic, which is the movement
of Casson fluid by dual convection within a system with distinct layers of temperature.
Impacts of thermal and solutal stratification on Jeffrey magneto-nanofluid along an inclined
stretching cylinder with thermal radiation and heat generation/absorption was discussed
by Ramzan et al. [18]. Khan et al. [19] illustrated the flow of chemically reactive hyperbolic
tangent fluid motion embedded in a permeable medium with thermal radiation and two-
layer stratification. Nonlinear radiative nanofluidic hydrothermal unsteady bidirectional
transport with thermal/mass convection characteristics was researched by Faisal et al. [20].
Miansari et al. [21] explained the numerical investigation of the effects of the groove on
the thermal performance of a helically grooved shell and coil tube heat exchanger. Using
stratification and non-Fourier heat flux theory, Kayikci et al. [22] explored the thermal
characterization of radiative water and glycerin-based carbon nanotubes over a Riga plate.

One of the most notable models of non-Newtonian fluids is the tangent hyperbolic
fluid. Such a structure accurately foretells the thinning characteristic resulting from shear
in laboratory trials, according to the findings. To be more explicit, the tangent hyperbolic
fluid model can be used to examine any substance that presents a picture of shear-thinning
features. The four-constant fluid model is another name for this fluid model. Tangent
hyperbolic fluids are typically employed in labs and industry. Whipped cream, ketchup,
polymers, solutions, melts, paint and blood are some of the most common hyperbolic
tangent model applications in the industry and biology. The mathematical modeling
of fluid with the hyperbolic tangent flow within a curving channel was presented by
Nadeem and Maraj [23]. The hyperbolic tangent fluid flow above an upright cylinder was
examined by Naseer et al. [24] and the surface was assumed to be exponentially stretched.
Salahuddin et al. [25] studied the tangent hyperbolic nanofluid stagnating point flow over
a cylinder that stretches. Rehman et al. [26] gave a brief presentation on the thermophysical
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characteristics of fluid flow regimes with hyperbolic tangents. Rao et al. [27] used the
spectrum relaxation approach to compute the boundary layer MHD flow of a TH-fluid
with mass and heat transport across a stretching cylinder with pores on the surface. The
implications of radiation on a tangent hyperbolic MHD nanofluid flow across an angled
sheet were investigated by Saidulu et al. [28] and the sheet contained an exponentially
stretching property. Ali et al. [29] established some graphical results for tangent hyperbolic
fluid over a vertically stretched sheet and the consequence of an angled hydromagnetic
field was also discussed. The mathematical model and technical flow characteristics of
hyperbolic tangent nanofluid across a cone-shaped surface and a plate were investigated
by Bilal et al. [30] under mixed convection and the implications of a chemical reaction. With
the consideration of the TH-fluid over an extended cylinder’s surface, Salahuddin et al. [31]
described homogeneous–heterogeneous reaction phenomena. Jat and Sharma [32] looked
at the heat transfer assessment and tangent hyperbolic nanofluid unsteady MHD flow over
an angled stretched sheet.

Mixed convection flow, also known as mixed free and forced convection flow, can be
used in a variety of technical and industrial applications. Electrical instruments cooled
by fans, wind-swept solar receivers, variations of flows in the ocean and atmosphere, and
different thermal variations in the atmospheric flow are all examples of a mixed convection
flow. In view of this, Patil et al. [33] discussed mixed convection flow over a vertical
power-law stretching sheet. Ali et al. [34] examined mixed convection heat transfer in an
incompressible viscous fluid over a vertical stretching sheet by taking the external magnetic
field into account. Kumar et al. [35] discussed the effect of nonlinear thermal radiation on
the double-diffusive mixed convection boundary layer flow of viscoelastic nanofluid over a
stretching sheet. Abdul et al. [36] studied the mixed convection flow of the Powell–Eyring
nanofluid near a stagnation point along a vertical stretching sheet. Barnoon [37] analyzed
the numerical assessment of heat transfer and mixing quality of a hybrid nanofluid in a
microchannel equipped with a dual mixer. Babu et al. [38] discussed the hall and ion-slip
effects on MHD free convection flow of rotating Jeffrey fluid over an infinite vertical porous
surface. Saeed et al. [39] described the mixed convective flow of a magnetohydrodynamic
Casson fluid through a permeable stretching sheet with a first-order chemical reaction.

To date, the significance of dual convection stagnation-point flow of hyperbolic tangent
fluid towards a smooth cylindrical surface has remained unknown. As a result, the goal of
this analysis is to fill the void. In this analysis, thermally and solutally stratified porous
medium is also taken into account. The novelty of the present study includes the following:

• Stagnation-point flow analysis for hyperbolic tangent fluid;
• Stratification phenomenon impacts on flow field with a stretched cylinder;
• Joule heating, thermal radiation, and heat source effect on the temperature profile;
• Mixed convection effect on velocity and temperature field.

Utilizing the MATLAB Bvp5c code, the numerical results are obtained. Many pa-
rameters and their graphical trends in relation to velocity, temperature, skin friction drag
coefficient, and heat transfer rate are inspected and elaborated appropriately.

2. Mathematical Formulation

An incompressible tangent hyperbolic fluid movement has been considered, which
is steady and two-dimensional, through a porous stratified media across a stretching
cylindrical surface. The boundary layer flow in the neighboring region of the stagnation
point is obtained in the presence of a magnetic field. Radiation and dual convection effects
are also considered. A cylindrical surface with a radius R is taken along the x-axis. Fluid
flow is only in the x-direction, i.e., there is no flow in the r-direction. The stretching of the
surface enables a flow to develop along the x-direction with velocity uw(x) = U0

L x. The
surface temperature of the cylinder’s wall is Tw(x), while the temperature far away from
the surface is T∞(x)(< Tw(x)). The fluid concentration at the cylinder’s wall is Cw(x), while
the concentration far away from the surface is C∞(x)(< Cw(x)). Here, a uniform magnetic
field of B0 strength is assumed normal to the path of the flow. At a great distance from the
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surface, the flow velocity is considered to be ue(x) = U∞
L x. Additionally, the contribution of

dissipation of viscous fluid and induced magnetic field effects are considered insignificant
in the present study. Since the induced magnetic field is negligible, the magnetic Reynolds
number can be considered zero. The geometry of the problem is shown in Figure 1.
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The continuity equation for our mentioned model in cylindrical coordinates is written
as follows:

∂(ru)
∂x

+
∂(rv)

∂r
= 0 (1)

The incompressible tangent hyperbolic fluid flow’s governing momentum equations
are as follows:

ρ
d
→
V

dt
= div

↔
M + ρ

→
B , with M = −p

↔
I +

↔
τ (2)

In the tangent hyperbolic fluid model (Malik et al. [16], Ullah and Zaman [40]), the
extra stress tensor expression is denoted as follows:

↔
τ = [µ∞ + (µ0 + µ∞)tanh(Γ

·
γ)

n
]A1, where A1 = grad

→
V +

(
grad

→
V
)T

and
·
γ is de-

fined as:
·
γ =

√
1
2∑i ∑j

·
γij

·
γji =

√
1
2

trace[A1]
2 (3)

Here, we assume µ∞ = 0 because infinite shear rate viscosity prevents any meaningful
discussion of the issue, and Γ

·
γ < 1 since, in this case, we have taken into account the

tangent hyperbolic fluid, which specifies shear thinning. Thus, the required form of
↔
τ is

expressed as the following:

↔
τ = µ0

(
Γ
·
γ
)n

A1 = µ0

[
1 + Γ

·
γ− 1

]n
A1 ≈ µ0

[
1 + n(Γ

·
γ− 1)

]
A1 (4)

Using this Formula (4) in Equation (2), we achieved the following expression of
momentum equation:

u ∂u
∂x + v ∂u

∂r = υ

(
(1− n) ∂2u

∂r2 + (1− n) 1
r

∂u
∂r + n

√
2Γ ∂u

∂r
∂2u
∂r2 + nΓ√

2r

(
∂u
∂r

)2
)
+ ue

∂ue
∂x

+g[βC(C− C∞) + βT(T − T∞)]−
(

σB0
2

ρ + υ
kp

)
(u− ue),

(5)

Energy equation:

u
∂T
∂x

+ v
∂T
∂r

=
κ

ρCp

(
∂2T
∂r2 +

1
r

∂T
∂r

)
− 1

ρCp

1
r

∂(rqr)

∂r
+

σB2
0

ρ
u2 − Q0

ρCp
(T − T∞) (6)
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Concentration equation:

u
∂C
∂x

+ v
∂C
∂r

= Dm

(
∂2C
∂r2 +

1
r

∂C
∂r

)
(7)

The boundary conditions are as follows:

v(x, R) = 0, u(x, R) = uw(x), T(x, R) = T0 +
bx
L = Tw(x), C(x, R) = C0 +

dx
L = Cw(x);

u(x, ∞)→ ue(x), T(x, ∞)→ T∞(x) = T0 +
cx
L , C(x, ∞)→ C∞(x) = C0 +

ex
L .

(8)

The mode of expression of the velocity distribution of the stream is disclosed
as follows:

u =
1
r

∂ψ

∂r
and v = −1

r
∂ψ

∂x
(9)

Using Equation (9) in Equation (1), we conclude that the continuity equation is sat-
isfied. Here, the following similarity transformations and expressions for qr (Rooseland
approximation) are considered to perceive the velocity, temperature, and concentration
outcome of the current research problem as shown below:

η = r2−R2

2R

√
U0
υL , ψ =

√
U0υx2

L R f (η), θ(η) = T−T0
Tw−T0

, φ(η) = C−C0
Cw−C0

and
qr = − 16σ∗

3k∗ T3
∞

∂T
∂r

(10)

By applying these transformations to Equations (5)–(8), the reduced dimensionless
model with boundary conditions is disclosed as follows:

2(1 + 2Kη)(1− n) f
′′′ − 2( f ′)2 + 2 f f ′′ + 4K(1− n) f ′′ + 3nKλx(1 + 2Kη)1/2( f ′′ )2

+2nλx(1 + 2Kη)3/2 f ′′ f
′′′
+ 2A2 + 2ζ(θ + Gr∗φ)− 2

(
Ha2 + δ

)
( f ′ − A) = 0

(11)

(1 + 2Kη)(1 + Nr)θ′′ + 2K(1 + Nr)θ′ + Pr
(

f θ′ − f ′θ − ST f ′ + Ha2Ec f ′2 + Qθ
)
= 0 (12)

(1 + 2Kη)φ′′ + 2Kφ′ + Sc
(

f φ′ − f ′φ− SC f ′
)
= 0 (13)

f (0) = 0, f ′(0) = 1, θ(0) = 1− ST , φ(0) = 1− SC ; f ′(∞)→ A, θ(∞)→ 0, φ(∞)→ 0. (14)

In the above model, all the used non-dimensional parameters are defined as follows:

K = 1
R

√
υL
U0

, λx = Γ

√
2U3

0 x2

υL3 , Ha =
√

σB0
2L

ρU0
, δ = Lυ

U0kp
, Rex = U0x2

υL , Nr = 16σ∗T3
∞

3k∗κ ,

GrTx = gβT(Tw−T0)x3

υ2 , GrCx = gβC(Cw−C0)x3

υ2 , ζ = GrTx
Re2

x
, Gr∗ = GrTx

GrCx
, Ec = Uw

2

Cp(Tw−T0)
,

Pr = µCp
κ , A = U∞

U0
, ST = c

b , SC = e
d and Sc = υ

Dm

(15)

Additionally, the local skin friction coefficient, local Nusselt number, and local Sher-
wood number are expressed as follows:

C fx =
2τw

ρUw2 , Nux =
xqw

κ(Tw − T0)
and Shx =

xjw
Dm(Cw − C0)

(16)

where τw = µ

[
nΓ√

2

(
∂u
∂r

)2
+ (1− n) ∂u

∂r

]
r=R

(rate of shear stress), qw = −κ
(

∂T
∂r

)
r=R

+ (qr)w

(energy flow/heat flux) and jw = −Dm

(
∂C
∂r

)
r=R

(mass flux).
The dimensionless forms of all the physical quantities in Equation (16) are as follows:

C fx

√
Rex = nλx{ f ′′ (0)}2 + (1− n) f ′′ (0),

Nux√
Rex

= −(1 + Nr)θ′(0) and
Shx√
Rex

= −φ′(0) (17)

where Rex = U0x2

υL is the local Reynold number and λx is the local Weissenberg number.
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3. Method of Solution

Equations (11)–(13) that govern the flow are numerically solved with the boundary
conditions (14) on MATLAB using the Bvp5c program. This bvp5c function is designed
using the 4-stage Lobatto IIIa formula under the finite difference scheme with fifth-order
accuracy. The fundamental syntax programmed in this function is sol = bvp5c (@odefun,
@bcfun, solinit, options) and the relative tolerance was set to 10−10. To solve the flow problem
via Bvp5c, Equations (11)–(13) are reduced to a set of simultaneous equations of the first
order as described below:

Let f = f1, θ = f4 and φ = f6, then

f ′1 = f2, f ′2 = f3,

f ′3 =

 f 2
2 − f1 f3 − 2(1− n)K f3 − (3/2) n λxK(1 + 2K η)1/2 f 2

3 +
(

Ha2 + δ
)
( f2 − A)

−ζ( f4 + Gr∗ f6)− A2


(1+2K η)(1−n)+n λx(1+2K η)3/2 f2

;

f ′4 = f5, f ′5 =
Pr( f2 f4+ST f2− f1 f5−Ha2Ec f 2

2−Q f4)−2K(1+Nr) f5
(1+2K η)(1+Nr) ;

f ′6 = f7, f ′7 = Sc( f2 f6+SC f2− f1 f7)−2K f7
(1+2Kη)

.


(18)

subjected to boundary conditions

f1(0) = 0, f2(0) = 1, f3(0) = ε1, f4(0) = 1− ST , f5(0) = ε2, f6(0) = 1− SC, f7(0) = ε3. (19)

Here, the additional boundary conditions are as follows:

f2(η∞) = A, f4(η∞) = 0, f6(η∞) = 0 (20)

We selected suitable guess values of f3(0), f5(0) and f7(0), i.e., ε1, ε2 and ε3, so that the
boundary conditions stated in Equation (20) are held absolutely when the integration of
the above system of the first-order differential equations is performed. From a calculation
point of view, we considered η∞ = 5, where η∞ denotes η → ∞ . First, the interval
[0,5] is subdivided using step size 0.0025. We created the initial boundary condition’s
guesses using bvpinit command. First-order differential Equations (18) are encoded to
differential functions using bvpfcn(x,y) command, and boundary conditions are encoded
using bcfcn(ya,yb). Then, we solved the problem using sol=bvp5c(@bvpfcn, @bcfcn, solinit)
and plotted the solution using plot(sol.x, sol.y). Computational procedure for finding the
solution of our problem is as shown in Figure 2.
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4. Results and Discussion

The physical features of magneto-hydrodynamic (MHD) flow with dual convection
and stagnation pattern behavior of Tangent Hyperbolic (TH) fluid are discussed in this
article. The subsequent control parameters are considered to obtain the numerical solutions
as follows: Weissenberg number 0 ≤ λx ≤ 0.9, power law index 0 ≤ n ≤ 0.5, curvature
parameter 0 ≤ K ≤ 0.8, Prandtl number 0.7 ≤ Pr ≤ 3, Eckert number 0 ≤ Ec ≤ 0.9,
Hartmann number 1 ≤ Ha ≤ 3, porosity parameter 0 ≤ δ ≤ 3, heat source parameter
−0.5 ≤ Q ≤ 0.5, mixed convection parameter 0 ≤ ζ ≤ 1.8, buoyancy force parameter
0.1 ≤ Gr∗ ≤ 2, velocity ratio parameter 0 ≤ A ≤ 1.6, Schmidt number 0 ≤ Sc ≤ 1, thermal
stratification parameter 0.1 ≤ ST ≤ 0.5, solute stratification parameter 0.1 ≤ SC ≤ 0.5,
and radiation parameter 0 ≤ Nr ≤ 2. For the computational purpose, n = 0.2, K = 0.2,
δ = 0.001, λx = 0.2, Pr = 2 or 3, Ec = 0.01, Ha = 1, Nr = 0.1, Gr∗ = 0.1, ζ = 0.2,
A = 0.2, ST = 0.1, Sc = 0.3, SC = 0.1, and Q = 0.5 are fixed unless stated separately. The
impact of various physical parameters on the flow characteristics (velocity, temperature,
and concentration) is graphically investigated.

Utilizing the MATLAB Bvp5c code and RK-4 approach, the local skin friction coefficient
is obtained and shown in Table 1 for pertinent parameters, namely the power law index and
the local Weissenberg number. Additionally, the computed findings for the coefficient of
skin friction are compared to accessible literature (Rehman et al. [26]) and (Akbar et al. [41]),
and a high similarity is seen in all datasets as indicated in Table 1.

Table 1. Comparison for local skin friction coefficient.

n λx
Present Outcomes

Rehman et al. [26] Akbar et al. [41]RK 4 Bvp5c

0 0 −1.000000 −1.0000 −1.0000 −1.00000
0 0.3 −1.000000 −1.0000 −1.0000 −1.00000
0 0.5 −1.000000 −1.0000 −1.0000 −1.00000

0.1 0 −0.948942 −0.9482 −0.9491 −0.94868
0.1 0.3 −0.925459 −0.9244 −0.9432 −0.94248
0.1 0.5 −0.909298 −0.9087 −0.9380 −0.93826
0.2 0 −0.894632 −0.8937 −0.8944 −0.89442
0.2 0.3 −0.840709 −0.8398 −0.8805 −0.88023

4.1. Discussion of Momentum Profiles

Figure 3a–j depict the changes in flow control parameters, such as porosity parameter,
curvature parameter, magnetic parameter, power law index, Weissenberg number, ratio of
buoyancy, velocity ratio parameter, mixed convection parameter, and thermal parameter
of solutal stratification. With rising porosity δ inputs, the flow speed profile decreases, as
shown in Figure 3a. As the parameter K, related to the curvature, is increased, the velocity
profile increases near the surface of the cylinder (as seen Figure 3b). This behavior of
velocity profiles changes as we move towards the free stream region. When the curvature
parameter K is enhanced, the cylinder’s radius tends to lessen, and therefore the surface
contact area decreases, resulting in reduced resistance for the fluid particles near the surface,
thereby speeding up the fluid flow rate. Figure 3c,d show an inverse relationship between
the magnetic parameter Ha or power law index n and the velocity pattern, i.e., the velocity
profile decreases as the magnetic parameter Ha or power law index n increases. Figure 3e
shows the fluid flow pattern as a subject of the local Weissenberg number λx. The velocity
profile reduces for the local Weissenberg number. The reason for this is that when the
Weissenberg number λx rises, the fluid’s relaxation time rises, creating the fluid’s resistance
to flow and thus lowering the relative movement of particles in the fluid. The significance
of the proportion of buoyancy forces Gr∗ on the velocity pattern is seen in Figure 3f. It is
found that the fluid rate grows as Gr∗ increases. It is well-established that a rise in fluid
motion is the result of a rise in buoyancy forces, with a concentration on buoyancy forces
predominating. The consequence of the changing velocity ratio parameter A is displayed
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in Figure 3g as a change in the flow field. The velocity field is shown to expand with
bigger values of the velocity ratio parameter A. Figure 3h is illustrating the influence of the
mixed convection parameter ζ on the velocity flow field. As the parametric value for mixed
convection ζ is increased, it is found that the resulting velocity field is more intense. It is the
increased thermal buoyancy force that contributes to a greater velocity distribution as the
parameter ζ for mixed convection rises. Figure 3i displays the impacts of ST ; as the thermal
stratification parameter ST is enhanced, the fluid velocity decreases. This is caused by the
decrease in the convective potential between the cylinder’s surface and the adjacent heat.
Figure 3j shows the distribution of the velocity profiles for solutal stratification parameter
SC. It is clearly noticed from this figure that the profiles related to velocity decrease due to
enhanced inputs of the solutal stratification parameter SC.
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4.2. Discussion of Temperature Profiles

Figure 4a–l demonstrate the effects of the curvature parameter, Hartmann number,
power law index, Eckert and Prandtl number, thermal stratification parameter, velocity ratio
parameter, radiation parameter, heat source/sink parameter, local Weissenberg number,
ratio of buoyancy forces, and mixed convection parameter. It is shown in Figure 4a that as
the curvature parameter K grows, the temperature distribution profiles are elevated. Since
the Kelvin scale measures the average kinetic energy of a fluid, increasing the curvature K
of a cylinder causes the fluid’s velocity to increase, which in turn raises the fluid’s kinetic
energy and hence its temperature. Figure 4b also suggests that the Hartmann number Ha
and the fluid temperature have a proportional relationship. Figure 4c shows that as the
inputs of the power law index n increase, the profiles related to temperature rise as well.
For small readings of the Eckert number Ec, temperature distribution has a proportional
relationship, as shown in Figure 4d. Figure 4e represents the results of the Prandtl number
Pr investigation. The fluid’s heat conductivity has an opposite relationship with the Prandtl
number Pr; increasing Prandtl numbers indicate weak energy diffusion. As a result, the
Prandtl number Pr going up indicates a significant decrease in the fluid’s temperature
profiles. Figure 4f shows that the temperature distribution decreases as the inputs of the
stratification parameter ST increase. The repercussion of changing the ratio parameter
A on the temperature distribution is displayed in Figure 4g. The width of the thermal
and temperature boundary layer lessens as A increases. The radiation parameter Nr’s
effects on temperature distribution are indicated in Figure 4h. For a bigger value of the
radiation parameter Nr, the temperature increases. This is because the working fluid’s
temperature field is enhanced as a result of higher heat production during the radiation
phase. Figure 4i identifies the change of the heat generation/absorption parameter on the
overall temperature pattern. It is noticeable that in the case of heat generation (Q > 0),
there is a rise in the temperature distribution and thermal boundary layer width, whereas
in the context of heat absorption (Q < 0), the opposite is visible. Naturally, more heat is
generated during the heat-generating process when the parameter Q > 0. This increases
the temperature profile. It is true that the thermal width of the boundary layer grows
very slightly with the increasing local Weissenberg number λx, as seen by the increased
distribution of the temperatures in Figure 4j. Figure 4k depicts the influence of the ratio
of buoyancy forces Gr∗ on temperature (θ). A higher Gr∗ value accelerates the convective
cooling phenomenon of the system, resulting in a small decrease in the fluid temperature.
From Figure 4l, a declining pattern for temperature distribution is observed when the
values of mixed convection parameters ζ are increased.
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4.3. Discussion of Concentration Profiles

Figure 5a–h demonstrate the effects of the Schmidt number, solutal stratification
parameter, curvature parameter, Hartmann number, local Weissenberg number, velocity
ratio parameter, mixed convection parameter, and the ratio of buoyancy forces. The effect
that the Schmidt number Sc has on the concentration profile is displayed in Figure 5a. As
Sc develops, the concentration profile flattens out. It is known that the Schmidt number Sc
is defined as the ratio of momentum diffusivity to mass diffusivity. In this case, a lower
mass diffusivity, as indicated by a larger Schmidt number Sc, reduces the concentration
profile. Concentration changes based on the altering inputs of the solutal stratification
parameter SC are shown in Figure 5b. It is also obvious that when SC increases, the fluid
concentration decreases. Figure 5c indicates how the curvature parameter K affects the
concentration pattern. It can be seen that the concentration declines when the curvature
parameter increases. For upsurging values of Hartmann Ha and local Weissenberg number
λx, the profiles for concentration is showing an increasing nature as shown in Figure 5d,e.
A decreasing behavior is noticed in the concentration pattern for rising readings of the
velocity ratio parameter A, mixed convection parameter ζ, and the ratio of buoyancy forces
Gr∗ as depicted in Figure 5f–h).
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4.4. The Behavior of Surface Drag Coefficient, Nusselt Number, Sherwood Number, and
Related Parameters

The outcomes of the local skin friction coefficient, Nusselt number and Sherwood
number versus Hartmann number, porosity, mixed convection parameter, velocity ratio
parameter, Eckert number, radiation parameter, heat generating/absorption parameter,
and thermal stratification and Schmidt number have been shown in Figures 6–8.
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The behavior of the local skin friction coefficient is displayed in Figure 6a–d. Changing
inputs of Hartmann number Ha, porosity parameter δ, and thermal stratification parameter
ST reduce the friction coefficient while there is a rise in mixed convection parameter ζ,
velocity ratio parameter A, heat generation/absorption parameter Q, Eckert number Ec,
and the radiation parameter Nr enhances the skin friction coefficient. In all cases shown in
Figure 6a–d, it is clear that the coefficient for skin friction is high for the plate and low for
the cylinder.

Outcomes for the local Nusselt number against distinct parameters are portrayed in
Figure 7a–c. These figures show the rising pattern of the local Nusselt number against the
enhanced inputs of the radiation parameter Nr and the thermal stratification parameter
ST , whereas opposite nature is also observed from these figures for growing inputs of the
Hartmann number Ha, porosity parameter δ, heat generation/absorption parameter Q,
and Eckert number Ec. Additionally, the local Nusselt number is found to be significantly
higher for a cylinder than a flat plate.

Figure 8a–c depict that the local Sherwood number dominates the cylindrical surface
when it is compared to the plate. It can be clearly observed that Sherwood number profiles
are declining with increasing inputs of the Hartmann number Ha, porosity parameter δ, and
solutal stratification parameter SC; meanwhile, there is an enhancement with increasing
values of the velocity ratio parameter A, mixed convection parameter ζ, and Schmidt
number Sc.
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5. Conclusions

This paper deals with the magneto-hydrodynamic (MHD) flow with dual convection
and stagnation pattern behavior of the Tangent Hyperbolic (TH) fluid. In this flow problem
modeling radiation, Joule heating, and heat generation/absorption, their impacts have
also been analyzed. Numerical solutions are obtained by using the fifth-order exactness
program (Bvp5c) and for validation of the results, a comparison is also made with the
fourth-order Runge–Kutta method from previously published data. The following major
observations may be drawn from this analysis:

1. For small values of the porosity parameter δ, the velocity pattern of the fluid decreases.
It is found that the velocity reduces with δ, and thus the thickness of the momentum’s
boundary layer is reduced. The cause behind this physical phenomenon is the pores
of the porous material that reduces the velocity.

2. For increases in the curvature parameter K, the fluid temperature rises. Our observa-
tion indicates that the surface area of the contact decreases and the resistance provided
by the cylindrical surface also decreases for greater values of the curvature param-
eter K. Particle velocities rise as a result of this. The increased velocity is directly
influenced by the kinetic energy. A higher kinetic energy is associated with a higher
velocity. Higher temperatures are the outcome of a high average velocity value.

3. The fluid features change from shear thinning to shear thickening as the power law
index n rises, and hence the fluid motion slows down. A boost in the local Weissenberg
number λx appears to result in a decrease in the fluid velocity profiles. Since the
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local Weissenberg number λx is directly proportional to relaxation time, the internal
resistance increases, and thus that velocity profiles exhibit a decreasing pattern. On
the other hand, concentration and temperature profiles slightly increase.

4. The conventional potential difference is diminished when the thermal stratification ST
and the solutal stratification parameter SC are improved, causing the fluid temperature
and concentration to decline, respectively, and when the Prandtl number Pr rises, the
fluid temperature decreases. Additionally, the effect of the Eckert number Ec has a
proportional relationship with the temperature profile.

5. Higher values of the buoyancy parameter Gr∗ improve the velocity distribution.
Physically, the buoyancy force increases with a significant increase of Gr∗, hence
causing the velocity to be higher. The temperature and concentration profiles show a
declining pattern for higher values of Gr∗.

6. The local skin friction coefficient increases with the heat generation/absorption parame-
ter Q and the local Nusselt number shows the opposite pattern for this parameter. The
local Sherwood number has a rich profile for high values of the Schmidt number Sc.

7. Profile for the local skin friction coefficient is observed as high for the plate in compar-
ison to the cylindrical surface; meanwhile, the reverse is true for the local Nusselt and
Sherwood numbers.
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Nomenclature

A Velocity ratio parameter
→
B Body force (kg m/s2)
b, c Temperature-dependent constants (K)
d, e Concentration-dependent constants
Cp Heat capacity at constant pressure (J/K)
Ha Hartmann number
Sc Schmidt number
f ′(η) Dimensionless fluid velocity
↔
I Identity tensor
K Curvature parameter
kp Permeability of the medium (m2)
Nr Radiation parameter
L Characteristic length (m)
↔
M Cauchy stress tensor (N/m2)
n Power law index
p Pressure (N/m2)
Pr Prandtl number
R Radius of the cylindrical surface (m)
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Rex Local Reynold number
SC Solutal stratification parameter
ST Thermal stratification parameter
T0 Reference temperature (K)
C0 Reference concentration
u, v Velocity components (m/s)
U0 Reference velocity (m/s)
GrTx Local thermal Grashof number
GrCx Local concentration Grashof number
Dm Mass diffusivity
k∗ Mean absorption coefficient
x, r Cylindrical coordinates (m)
Gr∗ Ratio of buoyancy forces
→
V Velocity vector (m/s)
Q Parameter for heat generation/absorption
Greek Symbols
µ Dynamic viscosity (kg/m s)
µ∞ Infinite shear rate viscosity (kg/m s)
↔
τ Extra stress tensor (N/m2)
ρ Fluid density (kg/m3)
σ Fluid electrical conductivity (K3A2/kg m3)
θ(η) Fluid temperature (K)
φ(η) Fluid concentration
υ Kinematic viscosity (m2/s)
δ Porosity parameter
µ0 Zero shear rate viscosity (kg/m s)
χ Second invariant strain tensor s−2

·
γ Shear rate (s−1)
τw Shear stress (N/m2)
η Similarity variable
ψ Stream function
λx Local Weissenberg number
Γ > 0 Time-dependent material constant (s)
κ Thermal conductivity (W/m K)
ζ Mixed convection parameter
σ∗ Stefan–Boltzmann constant
βT Thermal expansion coefficient
βC Concentration expansion coefficient
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