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Abstract: Deep hashing has received a great deal of attraction in large-scale data analysis, due to its
high efficiency and effectiveness. The performance of deep hashing models heavily relies on label
information, which is very expensive to obtain. In this work, a novel end-to-end deep hashing model
based on pseudo-labels for large-scale data without labels is proposed. The proposed hashing model
consists of two major stages, where the first stage aims to obtain pseudo-labels based on deep features
extracted by a pre-training deep convolution neural network. The second stage generates hash codes
with high quality by the same neural network in the previous stage, coupled with an end-to-end hash
layer, whose purpose is to encode data into a binary representation. Additionally, a quantization
loss is introduced and interwound within these two stages. Evaluation experiments were conducted
on two frequently-used image collections, CIFAR-10 and NUS-WIDE, with eight popular shallow
and deep hashing models. The experimental results show the superiority of the proposed method in
image retrieval.

Keywords: learning to hash; image retrieval; deep learning; nearest neighbor search; unsupervised
learning; pseudo-label

MSC: 68T07

1. Introduction

Finding interesting objects from a given data collection is an essential task in informa-
tion retrieval, data mining and image retrieval. When the given data collection is small and
low-dimensional, precisely identifying exactly desired objects from the collection has been
extensively studied and a great number of retrieval methods have been developed during
the past decades [1]. Taking kNN (k nearest neighbors), which is the most classic and
popular neighbor search technique, as an example, it is highly efficient and effective to pick
exact neighbors out from a small-scale and low-dimensional data collection [2]. Along with
the modern information technology emerging, the scale of data collected from a variety
of domains becomes larger and larger. The large-scale property poses great challenges to
traditional retrieval techniques. Even for kNN, its efficiency of finding exact neighbors
in a large-scale data collection is very low, hampering its wide applications in practice
greatly [3].

Approximate nearest neighbor search (ANNS) derives objects, which are similar or
proximate to a given query, from a large-scale data collection [2]. Since it is highly efficient
and scales to the large-scale property without degrading retrieval precision and recall
slightly, ANNS has received significant attention. Hash learning and vector quantity are
two representative approximate search techniques, where hash learning attracts more
extraordinary attentions because of its extreme efficiency [4]. Hash learning encodes data
objects into a binary representation by linear or non-linear projection functions [5]. With
the binary representation, the search process can be turned to bit operations, e.g., XOR and
POPCNT, which can be executed straightforwardly by CPU.

Mathematics 2023, 11, 2175. https://doi.org/10.3390/math11092175 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11092175
https://doi.org/10.3390/math11092175
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2042-1673
https://doi.org/10.3390/math11092175
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11092175?type=check_update&version=1


Mathematics 2023, 11, 2175 2 of 13

Roughly speaking, hash techniques can be grouped into two major categories, i.e., data-
independent hashing and data-dependent hashing, according to whether the projection
functions are learned from data [5]. Locality sensitive hashing (LSH) and its variants are
typical examples of the former, whose projection functions are generated randomly [6].
Generally, LSH has relatively poor performance, because it is independent of data. On the
contrary, the data-dependent hashing methods construct hashing functions by virtue of
inherent properties of data, so that the structural information of data can be preserved. Em-
blematic data-dependent methods include spectral hashing (SH) [7], iterative quantization
(ITQ) [8] and spherical hashing (SpH) [9]. Compared to the data-independent hashing, the
data-dependent hashing is superior in retrieval performance.

A recent trend of hash learning is that hash functions are often learned by deep learn-
ing [10]. The underlying motivation is that deep learning can derive deep features from
data by exploiting deep neural networks, such as AlexNet, CNN, VGG and ResNet [10].
Since the deep features embed high-order semantic information of data, deep hashing
methods usually have competitive performance than the conventional ones. DeepBit [11],
SGH [12] and DistillHash [13] are typical deep hashing algorithms. For instance, seman-
tic structure-based deep hashing (SSDH) [14] extracts deep features with rich semantic
information to construct data labels by using a pre-training convolution neural network,
so that the hashing objective functions can preserve semantic similarities among data [15].
For deep hashing, notwithstanding its popularity, there are several limitations that require
more effort to work on. Firstly, the early deep hashing methods usually generate binary
codes from hand-crafted features (e.g., GIST and SIFT) [16]. As we know, the hand-crafted
features embodies less semantic information, making the performance improvement lim-
itedly. Additionally, most of deep hashing methods exploit label information to learn
semantic features of data and further to derive binary codes. However, data labels are often
unavailable in real-world applications and obtaining them is expensive and intractable.

With this motivation, in this work we leverage a novel end-to-end deep hashing
method, called pseudo-labels-based deep hashing (PLDH), for image retrieval. It mainly
consists of two stages: obtaining pseudo-labels and generating binary codes. To be spe-
cific, the proposed method first adopts a pre-training deep convolution neural network to
obtain the similarity degree for each pair of data objects. Afterwards, the pseudo-labels
of data objects are generated based on the similarity degrees. The second stage of PLDH
covers three major components, i.e., feature learning, code transformation and loss func-
tion. Feature learning aims to extract semantic features from data by using a seven-layer
convolution neural network, where the first layers are convolution ones, followed by two
full-connection layers. Code transformation encodes the data objects into a binary represen-
tation by an end-to-end layer. The loss function is used to control the similarity preservation
of data and the quality of binary representation. These components are interwound with
each other and obtain feedback information alternately during the whole learning process.
Owing to the end-to-end layer, the generated binary codes have higher quality and more
powerful capabilities.

In a nutshell, the main contributions of this work are briefly summarized as follows:

• We exploit a pre-training deep convolution neural network to obtain the similarity
degrees of data, so that the pseudo-labels of data can be further derived.

• The binary representation of data can be achieved by the end-to-end deep neural
network, coupled with the pseudo-labels, where information loss between feature
learning and code transformation is considered during the whole learning process.

• We conducted extensive experiments on public datasets, i.e., CIFAR-10 and NUS-
WIDE. The experimental results show the superiority of PLDH to the state-of-the-art
hashing algorithms.

2. Related Work

Due to its extreme efficiency, hash learning receives a great deal of attention and has
now become one of the hot topics in image retrieval and big data analysis. To date, many
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hash learning methods have been developed. More details can be found in good survey
papers, e.g., [4,5], and references therein. Here, we only discuss several typical ones briefly.

As mentioned above, hash techniques include data-independent hashing and data-
dependent hashing, according to whether the projection functions are learned from data [5].
Additionally, the hash techniques can also be categorized as supervised hashing and
unsupervised hashing, if the label information of data is considered. The former constructs
a hashing model with the label information, while the latter does not take data labels
into account when constructing a hashing model. For example, ITQ [8] first adopts the
technique of principal component analysis to transform data and then take the principal
components to generate hash functions. Additionally, SpH [9] employs a hypersphere,
instead of hyperplane, to partition data, so that those similar data may fall into closest
adjacent regions. As a result, the generated hash functions are more determinative.

Typical supervised hashing algorithms include KSH (Supervised Hashing with Ker-
nels) [17], FastH (Fast Supervised Hashing) [18] and FSDH (Fast Supervised Discrete
Hashing) [19], where KSH considers the kernels of binary codes when design hash func-
tions, so that it can effectively handle non-linear data. FastH [18] utilizes boosting trees to
cope with the problem raised by the high-dimensional data, while FSDH [19] exploits the
strategy of regression of the class labels to binary codes to accelerate hashing process. Note
that the performance of supervised hashing is usually better than that of the unsupervised
one, because the supervised hashing fully exploits the semantic information of data.

Recently, deep learning has also be widely used in hash learning. The underlying
reason is that deep learning can effectively capture the semantic information of data,
which may benefit analyzing the inherent properties of data. CNNH (Convolutional
Neural Network Hashing) [20] is a representative deep supervised hashing method. It
simultaneously derives a feature representation as well as hash functions by using a deep
convolutional neural network within two stages. In a similar vein, DPSH (Deep Pairwise-
Supervised Hashing) [21] makes use of pairwise labels to learn deep features and hash
codes simultaneously. DSDH (Deep Supervised Discrete Hashing) [22] takes both the
pairwise label and classification information into consideration within one schema when
learning hash codes.

As we know, obtaining class labels for data is a tedious and very expensive thing, espe-
cial for large-scale data. Thus, some studies focus on unsupervised deep hashing techniques
coupled with inherent properties of data or hash codes. For instance, DeepBit [11] adopts
three strategies, i.e., training quantization loss, code even-distributions and bit invariance,
to evaluate the quality of generated binary codes. To preserve semantic similarities, SSDH
(Semantic Structure Deep Hashing) [14] constructs the semantic structure of data, where
data are semantically similar if their distances is obviously smaller than others, to guide
the generation of hash codes. Recently, UDPH (Unsupervised Deep Pairwise Hashing) [23]
employs anchor-based pairwise similarities to enhance the robustness of binary codes.
HashSIM (Hashing via Structural and Intrinsic siMilarity) [24] first constructs structural
similarities on highly confident data, and then utilizes them to guide the generation of
codes. SPL-UDH (Soft-Pseudo-Label-based Unsupervised Deep Hashing) [25] utilizes a
deep auto-encoder network to generate soft pseudo-labels and local similarities of images,
and then derive binary codes based on them via the Bayesian theory.

3. Materials and Methods
3.1. Problem Statement

Assume that X = {(xi, yi)}n
i=1 ∈ Rn×d is a training data collection consisting of n data

objects, each xi (i = 1, . . . , n) is the feature vector, represented as d dimensions, of the i-th
data object. yi ∈ {0, 1}m refers to the label information of xi. X is a multi-label data collection
when each yi (i = 1, . . . , n) is a vector with p values of 0 or 1, i.e., yi ∈ {0, 1}p; otherwise, it
is a normal data collection for supervised learning, where y ∈ {0, 1}. Contrastively, as the
label information is unavailable, X = {xi}n

i=1 ∈ Rn×d is used for unsupervised learning.
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Since obtaining the label information is extremely expensive in reality, here we only discuss
the unsupervised case of X.

Learning to hash attempts to implicitly or explicitly derive a series of hash functions
H = [h1, h2, . . . , hm] ∈ Rm

d , so that the data objects X can be encoded as a binary represen-
tation such as B ∈ {0, 1}n×m, where m is the length of binary code, i.e., the number of hash
bits, and m < d usually. Formally, each hash function h is defined as

h : x 7→ b ∈ {0, 1}, (1)

that is, each function h represents the data object x as a binary value. If m hash functions hi
(i = 1, . . . , m) are applied, x can be further denoted as a binary vector b = [b1, b2, . . . , bm] by
assembling straightly the m binary values generated by hi (i = 1, . . . , m). With this context,
the hash codes of X can be shown as the binary representation B = {bi}n

i=1 ∈ {0, 1}n×m,
where bi is the binary vector of xi. For the convenience of discussion, hereafter the binary
values within B are denoted as −1 and 1, i.e., B ∈ {−1, 1}n×m.

How to learning efficient and effective hashing functions is still an open and challeng-
ing issue. A naive strategy is to generate the hashing functions randomly [6]. Since this
kind of generating manner has not taken the property of data into consideration, the quality
of generated hash codes is relatively poor. Some shallow hashing techniques exploit the
property of data to learn the hashing functions. However, the original features of data are
hand-crafted, e.g., GIST or SIFT features of images, and have less semantic information [16].
To address this problem, deep hashing has been introduced. It adopts deep features to
construct the hash functions non-linearly. As a result, the generated hash codes are more
compact and powerful. Although many deep hashing methods have been developed by
now, they pay more attention on the data with label information and less on the data
without label information. In this work, we consider the similarities between the data
objects as pseudo-labels to address the problem of the deficiency of label information.

3.2. Hashing Model Framework

In this work, we leverage a novel end-to-end deep hashing algorithm, called PLDH
(pseudo-labels based deep hashing), for data without label information. The model frame-
work of PLDH is shown as Figure 1. It mainly includes two stages: generating pseudo-labels
and deriving hash codes. The first stage first applies a pre-training deep convolution neural
network to capture deep features of data, and then calculates the similarity degrees between
the data. According to the pairwise similarity degrees, the pseudo-labels of data can be
further obtained. The second stage transforms the data into the hash codes via an additional
hash layer, with the help of deep features captured by the same deep network. These two
stages are interwined to derive the codes and the pseudo-labels in terms of errors estimated
by a loss function alternatively.

For the convolution network in PLDH, we take VGGNet (Visual Geometry Group Net-
work) as the architecture of a deep neural network to capture the deep features of data [26].
The architecture of VGGNet was initially designed for large-scale image classification,
e.g., ImageNet [27]. Due to its high efficiency and effectiveness, VGGNet has been widely
applied in a variety of domains since it was introduced [28]. The VGGNet architecture here
is comprised of five convolution layers with different sizes and quantities of sub-layers,
and three fully-connected layers. For our purpose, only the first two fully-connected layers
are considered and the output of the second layer is used to represent deep features during
the first stage of PLDH. In the second stage, the third fully-connected layer, consisting of
1000 units, is taken as the hash layer, whose output is binary.
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Figure 1. The model framework of PLDH.

3.2.1. Pseudo-Labels

As we know, deep learning is primitively devised for supervised learning, where data
labels are available in advance. This implies that the predominant performance of deep
learning is heavily dependent on the label information of data. Indeed, data labels are
tagged by experienced experts in reality. Thus, they often embody some kind of semantic
information and can help to make a decision in data analysis. Unfortunately, tagging
data with label information is nontrivial and expensive in the real world, especially for
large-scale data collections. To tackle the deficiency problem of label information, several
supervised learning techniques utilize Euclidean distance or cosine distance between data
objects to take the place of label information. However, the learning performance can be
improved limitedly, because there is a large semantic gap between the true semantic of data
and the made-up metric space with the hand-crafted features [16].

We exploit deep features of data to mimic the true semantic information, so that
the semantic gap can be narrowed further. As a matter of fact, the deep features of
graphs extracted by a pre-training deep convolution neural network embody rich semantic
information [29]. To verify this statement, we conducted an experiment on two public
image collections, i.e., CIFAR-10 and NUS-WIDE, to obtain the similarity degrees of images
by a pre-training deep convolution neural network. Specifically, for each image collection,
we first picked 1000 images out from the collection randomly, and then extracted deep
features for each image by the VGG16 network trained on ImageNet in advance; that is,

F = { f i}
1000
i=1 , (2)

where f i is the deep features of the i-th image. Based on the deep features, the cosine
similarity between two images can be estimated as follows.

sim( f i, f j) =
f i · f j

‖ f i‖2 · ‖ f j‖2
(3)

The frequency of cosine similarities of images is given in Figure 2. Observing the
frequency, we can find that the higher the pairwise similarity of images, the lower the corre-
sponding frequency. This property is inherent consistent with the structural information of
image collections, where the similar images are relatively rarely and sparse. The quantity
of dissimilar images is far more than that of similar images in each collection.
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(a) CIFAR-10 (b) NUS-WIDE

Figure 2. The frequency histogram of cosine similarities of images.

With the observation above, we construct semantic pseudo-labels based on the pair-
wise similarities of images. Let sim( f i, f j) be the similarity of the i-th image to the j-th
image. The similarity label, sij, of f i to f j is defined as

sij =

{
1, sim( f i, f j) > α

0, otherwise
(4)

where α is a threshold value between 0 and 1, i.e., α ∈ [0, 1]. From this definition, an image
is semantically similar to another one if their cosine similarity is larger than the given
threshold; otherwise, they are not considered to be similar to each other. Thus, the semantic
labels of images are represented as S = {sij}n

i,j=1. Since these semantic labels are not true
labels, they are pseudo-labels of images.

3.2.2. Deep Hashing

Once the pseudo-labels S are available, the hash codes of data can be derived by the
estimation of maximum posterior probability. Let B be the binary representation, i.e., hash
codes, of data X. The posterior probability of B with respect to S is

p(B | S) ∝ p(S | B)p(B)
= ∏sij∈S p(sij | bi, bj)p(bi)p(bj),

(5)

where p(S | B) is the likelihood function of S under the context of B given, while p(B) is
the distribution of prior probability. For p(sij | bi, bj), it refers to the conditional probability
of the pseudo-label sij, after the hash codes, bi and bj, of the i-th and the j-th data objects
are derived. Assume that Φij is the inner product of bi and bj, i.e.,

Φij =
1
2
〈
bi, bj

〉
=

1
2

bT
i bj. (6)

The conditional probability function p(sij | bi, bj) can be calculated as the following equation.

p(sij | bi, bj) =

{
σ(Φij), sij = 1
1− σ(Φij), sij = 0

(7)

where σ(·) is an active function. For convenience, here we take Sigmoid function as the
active function, i.e.,

σ(Φij) = (1 + e−Φij)−1. (8)

Equation (7) is capable of representing the inherent property of data. Let DH(bi, bj) be
the Hamming distance of binary codes, bi and bj, i.e.,

distH(bi, bj) =
1
2
(k− bT

i bj), (9)
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where k is the length of binary codes. According to the definition of Equation (7), we
know the smaller the Hamming distance distH(bi, bj), the larger the inner product bT

i bj,
and the larger the conditional probability p(1 | bi, bj). This indicates that the data objects
corresponding to bi and bj are more similar to each other than others. On the other hand,
a far distance distH(bi, bj) between bi and bj implies that p(0 | bi, bj) is large, resulting in
them being highly dissimilar.

Owing to the semantic property of S, the loss function of PLDH can be defined to max-
imize the likelihood function of the conditional probability. Formally, it is represented as

minB L = − 1
|S|Σsij∈Sln p(sij | bi, bj)

= − 1
|S|Σsij∈S(sijΦij − ln(1 + eΦij))

s.t. bi, bj ∈ {−1, 1}k, i, j = 1, 2, . . . , n.

(10)

where |S| denotes the total number of pairwise similarities. Solving straightforwardly the
optimization problem of Equation (10) is NP-hard, because its constraint condition is a dis-
crete one; that is, bi only involves binary values. To cope with this issue, a frequently-used
strategy is to relax the discrete constraint into a continuous one. Specifically, we introduce
an auxiliary variable ui for the binary code bi, i.e., ui = bi. Hence, the optimization problem
of Equation (10) can be transformed as the following formulation.

minB,U L = − 1
|S|Σsij∈S(sijΦij − ln(1 + eΦij)) + η 1

|B|Σ
n
i=1‖ui − bi‖2

2

s.t. Φij =
1
2 uT

i uj.
(11)

where ui ∈ Rk, η is a Lagrange operator, and |B| is the total number of binary codes. For
the second penalty term in Equation (11), it aims to narrow the difference of the discrete
space to its corresponding continuous one as much as possible.

3.3. Optimization Analysis

For the optimization problem above, it can be solved by an alternative way. Let Θ be
the hyper-parameters of deep convolution neural network (i.e., VGGNet) and F(xi; Θ) be
the output of the last fully-connected layer of VGGNet. The output ui of hash layer for xi
can be represented as

ui = WTF(xi; Θ) + v, (12)

where W ∈ R4096×k is the weighted matrix of hash layer, and v ∈ Rk×1 is a bias. Substi-
tuting ui in Equation (11) with Equation (12), we have the following equivalent form of
Equation (11).

minB,Θ,W ,v L = − 1
|S|Σsij∈S(sijΦij − ln(1 + eΦij)) + η 1

|B|Σ
n
i=1‖W

TF(xi; Θ) + v− bi‖2
2. (13)

We can iteratively derive the optimization values of B, Θ, W and v alternatively; that
is, solving one of them, while fixing others. To be specific, the iteration process of the
optimization problem consists of the following steps.

• Updating B, as Θ, W and v fixed. In this case, each hash code bi ∈ B can be easily
obtained by a soft-threshold function. For example, if the sign function is adopted, bi
can be derived as follows.

bi = sgn(WTF(xi; Θ) + v), (14)

where sgn(x) is the sign function. If x > 0, sgn(x) = 1; otherwise, sgn(x) = 0.
• Updating Θ, W and v, as B fixed. We can apply the strategy of back-propagation to

estimate the optimal values as B is fixed. Concretely, let the gradients of Equation (13)
with respect to the parameters Θ, W and v, respectively, be zero, and we have the
following equations hold.

∂L
∂F(xi; Θ)

= W
∂L
∂ui

, (15)
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∂L
∂W

= F(xi; Θ)(
∂L
∂ui

)T, (16)

∂L
∂v

=
∂L
∂ui

, (17)

where

∂L
∂ui

=
1

2|S|Σj:sij∈S(σ(Φij)− sij)uj +
1

2|S|Σj:sji∈S(σ(Φji)− sji)uj + η
2
|B| (ui− bi). (18)

Based on the aforementioned discussion, the implementation details of PLDH are
given as follows (Algorithm 1).

Algorithm 1 PLDH: Pesudo-Labels based Deep Hashing
Input: A data collection X = {xi}n

i=1, the code length k, and the hyper-parameter η.
Output: The hash codes B of X.
1: Take the output of the pre-training VGGNet as deep features F = { f i}n

i=1;
2: Obtain the pseudo-labels S = {sij}n

i,j=1 by virtue of Equations (3) and (4);
3: Initialize Θ with the same parameters of the pre-trained VGGNet;
4: Initialize W and v with random values in [−α, α], where α = 1/64;

Repeat
5: Select a mini-batch training data {xi}t

i=1 (t� n) from X;
6: Obtain {F(xi; Θ)}t

i=1 by the back-propagation strategy;
7: Calculate {ui}n

i=1 via Equation (12);
8: Calculate {bi}n

i=1 via Equation (14);
9: Update W , v and Θ via Equations (15)–(17), respectively;

Until iteration steps reach a given threshold
10:Return B as the hash codes of X.

4. Results

To validate the effectiveness of PLDH, we conducted a series of comparison experi-
ments with eight popular hashing algorithms on two public data collections. In this section,
we will discuss the experimental results.

4.1. Experimental Settings

The comparison experiments were conducted on two frequently used benchmark
data collections, i.e., CIFAR-10 and NUS-WIDE. The CIFAR data collection contains
60,000 colorful images, each with the size of 32 × 32 pixels. These images are tagged
with ten class labels, such as airplane, truck, ship, car, horse, dog, cat, frog, deer and bird.
Each class label involves 6000 colorful images. For each class, 1000 images were randomly
picked as queries, and 500 images were taken as training data. NUS-WIDE comprises
269,648 images collected from Flickr, where each image was associated to multiple class
labels. There are eighty-one class labels totally, including cars, dogs, airports, birds and
earthquake. In the experiments, only the images associated with top-10 frequently-used
class labels were considered, and 5000 images were randomly selected as the query, while
10,500 images were taken as training data.

To verify the competitive performance of PLDH, eight popular hashing algorithms
were adopted in the comparison experiments. The baselines cover both shallow hashing,
such as LSH, SH, ITQ and SpH; and deep hashing, such as DeepBit, SGH, SSDH and
DistillHash. They stand for different hash learning techniques. To make a fair comparison,
the shallow hashing algorithms were trained on deep features, which were the outputs of
the last layer of VGGNet, rather than the original features. Following the routine in the
literature, we treated the similarities of images calculated according to their class labels as
the ground-truth; that is, two images were considered to be similar, if they were tagged
with the same labels. Otherwise, they were dissimilar to each other.
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The evaluation protocol used to compare the baselines in our experiments was mean
average precision (mAP), which is a widely-used measurement to evaluate the retrieval
performance of hashing techniques in information retrieval. Let Q = {qi}t

i=1 be a set of
query. For each query q ∈ Q, its average precision in retrieval is represented as

AP(q) =
∑R

r=1 Preq(r)δ(`r = `q)

∑R
r=1 δ(`r = `q)

, (19)

where R is the total number of the retrieval results for the query q, and Preq(r) is the
retrieval precision for the top r results. `i refers to the data label of the i-th retrieval result.
δ(·) is an indication function, where δ(`r = `q) = 1 if the r-th retrieval result is truly similar
to the query q; otherwise, δ(`r = `q) = 0, that is, they have different class labels. Based on
this definition, the mean average precision of the set Q of queries is

mAP(Q) =
1
|Q| ∑q∈Q

AP(q). (20)

The proposed hashing algorithm is implemented under the framework of PyTorch. To
be specific, the optimizer of PLDH is the mini-batch stochastic gradient descent. During
the experiments, the size of batch, the momentum and the weight decay of the optimizer
were set to 32, 0.9 and 0.0005, respectively. Additionally, the learning rate on CIFAR-10 and
NUS-WIDE was fixed at 0.0003 and 0001, respectively, after the cross-validation manner
was performed. All experiments were carried out under the platform of Ubuntu Server
16.04, with Intel i7 8700@3.20GHz CPU, Nvidia GTX 1060 GPU and 32GB main memory.

4.2. Experimental Results

mAP is a widely-used evaluation protocol in information retrieval. We also adopted
this evaluation protocol to measure the retrieval performance of PLDH to the baselines.
Table 1 provides the comparison results of mAP scores of the baselines with different quan-
tities of hash bits, where the bold values are the best ones among the hashing techniques.

Table 1. The mAP comparison of PLDH to the baselines with different numbers of hash bits.

CIFAR-10 NUS-WIDE
16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

LSH [6] 0.132 0.158 0.167 0.179 0.432 0.441 0.443 0.482
SH [7] 0.161 0.158 0.151 0.154 0.446 0.454 0.493 0.500

SpH [9] 0.144 0.167 0.178 0.184 0.453 0.460 0.496 0.513
ITQ [8] 0.194 0.209 0.215 0.219 0.528 0.532 0.532 0.542

DeepBit [11] 0.220 0.241 0.252 0.253 0.454 0.463 0.476 0.492
SGH [12] 0.180 0.183 0.189 0.190 0.494 0.483 0.487 0.498

SSDH [14] 0.257 0.256 0.259 0.260 0.623 0.630 0.632 0.649
DistillHash [13] 0.284 0.285 0.287 0.290 0.667 0.675 0.677 0.675

PLDH 0.459 0.495 0.509 0.500 0.685 0.701 0.702 0.703

From the experimental results in Table 1, one can observe that PLDH has achieved
competitive performance in comparing the baselines on these two benchmark image
collections. For example, PLDH boosted 28.15% and 16.42% retrieval performance on
CIFAR-10 and NUS-WIDE, respectively, in comparing to ITQ, which is the best shallow
hashing algorithms. Contrastively, for DistillHash, the best deep hashing algorithms, the
retrieval performance was improved 20.43% and 2.42% on CIFAR-10 and NUS-WIDE,
respectively, by the proposed hashing method.

For the shallow hashing techniques, the data-dependent algorithms, i.e., ITQ, SH
and SpH, achieved better retrieval precision than LSH, which is independent of training
data. This fact, however, is consistent with our knowledge, because the data-dependent
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algorithms can effectively capture the inherent properties of data. It should be pointed
out that the performance of the shallow hashing techniques was better than that of deep
ones in some cases. For instance, ITQ had higher precision than SGH on these image
collections. The underlying reason is that the shallow hashing models were constructed
on deep features extracted by VGGNet. Additionally, the performance of deep hashing
models heavily rely on label information. The absence of label information may degrade
the retrieval precision of deep hashing models, notwithstanding the pseudo-labels that are
available.

Generally, SSDH, DistillHash and PLDH achieved comparable performance in com-
paring the shallow hashing techniques, because they were not only constructed on deep
features, but also with the help of semantic information, which is derived from the similar-
ities of images. Note that SSDH also adopted the analogical strategy to derive semantic
labels on the similarities of data. However, PLDH involved less hyper-parameters and did
not require to calculate the cosine similarities, making it more robust and efficient. Addi-
tionally, their learning objective functions were also different, where the objective functions
of SSDH and PLDH were the minimum of the mean square errors of similarity matrix and
the maximum of the likelihood function of similarity matrix, respectively. Moreover, both
SSDH and DistillHash did not take the quantization loss into account during the learning
stage. In fact, the quantization loss can further improve the quality of hash codes.

4.3. Ablation Analysis

As discussed above, there are two hyper-parameters, i.e., α and η, for PLDH, where
the threshold α is used to derive the pseudo-labels. The Lagrange operator η controls the
quantization loss during the hash learning stage. To test how much effect they might have
brought to PLDH, we carried out additional experiments with different values of α and η
on the benchmark data collections.

Figure 3 illustrates the mAP scores of PLDH with different values of the threshold
α, when η was fixed. According to the mAP scores in Figure 3, one can observe that
the optimization threshold values of α were 0.6 and 0.2 for CIFAR-10 and NUS-WIDE,
respectively, albeit the length of hash codes derived by PLDH was different. This is
consistent with the distributions of data; that is, the quantities of the pairwise similarities
of images are far less than those of dissimilar ones (see Figure 2).

(a) CIFAR-10 (b) NUS-WIDE

Figure 3. The mAP scores of PLDH with different α values.

Figure 4 shows the mAP curves of PLDH with different values of the operator η,
when the threshold α was fixed (α was set to 0.6 for CIFAR-10 and 0.2 for NUS-WIDE,
respectively). From the experimental results, we know that as the length of hash codes
increases, the optimal value of η also turns out to be large. For example, the optimal values
of η were 5, 5, 10 and 25 on CIFAR-10, if the hash codes contained 16, 32, 64 and 128 hash
bits, respectively. Similar cases can be found for the data collection of NUS-WIDE. Another
observation is that the performance of the model was relatively poor if the quantization loss
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was not considered, i.e., η = 0. This fact implies that the quantization loss may be beneficial
to the performance of the deep model, if it is taken into account during the training stage.

(a) CIFAR-10 (b) NUS-WIDE

Figure 4. The mAP scores of PLDH with different η values.

5. Conclusions

In this work, we proposed a novel end-to-end deep hashing method, called PLDH, for
large-scale data without label information. It constructs pseudo-labels for deep hashing
by using the inherent semantic property of data, namely the pairwise similarities of data
calculated from deep features, to remedy the absence of label information. Compared to
unsupervised hashing models, PLDH takes the semantic information of data into account,
so that the similarities of data can be preserved, making the generated hashing codes with
higher quality. To validate the effectiveness of PLDH, we conducted a series of experiments
on two public benchmark image collections. The experimental results show the superiority
of PLDH in comparison to the state-of-the-art hashing models. Since deep features are
vital to the pseudo-labels, we will adopt different deep learning architectures with different
layers to obtain semantic features in our future work.

Before obtaining the pseudo-labels, the similarities among data should be calculated
in advance. This requires a large amount of storage space, resulting in PLDH not being
very friendly to particularly large-scale data. Thus, our future work will concentrate on
addressing this issue by sampling techniques. Moreover, apart from VGG, there are many
architectures, e.g., AlexNet, ResNet and Transformer, developed in deep learning, where
the Transformer one has received extraordinary popularity recently. So, we will adopt the
Transformer architecture as the backbone of PLDH to further improve its performance.
Meanwhile, we will also testify the retrieval performance of PLDH on more large-scale
image collections.
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