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Abstract: This paper shows that Harris recurrent Markov chains and processes can be characterized
as the class of Markov chains and processes for which there exists a random time T at which
the distribution of the chain or process does not depend on its initial condition. In particular, no
independence assumptions concerning the post-T process or T play a role in the characterization.
Since Harris chains and processes are known to contain infinite sequences of regeneration times
exhibiting various independence properties, it follows that the existence of this single T implies the
existence of infinitely many times at which regeneration occurs.
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1. Introduction

The exploitation of the regenerative structure has a long and successful history in the
development of both theory and algorithms for Markov chains and processes, going back
to the pioneering work of Doeblin [1] in which the central limit theorem for Markov chains
was studied. In the 1970s, Athreya and Ney [2] and Nummelin [3] independently showed
how Harris recurrent Markov chains can be viewed as regenerative stochastic processes.
Sigman [4] later extended these regeneration ideas to the setting of Harris recurrent Markov
processes in continuous time. Important contributions were also made to this literature
on regeneration by Vladimir Kalashnikov, both in book form [5] and in various papers
published over the course of his research life [6–12].

In view of Professor Kalashnikov’s major contributions to this research domain, this
note also discusses regeneration. In particular, we provide a new characterization of
the class of regenerative Markov processes. Specifically, we recall in Section 2 that such
processes can be identified with the class of chains and processes that are recurrent in the
sense of Harris. The main contribution of the current note is that this class of Markov
processes is exactly the class for which there exists a single random time T (not necessarily
a randomized stopping time) at which the chain or process has a distribution that does
not depend on its initial state, see Theorems 3 and 5. With only this property assumed,
the Markov process must in fact then be wide-sense regenerative in discrete time, and one-
dependent regenerative in continuous time. A useful review of some of these regeneration
concepts can be found in [13]. In particular, when a single such time T exists, such processes
then necessarily possess an infinite sequence of randomized stopping times at which the
process is identically distributed, and at which the process also exhibits various forms of
“cycle independence” relative to that sequence of times. In other words, this seemingly
weak property involving a single T is equivalent to the much stronger property that the
process regenerates at an infinite sequence of randomized stopping times.

In this sense, there is some similarity to the results of [14], in which it is shown that for
general (possibly non-Markov) stochastic processes, the existence of a single wide-sense (or
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classical) regeneration time implies the existence of an infinite sequence of such wide-sense
(or classical) regeneration times. In contrast to their results, the current paper assumes
a Markov structure, but makes no independence assumptions related to either T or the
post-T process, so makes much weaker demands on T.

2. Main Results

We start with a discussion in the setting of discrete-time Markov chains. Let S
be a separable metric space, and suppose that S is its associated Borel σ-algebra. Put
Ω = S∞, and let F be the associated σ-algebra on Ω induced by the product topology. For
ω = (xi : i ≥ 0) ∈ Ω, let Xi(ω) = xi (for i ≥ 0) be the i’th coordinate projection. Given a
one-step transition kernel P : S× S → [0, 1] and x ∈ S, let Px(·) be the probability on Ω
under which

Px(Xi ∈ Ai, 1 ≤ i ≤ n) =
∫

A1

· · ·
∫

An
P(x, dx1)P(x1, dx2) . . . P(xn−1, dxn)

for Ai ∈ S (1 ≤ i ≤ n), so that X = (Xn : n ≥ 0) is a Markov chain with transition kernel P
starting from x.

Definition 1. We say that P induces a Harris recurrent Markov chain on S if there exists a
non-trivial non-negative σ-finite measure η on (S,S) for which η(A) > 0 implies that

Px(Xn ∈ A infinitely often) = 1

for x ∈ S.

The theory developed by [2,3] showed that Harris recurrence is equivalent to wide-
sense regeneration. To state this result, let S̃ = S× [0, 1] and let S̃ be the associated Borel
product σ-algebra. Put Ω̃ = S̃∞, and let F̃ be the associated Borel product σ-algebra.
For ω̃ = ((xi, ui), i ≥ 0) ∈ Ω̃, let X̃i(ω̃) = xi and Ui(ω̃) = ui for i ≥ 0. Given a transition
kernel P on (S,S), we say that the family (P̃x : x ∈ S) of probabilities on (Ω̃, F̃ ) is consistent
with P if for each x ∈ S and n ≥ 0,

(i) P̃x((X̃0, . . . , X̃n) ∈ ·) = Px((X0, . . . , Xn) ∈ ·);
(ii) (Ui : i ≥ 0) is a sequence of independent and identically distributed (iid) random

variables (rv’s) under P̃x.

The existence of the sequence (Ui : i ≥ 0) on the same probability space (Ω̃, F̃ , P̃x) that
supports the Markov chain (X̃n : n ≥ 0) allows the possibility of constructing random
times (Rn : n ≥ 1) that exhibit regeneration structure.

Definition 2. We say that P induces wide-sense regeneration if for some family (P̃x : x ∈ S) of
probabilities on Ω̃ consistent with P, there exist strictly increasing random times (Rn : n ≥ 1) and
a probability λ(·) on S such that for each x ∈ S and n ≥ 1,

(i) Rn is independent of (X̃Rn+k : k ≥ 0) under P̃x;
(ii) P̃x((X̃Rn+k : k ≥ 0) ∈ ·) =

∫
S λ(dy)Py((Xk : k ≥ 0) ∈ ·).

In the presence of wide-sense regeneration, one may analyze (Ex f (Xn) : n ≥ 0) via the
use of renewal equations, thereby greatly simplifying the theory of such Markov chains.
Refs. [2,3] essentially proved the following result. (They proved the “only if” direction.
The proof uses the existence of C-sets to construct the wide-sense regeneration. The C-set
construction, in turn, uses the fact that S is countably generated. This is why we assume
that S is the Borel σ-algebra of a separable metric space. The converse follows from,
for example, our Theorem 3).

Theorem 1. The transition kernel P induces a Harris recurrent Markov chain if and only if P
induces wide-sense regeneration.
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A related, but different, form of regeneration is the following.

Definition 3. We say that P induces one-dependent regeneration if for some family (P̃x : x ∈ S)
on Ω̃ consistent with P, there exist strictly increasing random times (Rn : n ≥ 1) with R0 = 0,
such that for each x ∈ S,

(((X̃Rn+k : 0 ≤ k < Rn+1 − Rn), Rn+1 − Rn) : n ≥ 0)

is one-dependent (in n) under P̃x and

P̃x(((X̃Rn+k : 0 ≤ k < Rn+1 − Rn), Rn+1 − Rn) ∈ ·)

is independent of x ∈ S and n ≥ 1.

Using the Athreya–Ney–Nummelin regenerative construction, ref. [15] established
the “only if” direction of the following result. As for Theorem 1, the other direction follows,
for example, from Theorem 3.

Theorem 2. The transition kernel P induces a Harris recurrent Markov chain if, and only if, P
induces one-dependent regeneration.

We now turn to our first new result.

Definition 4. We say that the random time T on Ω̃ exhibits distributional invariance with respect
to the transition kernel P if there exists a family (P̃x : x ∈ S) of probabilities on Ω̃ consistent with
P such that the distributions P̃x(X̃T ∈ ·) do not depend on x ∈ S.

It is obvious that if P induces either wide-sense regeneration or one-dependent regen-
eration, then Rn exhibits distributional invariance for n ≥ 1.

Theorem 3. The transition kernel P induces a Harris recurrent Markov chain if, and only if, there
exists a random time T ≥ 1 that exhibits distributional invariance with respect to P.

Proof. If P induces Harris recurrence, then the random time Rn of Theorem 1 exhibits
distributional invariance. On the other hand, if T exhibits distributional invariance with
respect to P, then

η(·) ∆
= P̃x(X̃T ∈ ·)

does not depend on x ∈ S. Suppose η(A) > 0. Then, for each x ∈ S, there exists n(x)
such that

P̃x(X̃T ∈ A, T ≤ n(x)) ≥ η(A)/2

Furthermore, we may select n(·) to be S measurable. Hence, if T̃(A) = inf{n ≥ 0 : X̃n ∈ A},
it follows that

P̃x(1 ≤ T̃(A) ≤ n(x)) ≥ P̃x(X̃T ∈ A, T ≤ n(x)) ≥ η(A)/2,

for each x ∈ S. Consequently, if T(A) = inf{n ≥ 0 : Xn ∈ A},

Px(1 ≤ T(A) ≤ n(x)) ≥ η(A)/2.

Put N1 = n(X0) and Ni+1 = n(XNi ) for i ≥ 1. Then, (Ni : i ≥ 1) is a strictly increasing
sequence for which

Px(Xm ∈ A for some m ∈ {Ni + 1, . . . , Ni+1}|Xj : 0 ≤ j ≤ Ni) ≥ η(A)/2
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for each i ≥ 1. It follows from the conditional Borel–Cantelli lemma (see, for example, [16],
Corollary 2, p. 324) that

Px(Xm ∈ A infinitely often) = 1,

proving that P induces Harris recurrence.

As noted in the Introduction, the seemingly weak assumption of existence of a dis-
tributionally invariant random time T already implies existence of an entire sequence of
wide-sense or one-dependent regeneration times.

We now extend this theory to continuous time. Given a separable metric space
S, let Ω = D[0, ∞) be the space of functions ω : [0, ∞) → S, such that ω(·) is right
continuous everywhere, with left limits at t ∈ (0, ∞) (RCLL). For t ≥ 0, put X(t, ω) = ω(t),
X = (X(t) : t ≥ 0), and (θtX)(ω) = (ω(t + s) : s ≥ 0). Let (Px : x ∈ S) be a family of
probabilities on Ω for which Px(X(0) = x) = 1 for x ∈ S. Furthermore, we require that for
each x ∈ S and non-negative (measurable) f ,

Ex[ f (θtX)|X(u) : 0 ≤ u ≤ t] = u(X(t)) Px a.s.,

where u(y) = Ey f (X) for y ∈ S and Ey(·) is the expectation associated with Py(·). It
follows that X is a time-homogeneous Markov process under Px. We further assume that
X is a Feller process (i.e., for each bounded continuous f : S → R and t ≥ 0, Ex f (X(t)) is
continuous in x).

We now state the definition of Harris recurrence in continuous time; see, for exam-
ple, [17].

Definition 5. The process X and its associated probabilities (Px : x ∈ S) on Ω is said to be Harris
recurrent in continuous time if there exists a non-trivial non-negative σ-finite measure η for which

Px

(∫ ∞

0
I(X(t) ∈ A)dt = ∞

)
= 1

for each x ∈ S whenever η(A) > 0. (Here, I(B) is the indicator rv corresponding to B).

It has been known since the 1990s that such Harris recurrence implies the existence
of one-dependent regeneration times (see [4]). As in discrete time, the statement of this
result requires the use of a probability space upon which auxiliary randomization can be
defined. To this end, let Ω̃ = Ω× [0, 1]∞. For ω̃ = (ω, (ui : i ≥ 0)), let X̃(t, ω̃) = ω(t) and
Ui(ω̃) = ui for t ≥ 0 and i ≥ 0.

We say that the family of probabilites (P̃x : x ∈ S) on Ω̃ is consistent with (Px : x ∈ S)
if for each x ∈ S,

(i) P̃x((X̃(t) : t ≥ 0) ∈ ·) = Px((X(t) : t ≥ 0) ∈ ·);
(ii) (Ui : i ≥ 0) is a sequence of iid rv’s on [0, 1] under P̃x.

Definition 6. We say that X and (Px : x ∈ S) induce one-dependent regeneration in continuous
time if for some family (P̃x : x ∈ S) of probabilities on Ω̃ consistent with (Px : x ∈ S), there exists
a sequence of strictly increasing random times (Rn : n ≥ 0) (with R0 = 0), such that for each
x ∈ S,

(((X̃(Rn + t) : 0 ≤ t < Rn+1 − Rn), Rn+1 − Rn) : n ≥ 0)

is a one-dependent sequence under P̃x, and

P̃x(((X̃(Rn + t) : 0 ≤ t < Rn+1 − Rn), Rn+1 − Rn) ∈ ·)

is independent of x ∈ S and n ≥ 1.
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As noted earlier, ref. [4] proved the forward implication of the next theorem. As in
discrete time, the separability of S is used to ensure that S is countably generated (so that
the “splitting construction” of Athreya–Ney–Nummelin applies.) The reverse implication
is a consequence of (for example) Theorem 5.

Theorem 4. The process X and the family (Px : x ∈ S) is Harris recurrent in continuous time if,
and only if, X and (Px : x ∈ S) induce one-dependent regeneration in continuous time.

In view of our discrete time discussion, an obvious question is whether Harris recur-
rence in continuous time implies wide-sense regeneration. This issue, first raised in the
1990s, remains an open question (see, for example, [18]).

Our second major result is the extension of Theorem 3 to continuous time.

Definition 7. We say that the random time T on Ω̃ exhibits distributional invariance in continuous
time with respect to X and (Px : x ∈ S) if there exists a family (P̃x : x ∈ S) of probabilities on Ω̃
consistent with (Px : x ∈ S) such that the distributions P̃x(X̃(T) ∈ ·) do not depend on x ∈ S.

Theorem 5. The process X and its probabilities (Px : x ∈ S) is Harris recurrent in continuous
time if, and only if, there exists a random time T on Ω̃ exhibiting distributional invariance.

Proof. The proof is similar to that of Theorem 3. Put η(·) = P̃x(X̃(T) ∈ ·). Given A for
which η(A) > 0, let (t(x) : x ∈ S) be a measurable function for which

P̃x(X̃(T) ∈ A, T ≤ t(x)) ≥ η(A)/2. (1)

Set T0 = 0 and Ti+1 = t(X(Ti)) for i ≥ 0. As in discrete time, (1) implies that for each x ∈ S,

Px(X(·) visits A in [Ti, Ti+1)|X(u) : u ≤ Ti) ≥ η(A)/2

for i ≥ 0; see [19] for a discussion of the measurability of hitting times of generic Borel sets
A. The conditional Borel–Cantelli lemma again implies that

Px(X(·) visits A infinitely often) = 1 (2)

for each x ∈ S. Given (2), Theorem 1 of [20] then implies that X and its probabilities
(Px : x ∈ S) are Harris recurrent in continuous time. Note that Theorem 1 of [20] requires
that X is a Borel right process (strong Markov process with right continuous sample paths).
Since every Feller process with RCLL sample paths satisfies the strong Markov property
(see, for example, [21], Theorem 3.1, p. 102), the requirement is met.

The forward direction is an immediate consequence of [4].

3. A Further Generalization

We conclude this paper with a generalization of Theorem 3, which generalizes the
well-known minorization-type characterization of Harris recurrence in [2,3].

Definition 8. Given a set C ∈ S and a random time T on Ω̃, we say that (C, T) is a minorization
pair for the transition kernel P if Px(Xn ∈ C for some n) = 1 for all x ∈ S, and there exists a
family (P̃x : x ∈ S) of probabilities on Ω̃ consistent with P, such that there exists a non-trivial
non-negative measure η, such that P̃x(X̃T ∈ ·) ≥ η(·) for all x ∈ C.

Note that the characterization of Harris recurrence in [2,3] is actually a minorization
pair with constant T.
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Theorem 6. The transition kernel P induces a Harris recurrent Markov chain if, and only if, there
exists a minorization pair (C, T) for P.

Its proof is similar to that of Theorem 3 and, hence, omitted.

4. Conclusions

We have shown that a Markov chain or process is Harris recurrent if, and only if,
there exists a single random time at which the distribution of the chain or process does not
depend on its initial condition. This characterization shows that the regeneration property
of Markov chains or processes can be extracted from a much weaker property, the existence
of a single random time that exhibits distributional invariance. Then we further weaken the
assumption so that the well-known minorization-type characterization becomes a special
case of our new characterization of Harris recurrence. This implies that one strategy for
verifying Harris recurrence when wide-sense regeneration fails is to construct a random
time T satisfying Definition 4. Practical strategies for identifying such random times is a
direction for future work in the area.
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Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Doeblin, W. Sur deux problèmes de M. Kolmogoroff concernant les chaînes dénombrables. Bull. Société MathéMatique Fr. 1938,

66, 210–220. [CrossRef]
2. Athreya, K.B.; Ney, P. A new approach to the limit theory of recurrent Markov chains. Trans. Am. Math. Soc. 1978, 245, 493–501.

[CrossRef]
3. Nummelin, E. A splitting technique for Harris recurrent Markov chains. Z. Wahrscheinlichkeitstheorie Verwandte Geb. 1978,

43, 309–318. [CrossRef]
4. Sigman, K. One-dependent regenerative processes and queues in continuous time. Math. Oper. Res. 1990, 15, 175–189. [CrossRef]
5. Kalashnikov, V.V. Topics on Regenerative Processes; CRC Press: Boca Raton, FL, USA, 1994.
6. Kalashnikov, V.V. Estimations of convergence rate and stability for regenerative and renovative processes. In Proceedings

of the Colloquia Mathematica Societatis Janos Bolyai 24, Point Processes and Queueing Problems, Keszthely, Hungary, 1981;
pp. 163–180.

7. Kalashnikov, V.V. Analytical and simulation estimates of reliability for regenerative models. Syst. Anal. Model. Simul. 1990,
6, 833–851.

8. Kalashnikov, V.V. Regenerative queueing processes and their qualitative and quantitative analysis. Queueing Syst. 1990, 6, 113–136.
[CrossRef]

9. Kalashnikov, V.V. Regeneration and general Markov chains. J. Appl. Math. Stoch. Anal. 1994, 7, 357–371. [CrossRef]
10. Kalashnikov, V.V. Crossing and comparison of regenerative processes. Acta Appl. Math. 1994, 34, 151–172. [CrossRef]
11. Foss, S.; Kalashnikov, V.V. Regeneration and renovation in queues. Queueing Syst. 1991, 8, 211–223. [CrossRef]
12. Kalashnikov, V.V.; Vsekhsvyatskii, S. Metric estimates of the first occurrence time in regenerative processes. In Proceedings of the

Stability Problems for Stochastic Models, Uzhhorod, Ukraine, 23–29 September 1985; pp. 102–130.
13. Sigman, K.; Wolff, R.W. A review of regenerative processes. SIAM Rev. 1993, 35, 269–288. [CrossRef]
14. Sigman, K.; Thorisson, H.; Wolff, R.W. A note on the existence of regeneration times. J. Appl. Probab. 1994, 31, 1116–1122.

[CrossRef]
15. Glynn, P.W. Regenerative Simulation of Harris Recurrent Markov Chains; Technical Report; Department of Operations Research,

Stanford University: Stanford, CA, USA, 1982.
16. Doob, J.L. Stochastic Processes; John Wiley & Sons: Hoboken, NJ, USA, 1953.
17. Azema, J.; Kaplan-Duflo, M.; Revuz, D. Mesure invariante sur les classes récurrentes des processus de Markov.

Z. Wahrscheinlichkeitstheorie Verwandte Geb. 1967, 8, 157–181. [CrossRef]
18. Glynn, P.W. Wide-sense regeneration for Harris recurrent Markov processes: An open problem. Queueing Syst. 2011, 68, 305–311.

[CrossRef]
19. Bass, R.F. The measurability of hitting times. Electron. Commun. Probab. 2010, 15, 99–105. [CrossRef]

http://doi.org/10.24033/bsmf.1286
http://dx.doi.org/10.1090/S0002-9947-1978-0511425-0
http://dx.doi.org/10.1007/BF00534764
http://dx.doi.org/10.1287/moor.15.1.175
http://dx.doi.org/10.1007/BF02411469
http://dx.doi.org/10.1155/S1048953394000304
http://dx.doi.org/10.1007/BF00994263
http://dx.doi.org/10.1007/BF02412251
http://dx.doi.org/10.1137/1035046
http://dx.doi.org/10.2307/3215335
http://dx.doi.org/10.1007/BF00531519
http://dx.doi.org/10.1007/s11134-011-9238-x
http://dx.doi.org/10.1214/ECP.v15-1535


Mathematics 2023, 11, 2165 7 of 7

20. Kaspi, H.; Mandelbaum, A. On Harris recurrence in continuous time. Math. Oper. Res. 1994, 19, 211–222. [CrossRef]
21. Revuz, D.; Yor, M. Continuous Martingales and Brownian Motion; Springer Science & Business Media: Berlin/Heidelberg, Germany,

2013; Volume 293.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1287/moor.19.1.211

	Introduction
	Main Results
	A Further Generalization
	Conclusions
	References

