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Abstract: To deal with the uncertainty and disturbance that exist in the tracking system of an aero-

space vehicle, an adaptive trajectory-tracking method based on a novel tracking model predictive 

static programming (T-MPSP) is proposed. Firstly, to make the proposed method more adaptive to 

uncertain parameter deviations, an extended Kalman filter (EKF) parameter correction strategy is 

designed. Then, the control constraints are considered to form a novel T-MPSP algorithm. By com-

bining the parameter correction strategy with the improved T-MPSP algorithm, a novel adaptive 

tracking guidance scheme is presented. Finally, simulations are carried out to demonstrate the ef-

fectiveness of the proposed method. 
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1. Introduction 

For the past few decades, aerospace vehicles have been applied in both military and 

civilian fields, and their performance has been very compelling. For missions involving 

aerospace vehicles, a good trajectory-tracking ability is the essential prerequisite for the 

successful application of the vehicles [1]. In a traditional trajectory-tracking process for an 

aerospace vehicle, the dynamic model of the vehicle and the desired trajectory satisfying 

all the constraints are given in advance. Then, the control methods are designed to guide 

the vehicle to track the desired trajectory. However, the trajectories of aerospace vehicles 

usually cover a wide range of altitudes, which may lead to a dramatic change in the at-

mospheric environment during the trajectory-tracking process. In addition to the disturb-

ance brought about by the dramatic change in the external environment, there are also 

uncertainties about the dynamic system of the vehicles [2,3]. Thus, the precise model in-

formation is not always available, and the traditional trajectory-tracking method cannot 

achieve satisfactory performance under these circumstances. As a result, the design of the 

novel trajectory-tracking control method to cope with disturbance and uncertainty is very 

important. 

One of the most commonly used control architectures for trajectory-tracking control 

is the proportional-integral-derivative (PID) controller and its variants [4–7], which are 

known for the simplicity of their framework. To improve the tracking performance, many 

modern control theories, including intelligent optimization [4], feedback control [5], and 

fuzzy control [6,7], have been applied to the trajectory-tracking method design process. 

Another popular control architecture for trajectory-tracking control derives from the slid-

ing mode control theory. In [8], the sliding mode control theory is applied to make the 

tracking error converge to zero in a finite time period. As an improvement of the method 
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in [8], the fixed-time control theory was combined with the sliding mode control theory. 

The robustness of the resulting tracking laws was further enhanced [9,10]. Recently, the 

neural network and adaptive updating laws were applied to the sliding mode control 

framework. The convergence of the tracking error was ensured by the sliding mode con-

trol approach, and any system uncertainties were handled by the neural network [11]. 

In addition, the nonlinear model predictive control (NMPC) was applied to the tra-

jectory-tracking control [12–15]. However, several issues exist in the implementation of 

the NMPC-based tracking methods, which are summarized as follows: (1) a universal and 

exact model of the whole tracking system is difficult to acquire, (2) the calculation speed 

of the NMPC cannot meet the requirement in practice. A feasible way to cope with these 

issues is to use model predictive static programming (MPSP) [16], which combines the 

characteristics of approximate dynamic programming [17] and NMPC. The MPSP has 

been proven to be an effective method to cope with two-point boundary value problems 

with terminal constraints, which has significant advantages: (1) the terminal constraints 

are transformed into linear equality constraints with only the control variable to be opti-

mized, (2) the closed analytical expression of the appropriate objective function is ac-

quired from the static algorithm, (3) the sensitivity matrix of the algorithm can be calcu-

lated skillfully using recursion, which improves the calculation speed. The MPSP method 

has been used in many applications, such as in the trajectory control of launch vehicles, 

reentry guidance, cooperative control, etc. [18–20]. Typically, the MPSP method aims to 

improve the terminal accuracy by iteratively discretizing and updating. For a trajectory-

tracking problem, only the terminal-tracking accuracy can be guaranteed using the MPSP 

method, and its computing time increases exponentially with the number of discrete 

nodes that are tracked. To deal with this drawback, the T-MPSP is put forward to track a 

trajectory over a receding horizon window. Meanwhile, the predicted time horizon can be 

set manually to balance the computational efficiency and the precision, which is another 

advantage of the T-MPSP algorithm [21,22]. 

Some trajectory-tracking methods are based directly on the input and output data of 

the system. For example, a robust model-free controller for trajectory-tracking control is 

proposed in Ref. [23]. No dynamic model information of the controlled system is needed, 

and the resulting controller is a combination of the PID controller and the sliding mode 

control. As an improvement of the work in Ref. [23], a forecasting-based data-driven 

model-free adaptive sliding mode attitude control method is proposed for the post-cap-

ture combined spacecraft with unknown inertial properties and external disturbances 

[24]. To cope with the unknown dynamics of the system, a model-free control method is 

proposed via the time-varying compensation of the un-modeled system [25]. An iterative 

sliding mode control technique is utilized to design the adaptive model-free trajectory-

tracking method in Ref. [26]. Although these model-free control methods can deal with 

model uncertainties, the operation data require a huge memory size, and the computing 

burden is heavy. 

Hence, considering the uncertainty and disturbance that exist in the tracking system 

of the aerospace vehicle, an adaptive trajectory-tracking method based on the novel T-

MPSP is proposed. Firstly, to cope with the uncertain parameter deviations, an EKF pa-

rameter correction strategy is designed. Then, the control constraints are considered to 

form a novel T-MPSP algorithm. By combining the parameter correction strategy with the 

improved T-MPSP algorithm, an adaptive tracking guidance scheme is presented. Finally, 

simulations are carried out under various deviation conditions to verify the reliability and 

robustness of the proposed method. 

The main contributions of this paper are summarized as follows: 

(1) To our best knowledge, no existing methods have applied the EKF with the T-MPSP 

to solve the trajectory problems of aerospace vehicles. 

(2) Compared with the MPSP method in [18–20], the proposed method has a fast com-

puting speed and high accuracy. 

(3) Compared with [21–23], the proposed scheme can cope with the control constraints. 
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The rest of this paper is organized as follows: Section 2 presents the model of the 

aerospace vehicle. Section 3 presents the online parameter identification method and the 

improved T-MPSP algorithm. The simulations are presented in Section 4. Finally, the con-

clusion is presented in Section 5. 

2. Model of the Aerospace Vehicle 

In this section, first, the dynamic model describing the motion of the aerospace vehi-

cle is presented. Then, the constraints that should be satisfied are introduced. 

2.1. Dynamic Equations 

The three-dimensional mass point dynamic equations [22,27] of the aircraft in the 

longitudinal plane are 

0 sp
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where h , v ,  ,   and m  represent the altitude, velocity, flight path angle, angle of 

attack (AOA), and mass, respectively. g  and 0g  represent the gravitational acceleration 

at the current altitude and on the earth’s surface, respectively. spI  represents the specific 

impulse of the engine. T, L and D denote the engine thrust, aerodynamic lift, and drag, 

respectively, which are defined as 
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where TC , LC , and DC  denote the thrust, lift and drag coefficients, respectively.   de-

notes the throttle.  , refS  and Ma  denote the atmospheric density, reference area, and 

Mach number, respectively. 

2.2. Flight Constraints 

To ensure flight safety, the dynamic pressure constraint is considered, which is de-

fined as 

2

max

1
=

2
q v q 

 
(3) 

In addition, the aircraft must satisfy the terminal constraints, which are described as 

f
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(4) 

where the subscript f  refers to the final value and the superscript   refers to the de-

sired value. h , v , and   represent the deviation thresholds of the terminal altitude, 

velocity, and flight path angle, respectively. 
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The control variables considered are   and the throttle  , the constraints of which 

are as follows: 

min max

min max

  

  

 


   
(5) 

Additionally, to prevent the control variable from changing too drastically, the rate 

of AOA must satisfy the following constraint: 

min max     (6) 

3. The Trajectory-Tracking Strategy 

In this section, we will introduce an online parameter identification method and an 

improved T-MPSP algorithm. By combining these two methods, an adaptive trajectory-

tracking guidance algorithm based on an improved T-MPSP will be presented. 

3.1. Online Parameter Identification Method 

Since an accurate model can improve the trajectory-tracking accuracy, a parameter 

correction strategy based on the EKF is designed in this subsection. In the actual tracking 

process, there are deviations in the parameters of atmospheric density, thrust coefficient, 

lift coefficient, and drag coefficient, which will make the model inaccurate. We define these 

parameters as 

( ) ( ) ( ) ( )* 1 , 1 , 1 , 1
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  and DC
  are the ac-

tual values. 

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, LC

, and DC
 respectively represent the unknown deviation of 

each parameter. These unknown deviations are written in an overall form as 
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Defining  x h v m= , the following dynamic equations are obtained from (1) 

and (7) as 
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(10) 

Since the EKF algorithm [28] needs to augment the unknown parameters into the 

state variables of the system, the new augmented dynamic equation is defined as 
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,
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a   represents the uncorrelated zero-mean white Gaussian noise. To identify the un-

known parameters, the EKF algorithm also requires the measurement information of the 

unknown parameters. The measurement equation is expressed as 

( )

2
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(13) 

where mx , xma , zma  and mq  denote the state values, axial acceleration, normal accelera-

tion and dynamic pressure measured by the sensor, respectively. av  represents the un-

correlated zero-mean Gaussian white noise. xC  and zC  refer to axial and normal force 

coefficients, respectively. The calculation formulas of xC  and zC  are 

sin cos
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x L D

z L D
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= − −  
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Then, the two-step online parameter identification method will be introduced as fol-

lows: 

a. Prediction 

First, the prior estimate of the state at the current time instant k  is 

( )
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where kF  represents the Jacobian matrix of the augmented state equation ( )
1

ˆ
ka af x
−

 to 

estimate the state 
1

ˆ
kax
−

 at the previous time instant and t  represents the sampling time 

interval. Then, the error covariance matrix of the current time instant k  according to the 

equation is acquired as 

1

T

k k k k kP P Q−

−=   +  (16) 

where =k kI F t +   represents the state transition matrix, and kQ  represents the noise 

covariance matrix. 

b. Update 

Using the error covariance matrix 
kP − , we update the Kalman filter gain coefficient 

kK  at the current time instant k  as 

( )
1

T T

k k k k k k kK P H H P H V
−

− −= +
 (17) 

where kV  represents the measurement noise covariance matrix, and kH  represents the 

Jacobian matrix of the prior estimate ˆ
kax−

  of the state from the measurement equation 

( )ˆ
kay x− . Subsequently, the error covariance matrix is updated as 

( ) ( )
k

T T

k k k k k k k kP I K H P I K H K R K−= − − +
 (18) 

The measurement correction is updated as 

( )ˆ=
kk k ay y y x− −

 
(19) 

where ky  represents the actual measurement value. 

Finally, we update the posterior estimate of the state at the current time instant k  

using 
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ˆ ˆ
k ka a k kx x K y−= + 

 (20) 

ˆ
kax  of the augmented state has been obtained through the EKF algorithm, from which the 

estimated value of the corresponding unknown parameter   is also obtained. Thus, the 

new model that accounts for uncertain derivations is obtained by substituting the esti-

mated value of   into (10). 

Remark 1. An imprecise model will make it difficult for the trajectory-tracking method 

design, and uncertain parameter deviations will affect the accuracy of the model. Hence, 

a parameter correction strategy based on the EKF is designed in this subsection. By apply-

ing the EKF algorithm, the augmented state ˆ
kax  is obtained, from which the estimated 

value of the corresponding unknown parameter    is also obtained. Then, the exact 

model that considers uncertain derivations is obtained. 

3.2. Improved T-MPSP Algorithm 

According to (1), the state variables are  = , , ,
T

X h v m  , the control variables are 

 = ,
T

U   , and the output variables are  = , ,
T

Y h v  . The discrete form of the state equa-

tion and output equation of a continuous nonlinear system is expressed as 

( )1 ,i i i

k k k kX F X U+ =
 (21) 

( )i i

k kY h X=
 (22) 

where nX  , mU   and pY   denote the state, control, and output variables, re-

spectively. 1,2, , yk N=  represents the k th sampling point, and 
yN  represents the to-

tal length of the prediction time domain. 1k =   and 
yk N=   represent the starting and 

ending points of the prediction time domain, respectively, and i  represents the number 

of iterations. 

The main objective of the trajectory-tracking algorithm is to find the suitable control 

variables 1i

kU +  to make the output 1i

kY +  as close to the desired output 
kY  ( 2,3 , )yk N= ，  

as possible at each sampling time; that is, 1i

k kY Y+ → , where i

kU  represents the control 

variables at the current i th iteration, and 1i

kU +  represents the control variables for the 

next iteration. 

Similarly, i

kY  is the current output, and 1i

kY +  is the output of the next iteration. We 

should also add a performance index that minimizes the deviation of the control variables 

to avoid overly drastic changes in the control variables. Therefore, the following objective 

function is proposed: 

( ) ( ) ( ) ( )
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1 1 1 1
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(23) 

where i

kQ  and i

kR  are both the positive definite weight matrix at the i th iteration. 

The deviation vectors between two consecutive iterations at the same time are de-

fined as follows: 
1i i i

k k kY Y Y+ = +   (24) 

1i i i

k k kX X X+ = +   (25) 

1i i i

k k kU U U+ = +   (26) 

By expanding the Taylor series of i

kY  and ignoring its higher-order terms, we ob-

tain 



Mathematics 2023, 11, 2160 7 of 16 
 

 

=i i ik

k k k

k

Y
Y dY dX

X

 
   

   
(27) 

Similarly, we obtain 

1 1=i i i ik k

k k k k

k k

F F
X dX dX dU

X U
+ +

    
  +   

      
(28) 

where i

kdX  and i

kdU  represent deviations in the state variables and control variables at 

the k th time instant, respectively. By substituting (27) into (26), we obtain 
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where 1kdX −  is also expanded into an equation composed of 2kdX −  and 2kdU − , and the 

corresponding equation is substituted into (29). By successively substituting 

1 2, ,k kdX dX dX−  into the expression of i

kdY , we obtain 
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where 
i

k

jB    is called the sensitivity matrix. Then, the deviations in the output variables 

and control variables at each sampling time are formed into a linear equation, in which 

each i

jdU  is a variable to be optimized. (32) is calculated recursively in the following way: 
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where 
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, when j k , =0
i

k

j p mB 
   . 

According to (24) and (26), and considering the small approximation i i
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i i

k kU dU  , we obtain 
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Hence, the objective function in (23) is rewritten as 
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(35) 

In the traditional T-MPSP algorithm, the increment of the control variables is added 

to the performance index to indirectly constrain the control variables. However, this 

method cannot strictly constrain the control variables, which may fail to satisfy the con-

straints. Therefore, we propose an improved T-MPSP algorithm by adding control varia-

ble constraints. 

The control variable constraints (5) and (6) are expressed as 
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1
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where h  represents the sampling step size, mU  . According to (34), we obtain 
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which is simplified to 
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The control magnitude constraint is thus transformed into a linear inequality con-

straint with the only unknown i

kdU . Then, 1i

kU +  is converted into 

( ) ( )1 1
1 11 1 =

i i i ii i
k k k ki k k

k

U dU U dUU U
U

h h

+ +
+ ++ +
+ − +−

=
 

(39) 

Thereby, 

( ) ( )1 1 1 max 1

min max

1 min 1

i i i i i i i i
k k k k k k k k

i i i i

k k k k

U dU U dU dU dU hU U U
U U

h dU dU hU U U

+ + + +

+ +

+ − + − +  − +
   

−  − + −  
(40) 

which is simplified to 

 

 

max 1

1

min 1

1

3

4

i

i i ik

m m k k ki

k

i

i i ik

m m k k ki

k

dU
I I hU U U C

dU

dU
I I hU U U C

dU

+

+

+

+

  
−  − + =  

  


 
−  − + − = 

   

(41) 

where mI  is an identity matrix of order m m . In this way, the change rate constraint is 

transformed into linear inequality constraints with unknowns i

kdU  and 
1

i

kdU +
. In order 

to facilitate the subsequent solution, (41) is rewritten in the following form: 

3

4

i i

i i

PdU C

PdU C

 =

− =  

(42) 

where 

0 0

0 0

0 0 0

0 0 0

m m

m m

m m

I I

I I
P

I I

− 
 

−
 =
 
 

− 

,

1

2

2

1

i

i

i

i

N

i

N

dU

dU

dU

dU

dU

−

−

 
 
 
 =
 
 
 
 

,

1

2

2

1

3

3

3

3

3

i

i

i

i

N

i

N

C

C

C

C

C

−

−

 
 
 
 =
 
 
 
 

,

1

2

2

1

4

4

4

4

4

i

i

i

i

N

i

N

C

C

C

C

C

−

−

 
 
 
 =
 
 
 
 

. 

Therefore, combining (35) with the inequality constraints in (38) and (42) yields 

( ) ( ) ( ) ( )
1

* *

2 1

1 1
min

2 2

1 3
s.t. ,       

2 4

y yN N
T T

i i i i i i i i

k k k k k k k k

k k

i i i i

k k

i i i i

k k

J dY Y Q dY Y dU R dU

dU C PdU C

dU C PdU C

−

= =

= − − +

  = 
 
−  − = 

 

 

(43) 

In this paper, the Lagrangian multiplier method and the penalty function are applied 

to solve the NLP problem; thus, we have 
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( ) ( )

( ) ( )

( ) ( )

1 1

2 1 1

1

1

1

1

1

1

2 1 1

1 1 1

1

2

1

2

1
1 1 1

2

1
2 2 2

2

1
3 3 3

2

y

y

y

y

y y y

TN k k
k k

j j k k j j k

k j j

N
T

k k k

k

N
T

k k k k k

k

N
T

k k k k k

k

T
N N N

kj j k k kj j k

k j j

L B dU Y Q B dU Y

dU R dU

dU C dU C

dU C dU C

P dU C P dU C







− −
 

= = =

−

=

−

=

−

=

− − −

= = =

   
= −  −    

   

+

+ − −

+ − − − −

 
+ − −  

 

  







  

2 1 1

1 1 1

1
4 4 4

2

y y y
T

N N N

kj j k k kj j k

k j j

P dU C P dU C
− − −

= = =

 
  
 

   
+ − − − −      

   
  

 

(44) 

where 
kjP  represents the element of the k th row and the j th column of the matrix P

. The data in the following equations are all in the same iteration i , so the superscript i  

is omitted for the convenience of subsequent derivation. According to the necessary con-

ditions for first-order optimality, we obtain 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

2 1 2

2 1 2

2 1 2

2 1 2

2 1 2

0

1 1

2 2 + 3 3 3

4 4 4 =

y y

y y y

y y y

l

N Nk
T T

k k k

l l l k j j l k k l l l

k j k

N N N
T T

l l l kl k kj j kl k k

k j k

N N N
T T

kl k kj j kl k k

k j k

L

dU

R dU B Q B dU B Q Y dU C

dU C P P dU P C

P P dU P C



  

 

−


= = =

− − −

= = =

− − −

= = =


=



 
 + −  + − + 

 

 
+ − +  

 

 
+  

 

  

  

   0

 

(45) 

where 1k , 2k , 3k  and 4k  are all penalty factors. By changing the positions of the 

terms in Equation (45), we obtain 

( ) ( )

( )

( ) ( )

1

2 1

2 1 1

2 1 1

2

2 2

1 2

3 4

3 3 4 4 1 1 2 2

y

y y y

y y

N k
T

k k

l l l l l k j j

k j

N N N
T

kl k kj j k kj j

k j j

N N
T

k T

l k k kl k k k k l l l l

k k

R dU B Q B dU

P P dU P dU

B Q Y P C C C C

 

 

   

−

= =

− − −

= = =

−



= =

 
+ + + + 

 

  
+    

  

=  + − + −

 

  

 
 

(46) 

All ( 1 2 , 1)l ydU l N=  −，，  in (46) are expressed in a matrix form as 

11 1 1( 2) 1( 1) 1 1

2 221 22 2 2( 1)

1 1( 1)1 ( 1)( 1) 1

y y

y yy y y y

N N

N

N NN N N N

M T M M dU b

dU bM M T M

dU bM M T

− −

−

− −− − − −

+     
     

+     =     
     

+           

(47) 

where 
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( )

( )

( )

2

1 2

2

2 2

3 4

= 1 1 2 2 3 3 4 4

= 1 2

y y

y y

N N

lT l T T

ij i l j ki k kj ki k kj

l j k

N N

lT T

i i i i i i l l ki k k k k

l k

i i i i

M B Q B P P P P

b C C B Q Y P C C

T R

 

   

 

−

= + =

−



= =


= + +





− +  + −

 + +



 

 

 

(48) 

By solving (47), we obtain the corrections for all control variables 

1 2 1= , , ,
yNdU dU dU dU −

 
 

. Finally, the updated control variables are calculated as 

1 =i iU U dU+ +  (49) 

3.3. Overall Structure and Operating Steps 

In this subsection, we combine the online parameter identification method with the 

improved T-MPSP algorithm to propose an adaptive trajectorytracking guidance algo-

rithm based on an improved T-MPSP. By applying the first-order Euler method, we obtain 

( ) ( )1 , ,k k k k kX X hf X U F X U+ = + =  (50) 

where h   represents the sampling step size.  , , ,
T

k k k k kX h v m=  ,  ,
T

k k kU  =   and

 , ,
T

k k k kY h v =  denote the state, control, and output variables of the aircraft, respectively. 

( ),f X U  represents the state differential equation of (1). The comprehensive block dia-

gram of the proposed method is presented in Figure 1, and the operating steps of the 

adaptive tracking guidance algorithm based on the improved T-MPSP are as follows: 

Step 1: Parameter initialization, such as initializing the prediction time domain, sam-

pling step size, EKF parameters, etc. 

Step 2: Use the EKF algorithm to identify the parameter deviation online, which is 

used to correct the prediction model for the T-MPSP algorithm. 

Step 3: In the improved T-MPSP algorithm, use the revised model to update the con-

trol variables until they converge or the algorithm reaches the maximum number of iter-

ations. 

Step 4: Use the first control values of the prediction time-domain window of the T-

MPSP algorithm as the control variables of the current time. 

Step 5: Integrate the dynamic equations using fourth-order Runge-Kutta to the next 

time instant. 

Step 6: Determine whether the terminal time is reached. If it is reached, stop the op-

eration. Otherwise, go to step 2 and continue with the same steps. 

 

Figure 1. The block diagram of the proposed method. 
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4. Simulations 

In this section, simulations are carried out to show the effectiveness of the proposed 

method. First, comparison simulations against the existing T-MPSP tracking method are 

presented. Then, several extreme combinations of parameter deviations are considered in 

the simulation. Finally, the Monte Carlo simulations are carried out to verify the robust-

ness of the proposed method. 

The control parameters are initialized as 

=7

1.11 0 0

0 1.96 0

0 0 5000

1000

90000

y

k

k

N

Q

R

=

=




  
  
  
   
  
  
    

(51) 

And the constraints considered in this simulation are tabulated in Table 1. 

Table 1. Constraints. 

Process constraints 
max

q  150 (kPa) 

Control constraints 

min max
[ , ]   [ 3 21]− ，  (°) 

min max
[ , ]   [0 2]，  

min max
[ , ]   [ 5 5]− ，  ( /s ) 

Terminal constraint 

h
  500 (m) 

v
  50 (m/s) 


  0.5 (°) 

4.1. Comparison Simulations 

To demonstrate the effectiveness of the proposed method, both the open-loop track-

ing method and the MPSP tracking law presented in [22] are considered as comparison 

methods in this subsection. The detailed simulation results are presented in Table 2 and 

Figure 1. 

In Figure 2, the solid lines in blue represent the tracking results of the proposed 

method, dash lines in blue refer to the tracking results of the open-loop control, dot lines 

in pink denote the tracking results of the comparison T-MPSP method, and the reference 

curves are presented in dash-dot form. 

Table 2. Comparison results. 

 
Terminal Height De-

viations (m) 

Terminal Velocity 

Deviations (m/s) 

Terminal Flight Path 

Angle Deviations (°) 

Proposed method 32.95  −12.53  0.279  

Open-loop tracking 

method 
−444.49  272.40  1.124  

T-MPSP method −242.36  −15.48  0.025  

For the open-loop control scenario, the tracking performance is far from satisfactory. 

Moreover, the maximum dynamic pressure violates the constraint, which will cause 
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damage to the vehicle. As for the comparison T-MPSP method, the terminal accuracy is 

acceptable, while the overall tracking performance is not so good. In the proposed 

method, the terminal deviations are much smaller than in the comparison law, which con-

firms the effectiveness and superiority of the proposed method. The optimization process 

of the proposed method and the T-MPSP method requires about 1.7 s on our laptop with 

an AMD 1.8 GHz CPU. However, it needs about 2.8 s for the MPSP tracking method. 

  
(a) Height (b) Velocity 

  
(c) Flight path angle (d) AOA 

  
(e) Throttle (f) Dynamic pressure 

Figure 2. Comparison results. 

4.2. The Monte Carlo Simulations 

In this subsection, trajectory tracking is carried out under 300 sets of deviations sam-

pled through the LHS method. Furthermore, the distribution intervals of the four uncer-

tain conditions are as follows: 
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 

 

 

 

0.1, 0.1

0.05, 0.05

0.1, 0.1

0.1, 0.1

T

L

D

C

C

C

  −

  −

  −

  −






  

(52) 

The terminal state deviations under the 300 groups of random deviations are pre-

sented in Figures 3–5. The statistical maximum deviations in the terminal states are rec-

orded in Table 3. 

Table 3. Maximum tracking deviations. 

Terminal Height Devia-

tions (m) 

Terminal Velocity Devi-

ations (m/s) 

Terminal Flight Path 

Angle Deviations (°) 

Dynamic Pressure 

(kPa) 

148.73  47.26  0.313  142.12  

The maximum tracking deviation in the terminal height is less than 150 m, which is 

far lower than the requirements of terminal height accuracy. At the same time, the maxi-

mum tracking deviation in the terminal speed is less than 50 m/s, which also meets the 

requirements. In addition, the absolute value of terminal flight path angle deviation is also 

within the allowable range of 0.5°, and the maximum dynamic pressure also meets the 

constraints. These simulation results show that the novel T-MPSP method proposed in 

this paper has a good anti-interference ability against coefficient deviations caused by 

complex flight environments. 

 

Figure 3. Terminal state deviation distributions. 

 

Figure 4. Terminal state deviation distributions (left view). 
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Figure 5. Terminal state deviation distributions (vertical view). 

5. Conclusions 

An adaptive trajectory-tracking method based on a novel tracking model predictive 

static programming (T-MPSP) was proposed. The proposed method had advantages in 

computing efficiency and tracking accuracy. Further, it was more adaptive to uncertain 

parameter deviations due to the parameter correction strategy. Firstly, a parameter cor-

rection strategy was designed. Then, the control constraints were considered to form a 

novel T-MPSP algorithm. By combining the parameter correction strategy with the im-

proved T-MPSP algorithm, an adaptive tracking guidance scheme was presented. Finally, 

simulations were carried out to show the effectiveness of the proposed method. In related 

future research, the saturation of the input should be considered in the design of the tra-

jectory-tracking method. 
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Nomenclature 

Scalar    

h  altitude v  velocity 


 flight path angle   angle of attack (AOA) 

m  mass g
 gravitational acceleration 

spI
 the specific impulse of the engine T  the engine thrust 

L   the aerodynamic lift D  the aerodynamic drag 

TC
 the thrust coefficient LC

 the lift coefficient 

DC
 the drag coefficient 

 the atmospheric density 


 the throttle refS

 the reference area 

Ma  mach number   the terminal deviation thresholds 

a
 uncorrelated white Gaussian noise zC  normal force coefficients 

xC  axial force coefficients k the current time instant  

Matrix    
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F  the Jacobian matrix P the error covariance matrix 

  the state transition matrix k
Q  the noise covariance matrix 

K  the Kalman filter gain coefficient matrix k
R  the noise covariance matrix 

Subscripts    

max the maximum value min the minimum value 

f the final value and the superscript    the desired value 

a   the new augmented state   
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