Next Article in Journal
Stochastic Simulations of Casual Groups

Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Correction

# Correction: Kowalenko, V. Exact Values of the Gamma Function from Stirling’s Formula. Mathematics 2020, 8, 1058

School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC 3010, Australia
Mathematics 2023, 11(9), 2151; https://doi.org/10.3390/math11092151
Received: 13 April 2023 / Accepted: 25 April 2023 / Published: 4 May 2023
(This article belongs to the Special Issue Special Functions with Applications to Mathematical Physics)

## Error in Table 4

In the original publication [1], there was a mistake in Table 4 as published. The value of TS for $N = 30$ is incorrect. The value should be “−52.07235660935681329352406137393$i$”. The corrected Table 4 appears below.
Table 4. $ln Γ 3 exp ( i π / 2 )$ via (25) for various values of N.
Table 4. $ln Γ 3 exp ( i π / 2 )$ via (25) for various values of N.
NQuantityValue
$F ( 3 exp ( i π / 2 ) )$−4.3427565915140719616112579569 − 0.4895612973931192354299251350522$i$
$S D 0 S L ( 3 exp ( i π / 2 ) )$     3.256206078642828367679816468
Combined−4.3427565882578658829684295892 − 0.4895612973931192354299251350522$i$
TS$0$
1$R 1 S L ( 3 exp ( i π / 2 ) )$$−$ 0.0278840894653691199321777792256$i$
Total−4.3427565882578658829684295892 − 0.5174453868584883553621029142779$i$
TS$0$ − 0.0278842394252900781377131527007$i$
6$R 6 S L ( 3 exp ( i π / 2 ) )$$0$ − 1.8907874105339892863379255
Total−4.3427565882578658829684295892 − 0.51744555572628341890753115113225$i$
TS$0$ − 0.0278842563298976281594154202028$i$
9$R 9 S L ( 3 exp ( i π / 2 ) )$$0$ + 3.2562060786428283676798164
Total−4.3427565882578658829684295892 − 0.51744555572628341890753115113225$i$
TS$0$ − 0.0278842691899612112195938305035$i$
15$R 15 S L ( 3 exp ( i π / 2 ) )$$0$ + 1.0856797027741987814423624
Total−4.3427565882578658829684295892 − 0.51744555572628341890753115113225$i$
TS$0$ − 52.07235660935681329352406137393$i$
30$R 30 S L ( 3 exp ( i π / 2 ) )$$0$ + 52.044472351023649035874440121314$i$
Total−4.3427565882578658829684295892 − 0.51744555572628341890753115113225$i$
TS$0$ − 6.4908409843349435181620453
50$R 50 S L ( 3 exp ( i π / 2 ) )$$0$ + 6.4908409843349435181620453
Total−4.3427565882578658829684295892 − 0.51744555572628341890753115113225$i$
$ln Γ ( 3 exp ( i π / 2 ) )$−4.3427565882578658829684295892 − 0.51744555572268341890753115113225$i$
The author states that the scientific conclusions are unaffected. This correction was approved by the Academic Editor. The original publication has also been updated.

## Reference

1. Kowalenko, V. Exact Values of the Gamma Function from Stirling’s Formula. Mathematics 2020, 8, 1058. [Google Scholar] [CrossRef]
 Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

## Share and Cite

MDPI and ACS Style

Kowalenko, V. Correction: Kowalenko, V. Exact Values of the Gamma Function from Stirling’s Formula. Mathematics 2020, 8, 1058. Mathematics 2023, 11, 2151. https://doi.org/10.3390/math11092151

AMA Style

Kowalenko V. Correction: Kowalenko, V. Exact Values of the Gamma Function from Stirling’s Formula. Mathematics 2020, 8, 1058. Mathematics. 2023; 11(9):2151. https://doi.org/10.3390/math11092151

Chicago/Turabian Style

Kowalenko, Victor. 2023. "Correction: Kowalenko, V. Exact Values of the Gamma Function from Stirling’s Formula. Mathematics 2020, 8, 1058" Mathematics 11, no. 9: 2151. https://doi.org/10.3390/math11092151

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.