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Abstract: If X is a convex subset of a topological vector space and f is a real bifunction defined
on X × X, the problem of finding a point x0 ∈ X such that f (x0, y) ≥ 0 for all y ∈ X, is called an
equilibrium problem. When the bifunction f is defined on the cartesian product of two distinct sets
X and Y we will call it a generalized equilibrium problem. In this paper, we study the existence
of the solutions, first for generalized equilibrium problems and then for equilibrium problems. In
the obtained results, apart from the bifunction f , another bifunction is introduced, the two being
linked by a certain compatibility condition. The particularity of the equilibrium theorems established
in the last section consists of the fact that the classical equilibrium condition ( f (x, x) = 0, for all
x ∈ X) is missing. The given applications refer to the Minty variational inequality problem and
quasi-equilibrium problems.
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1. Introduction

In this paper, we consider the following problem

(GEP) find x0 ∈ X such that f (x0, y) ≥ 0, ∀y ∈ Y,

where X is a nonempty convex subset of a Hausdorff topological vector space, Y is a
nonempty set, and f is a real bifunction defined on X×Y.

When X = Y, the problem above has been termed by Blum and Oetlli [1] equilibrium
problem (EP), and this terminology is used now by all the researchers working in this field.
It should be mentioned that Kassay [2] kept the same name also in the case when the sets X
and Y are distinct, but we consider that in this case it would be more suitable to call it a
generalized equilibrium problem, and this fact motivates the above abbreviation (GEP).

The first result in the existence of solutions for problem (EP) is due to Ky Fan [3]
and it refers to the case when X is a compact convex set and the bifunction f is upper
semicontinuous in the first variable, quasiconvex in the second variable, and its values
on the diagonal of X× X are non-negative. Problem (EP) has been extensively studied in
recent years in both finite and infinite dimensional settings, under various assumptions
on the set X, and on the bifunction f . Since in the classical examples of equilibrium
problems (minimization problems, fixed point problems, saddle point problems, Nash
equilibrium problems, and variational inequality problems) the bifunction f is identically
null on the diagonal of X× X, often the existence of solutions for problem (EP) is studied
under the assumption that f fulfills this condition (see, for instance [4–7]). Nevertheless,
in the past, papers in which no assumption is made about the values of f on the diagonal
of X× X [8–11] have appeared. Theorem 4 of the present paper will also be a result of
this type.

Besides the existence of solutions, some algorithms for determining the solution set
for so-called general equilibrium problems were given in [12,13]. Recently, the theory of
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equilibrium problems found unexpected applications in the study of a wide class of linear
and nonlinear problems arising in traffic networks, image reconstructions, medical imaging,
and physical or mechanical structures.

Unlike the equilibrium problems which have extensive literature on existing results,
stability of the solutions, and solution methods (see, for instance, the surveys [14,15]) the
literature devoted to generalized equilibrium problems is poorer and quite old. We can,
however, mention the works [16,17], in which Y is assumed to be a subset of X and [2,18,19],
in which Y is an arbitrary set without any topological or algebraic structure.

At the end of this section, we briefly describe the content of the paper. In Section 2, we
recall some notions regarding set-valued mappings and bifunctions. Section 3 is devoted to
generalized equilibrium problems. We establish here an interesting intersection theorem
from which two theorems regarding the existence of solutions for generalized equilibrium
problems are derived. In the last section, we obtain two existence theorems for equilibrium
problems, first when the convex set X is paracompact and then when the paracompactness
condition is missing. In general, the proofs of the existence theorems for equilibrium or
generalized equilibrium problems rely on the Knaster–Kuratowski–Mazurkiewicz (KKM,
for short) principle or on other intersection results. In our paper, the proofs of the main
results use two important tools. The first is the Berge–Klee intersection theorem. The
second is the KKM property of continuous functions. In order to highlight the applicability
of our results, at the end of this paper we study the existence of solutions of the Minty
variational inequality and quasi-equilibrium problems.

2. Preliminaries

In this section, we fix some notations and recall some concepts used in the paper. For
subset A of a topological vector space, the standard notations conv A and cl A designate
the convex hull and the closure of A, respectively.

Let F : X ⇒ Y be a set-valued mapping with nonempty values. The set-valued map-
ping F− : Y ⇒ X, defined by F−(y) = {x ∈ X : y ∈ F(x)}, is called the inverse of F and its
values are called the fibers of F. If X and Y are topological spaces, F is said to be: (i) upper
semicontinuous, if for every open subset G of Y, the set {x ∈ X : F(x) ⊆ G} is open;
(ii) lower semicontinuous, if for every open subset G of Y, the set {x ∈ X : F(x) ∩ G 6= ∅}
is open; (iii) continuous, if it is both upper semicontinuous and lower semicontinuous;
(iii) closed, if its graph (that is, the set GrF = {(x, y) ∈ X×Y : y ∈ F(x)}) is a closed subset
of X×Y; (iv) compact, if its range F(X) is contained in a compact subset of Y.

The following statements about semicontinuous mappings are well known:

Lemma 1. Let X and Y be topological spaces and let F : X ⇒ Y be set-valued mappings with
nonempty values.

(i) Assume that F is compact. Then, F is closed if and only if it is upper semicontinuous and
closed-valued.

(ii) F is lower semicontinuous if and only if for any net {xt} in X converging to x ∈ X and each
y ∈ F(x), there exists a subnet {xti} of the net {xt} and a net {yi} in Y converging to y,
with yi ∈ F(xti ), for each index i.

If Y is a subset of a topological vector space and X ⊆ Y, the set-valued mapping F is
said to be a KKM mapping if for each nonempty finite subset A of X, conv A ⊆ F(A). The
concept of KKM mapping has been generalized by Chang and Yen [20] as follows:

Definition 1. Let X be a convex set in a vector space and Y be a topological space. If F, G : X ⇒ Y
are two set-valued mappings such that G(conv A) ⊆ F(A) for each nonempty finite subset A of X,
then F is called a generalized KKM mapping w.r.t. G. The set-valued mapping G is said to have the
KKM property if for any set-valued mapping F : X ⇒ Y which is generalized KKM w.r.t. G, the
family {cl F(x) : x ∈ X} has the finite intersection property.
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If Y is a topological space, the set-valued mapping F : X ⇒ Y is said to be intersection-
ally closed if ⋂

x∈X
cl F(x) = cl

( ⋂
x∈X

F(x)
)

.

Clearly, any set-valued mapping with closed values is intersectionally closed, but the
converse is not true. Sufficient conditions for a mapping F to be intersectionally closed can
be found in [21] (Proposition 2.3).

Recall that a real function g defined on a convex set X is quasiconvex if for any
nonempty finite subset A of X and every x ∈ convA, g(x) ≤ maxz∈A g(z). We will need
two close notions related to bifunctions.

Definition 2 ([22]). Let X be a convex subset of a vector space and γ ∈ R. A bifunction g :
X× X → R is said to be γ- diagonally quasiconvex in the first variable, if for any nonempty finite
subset A of X and all x ∈ convA, γ ≤ maxz∈A g(x, z).

For the sake of simplicity, a bifunction 0-diagonally quasiconvex will be simply termed
a diagonally quasiconvex bifunction.

Remark 1. Consider the set-valued mapping G : X ⇒ X defined by

G(z) = {x ∈ X : g(x, z) ≥ 0}.

It can be seen easily that bifunction g is diagonally quasiconvex in the first variable if and only if G
is a KKM set-valued mapping.

Definition 3 ([23]). Let X be a nonempty set, Y be a nonempty convex subset of a vector space,
and f , g be two real bifunctions defined on X × Y. We say that g is f -quasiconvex in the second
variable if for any x ∈ X and every nonempty finite subset A of Y,

g(x, y) ≤ max
z∈A

f (x, z), for all y ∈ convA.

3. Generalized Equilibrium Problems

The proof of Theorem 1 relies on an important intersection property of convex sets
established, first in Euclidean spaces by Klee [24], and then in topological vector spaces
by Berge [25] and Ghouila-Houri [26]. For this reason, the lemma below is known in the
literature as the Berge–Klee intersection theorem.

Lemma 2. Let {X1, . . . , Xn} be a family of closed convex subsets of a Hausdorff topological vector
space whose union is convex. If the intersection of every n− 1 of these sets is nonempty, then their
intersection is nonempty.

Theorem 1 is an intersection result of self-interest. From it, we will derive the main
result of this section.

Theorem 1. Let X be a compact convex subset of a Hausdorff topological vector space, Y be a
nonempty set, and F : Y ⇒ X be a set-valued mapping with nonempty closed values. Assume that
there exists a KKM set-valued mapping G : X ⇒ X such that

G(F(y)) ⊆ F(y), for all y ∈ Y. (1)

Then,
⋂

y∈Y F(y) 6= ∅.
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Proof. We show first that the values of F are convex sets. Indeed, for each y ∈ Y and any
two distinct points x1, x2 ∈ F(y), since G is a KKM set-valued mapping, we have

[x1, x2] ⊆ G(x1) ∪ G(x2) ⊆ G(F(y)) ∪ G(F(y)) ⊆ F(y).

Assume, by way of contradiction, that
⋂

y∈Y F(y) = ∅. Then, because X is compact, there
exists a finite subset A of Y such that

⋂
y∈A F(y) = ∅. Since F has nonempty values, the

cardinality of A is grater than 1. Let A = {y1, y2, . . . , yn}, a minimal set with this property,
that is,

n⋂
i=1

F(yi) = ∅, and
⋂
i 6=j

F(yi) 6= ∅, for all j ∈ {1, . . . , n}.

For each j ∈ {1, . . . , n}, we choose a point xj ∈
⋂

i 6=j F(yi) and denote by

C = conv {x1, . . . , xn}.

Consider the set-valued mapping F̃ : Y ⇒ C defined by

F̃(y) = F(y) ∩ C.

It is clear that the values of F̃ are closed and convex. Moreover,

n⋂
i=1

F̃(yi) = ∅, and
⋂
i 6=j

F̃(yi) 6= ∅, for all j ∈ {1, . . . , n}.

By the Berge–Klee theorem, there exists a point x ∈ C \
(⋃n

i=1 F̃(yi)
)
. Since x ∈ C and G is

a KKM mapping, for some index j ∈ {1, . . . , n},

x ∈ G(xj).

Let us fix an index k 6= j. From xj ∈ F(yk) and x ∈ G(xj), we obtain x ∈ G
(

F(yk)
)
, and

then from (1), we obtain x ∈ F(yk). Since x ∈ C, we are led to the following contradiction

x ∈ F̃(yk) ⊆
n⋃

i=1

F̃(yi).

Remark 2. Let us note that the inclusion in (1) is actually an equality. Indeed, since G is a KKM
mapping, any point x ∈ X is a fixed point for G, and hence for every x ∈ F(y), we have

x ∈ G(x) ⊆ G(F(y)).

Therefore, F(y) ⊆ G(F(y)).

Using a standard topological argument, we can establish the following result, appar-
ently more general than Theorem 1.

Theorem 2. Let X be a compact convex subset of a Hausdorff topological vector space, Y be a
nonempty set, and F : Y ⇒ X be a set-valued mapping with nonempty closed values. Assume
that for each nonempty finite subset A of Y there exists a KKM set-valued mapping GA : X ⇒ X
such that

GA(F(y)) ⊆ F(y), for all y ∈ A.

Then,
⋂

y∈Y F(y) 6= ∅.
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Proof. By Theorem 1, for each nonempty finite subset A of Y,
⋂

y∈A F(y) 6= ∅, hence the
family of closed sets {F(y) : y ∈ Y} has the finite intersection property. Since X is compact,⋂

y∈Y F(y) 6= ∅.

We give below the main result of this section.

Theorem 3. Let X be a compact convex subset of a Hausdorff topological vector space, Y be a
nonempty set, and f : X × Y → R, g : X × X → R be two bifunctions satisfying the following
assumptions:

(i) for each y ∈ Y, the set {x ∈ X : f (x, y) ≥ 0} is nonempty and closed;
(ii) g is diagonally quasiconvex in the first variable;
(iii) for every x, z ∈ X and y ∈ Y the following implication holds

g(x, z) ≥ 0, f (z, y) ≥ 0 =⇒ f (x, y) ≥ 0.

Then, there exists x0 ∈ X such that f (x0, y) ≥ 0, for all y ∈ Y.

Proof. Consider the set-valued mappings F : Y ⇒ X, G : X ⇒ X defined by

F(y) = {x ∈ X : f (x, y) ≥ 0},

G(z) = {x ∈ X : g(x, z) ≥ 0}.

By (i), for each y ∈ Y, F(y) is a nonempty and closed set. In view of (ii) and Remark 1, G is a
KKM mapping. If y ∈ Y and x ∈ G

(
F(y)

)
, then there exists z ∈ X such that f (z, y) ≥ 0 and

g(x, z) ≥ 0. By (iii), f (x, y) ≥ 0, hence x ∈ F(y). Therefore, G(F(y)) ⊆ F(y). By Theorem 1,
there exists x0 ∈

⋂
y∈X F(y), that is, f (x0, y) ≥ 0 for all y ∈ X.

A simple example is outlined below for showing the applicability of the previ-
ous result.

Example 1. Let X = Y = [0, 2]. Take the bifunctions f , g : [0, 2]× [0, 2]→ R defined as follows:

f (x, y) =
{

2x− y2 − 1 if y ∈ [0, 1[
x− 2y + 2 if y ∈ [1, 2],

g(x, z) = x− z.

It can be easily checked that the first two assumptions of the previous theorem are fulfilled. For all
y ∈ [0, 2], f (·, y) is a strictly increasing function. Then, if for some x, y, z ∈ [0, 2], g(x, z) ≥ 0
and f (z, y) ≥ 0, then x ≥ z and f (z, y) ≥ 0, whence f (x, y) ≥ 0.

By Theorem 3, the associated equilibrium problem has at least one solution. Actually, it can
be seen immediately that it has a unique solution, x0 = 2. Let us note that on the diagonal of the
product set [0, 2]× [0, 2] the bifunction f takes both positive and negative values; hence, in this
case, the classical results of the existence of solutions cannot be used.

From Theorem 3, we immediately obtain the next result that can be regarded as
a version of [9] (Theorem 2.4). Recall that a bifunction f : X × X → R is said to be
properly quasimonotone [27] if for any nonempty finite subset A of X, and all y ∈ conv A,
minx∈A f (x, y) ≤ 0.

Corollary 1. Let X be a compact convex subset of a Hausdorff topological vector space and f :
X× X → R be a bifunction that satisfies the following assumptions:

(i) for every y ∈ Y, the set {x ∈ X : f (x, y) ≥ 0} is nonempty and closed;
(ii) f is properly quasimonotone;
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(iii) for every x, y, z ∈ X the following implication holds

f (z, x) ≤ 0, f (z, y) ≥ 0 =⇒ f (x, y) ≥ 0.

Then, there exists x0 ∈ X such that f (x0, y) ≥ 0, for all y ∈ X.

Proof. Apply Theorem 3 when X = Y and g(x, z) = − f (z, x).

Remark 3.
(a) The unique difference between Corollary 1 and Theorem 2.4 [9] consists of the fact that in the

mentioned theorem, assumption (iii) is replaced with another implication, namely,

(iii)′x, y, z ∈ X, f (x, z) ≤ 0, f (z, y) < 0 =⇒ f (x, y) < 0.

However, this difference is a major one because conditions (iii) and (iii)′ are not comparable.
For instance, let us consider the bifunctions f1, f2 : [0, 2]× [0, 2]→ R defined by

f1(x, y) = y− x− 1, f2(x, y) = x(x− y).

One can easily see that f1 satisfies condition (iii) and for f2, (iii)′ holds. On the other side, f1
does not fulfill condition (iii)′ (take, for instance, x = 0, y = 1, z = 1), whereas the bifunction
f2 does not verify (iii) (take x = 1, y = 2, z = 0).

(b) In [5,28–30], the existence of solutions of equilibrium problems when the bifunction f has the
following triangle inequality property is studied:

f (x, y) ≤ f (x, z) + f (z, y), for all x, y, z ∈ X.

We show that condition (iii) of Corollary 1 holds whenever f has the triangle inequality
property. Let us assume that f has the triangle inequality property and x, y, z are three
points from X for which f (z, x) ≤ 0 and f (z, y) ≥ 0. By way of contradiction, assume that
f (x, y) < 0. Then,

f (z, y) ≤ f (z, x) + f (x, y) < 0; a contradiction.

4. Equilibrium Problems

The proof of Theorem 4 uses the following selection result:

Lemma 3 ([31]). Let X be a paracompact Hausdorff space and Y be a topological vector space. If
P : X ⇒ Y is a set-valued mapping with nonempty and convex values and open fibers, then P has a
continuous selection; that is, there exists a continuous function p : X → Y such that p(x) ∈ P(x)
for all x ∈ X.

Theorem 4. Let X be a paracompact and convex subset of a Hausdorff topological vector space and
f , g two real bifunctions defined on X× X that satisfy the following conditions:

(i) for each y ∈ X the set {x ∈ X : g(x, y) > 0} is nonempty and convex;
(ii) for each x ∈ X the set {y ∈ X : g(x, y) > 0} is open in X;
(iii) g is f -quasiconvex in y;
(iv) the set-valued mapping F : X ⇒ X defined by

F(y) = {x ∈ X : f (x, y) ≥ 0}

is intersectionally closed;
(v) for at least one y ∈ X, F(y) is relatively compact.

Then, there exists x0 ∈ X such that f (x0, y) ≥ 0, for all y ∈ X.

Proof. Apart from the set-valued mapping F defined in assumption (iv), we consider the
set-valued mapping G : X ⇒ X, defined by
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G(y) = {x ∈ X : g(x, y) > 0}.

We claim that F is a generalized KKM map w.r.t. G. Assume, by way of contradic-
tion, that there exists a nonempty finite set A ⊆ X such that G(conv A) * F(A). If
x ∈ G(conv A) \ F(A), then f (x, z) < 0 for all z ∈ A and there exists y ∈ conv A such that
g(x, y) > 0. Then,

max
z∈A

f (x, z) < 0 < g(x, y),

which contradicts (iii).
The first two assumptions prove that G has nonempty and convex values and open

fibers. In view of Lemma 3, G has a continuous selection p : X → X. Since F is a generalized
KKM map w.r.t. G, it will be also a generalized KKM map w.r.t. p. It is well known that any
continuous function has the KKM property (see for instance [32] (Theorem 1)); hence, the
family {clF(y) : y ∈ X} has the finite intersection property. Since at least one y ∈ X, clF(y)
is a compact set,

⋂
y∈X clF(y) 6= ∅. Because

⋂
y∈X clF(y) = cl

(⋂
y∈X F(y), there exists a

point x0 ∈
⋂

y∈X F(y).

The condition that the set X be paracompact can be removed, adding instead new
conditions.

Theorem 5. Let X be a convex subset of a Hausdorff topological vector space and f , g : X×X → R.
Assume that:

(i) for each y ∈ X, the set {x ∈ X : g(x, y) > 0} is nonempty and convex;
(ii) for each x ∈ X, the set {y ∈ X : g(x, y) > 0} is open in X;
(iii) g is f -quasiconvex in y;
(iv) for every y ∈ X the set {x ∈ X : f (x, y) ≥ 0} is closed in X;
(v) there exists a nonempty compact subset K0 of X such that:

(v1) for at least one y ∈ K0, the set {x ∈ X : f (x, y) ≥ 0} is compact;
(v2) for every x ∈ X \ K0, there exists y ∈ K0 such that f (x, y) < 0.

Then, there exists x0 ∈ K0 such that f (x0, y) ≥ 0, for all y ∈ X.

Proof. Consider the family of sets

K = {K : K0 ⊆ K ⊆ X, K is compact}.

For K ∈ K, we denote by K̂ = convK. By Lemma 1 [33], K̂ is paracompact. Define the
set-valued mappings F, G : K̂ ⇒ X as follows:

F(y) = {x ∈ X : f (x, y) ≥ 0}, G(y) = {x ∈ X : g(x, y) > 0}.

With arguments similar to those used in the previous proof, it is shown that G has a
continuous selection p : K̂ → X and F is a generalized KKM-map w.r.t. p. From (iv) and
(v1), the values of F are closed sets relative to X and for at least one y ∈ K0, F(y) is compact.
Consequently,

⋂
y∈K̂ F(y) 6= ∅. Hence, there exists an xK ∈ X such that, f (xK, y) ≥ 0 for all

y ∈ K̃. From (v2), we deduce that xK ∈ K0.
Since the set K0 is compact, we may assume that the net {xK}K∈K converges to some

x0 ∈ K0. We now show that f (x0, y) ≥ 0, for all y ∈ X.
If y is an arbitrary point in X, then clearly the set Ky = K0 ∪ {y} belongs toK. For each

K ∈ K satisfying Ky ⊆ K, we have f (xK, y) ≥ 0 and, since the set {x ∈ X : f (x, y) ≥ 0} is
closed, it follows that f (x0, y) ≥ 0.

It is reasonable now to obtain an existing result for a classical optimization problem
that can be transformed into an equilibrium problem. Let E be a locally convex Hausdorff
topological vector space and E∗ be its topological dual. Given a nonempty convex subset
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X of E and a set-valued mapping P : X ⇒ E∗, the Minty variational inequality problem
((MVIP), for short) associated with X and P consists of finding a point x0 ∈ X such that

〈y∗, y− x0〉 ≥ 0, ∀(y, y∗) ∈ Gr P.

Recall that the set-valued mapping P is called monotone if for every (x, x∗), (y, y∗) ∈ Gr P,

〈y∗ − x∗, y− x〉 ≥ 0.

Theorem 6. Assume that P is monotone and has nonempty weak* compact values. Problem
(MVIP) has at least a solution whenever the following conditions are satisfied:

(i) for each y ∈ X, the set {x ∈ X : ∃x∗ ∈ P(x) such that 〈x∗, y− x〉 > 0} is nonempty and
convex;

(ii) there exists a nonempty compact subset K0 of X such that:

(ii1) there are y0 ∈ K0 and y∗0 ∈ P(y0), such that the set {x ∈ X : 〈y∗0 , y0 − x〉 ≥ 0} is
compact;

(ii2) for every x ∈ X \ K0, there exist y ∈ K0 and y∗ ∈ P(y) such that 〈y∗, y− x〉 < 0.

Proof. The conclusion follows from Theorem 5 as soon as we prove that the assumptions
of this theorem are satisfied, when the bifunctions f and g are defined as follows

f (x, y) = min
y∗∈P(y)

〈y∗, y− x〉, g(x, y) = max
x∗∈P(x)

〈x∗, y− x〉.

Observe that condition (i) is nothing else but a condition similarly noted in Theorem 5. For
each x ∈ X, the set {y ∈ X : g(x, y) > 0} is open in X since it can be written as a union of
open sets,

{y ∈ X : g(x, y) > 0} =
⋃

x∗∈P(x)

{y ∈ X : 〈x∗, y− x〉 > 0}.

We show that g is f -quasiconvex in the second variable. Let x ∈ X, A be a nonempty
finite subset of X, and y ∈ conv A. The bifunction g is convex in the second variable
because it is the upper envelope of a family of affine functions. Consequently,

g(x, y) ≤ max
z∈A

g(x, z) = max
z∈A

max
x∗∈P(x)

〈x∗, z− x〉. (2)

The pseudomonotonicity of P implies

max
x∗∈P(x)

〈x∗, z− x〉 ≤ min
z∗∈P(z)

〈z∗, z− x〉 = f (x, z). (3)

From (2) and (3), we obtain the inequality g(x, y) ≤ maxz∈A f (x, z).
Since

{x ∈ X : f (x, y) ≥ 0} =
⋂

y∗∈P(y)

{x ∈ X : 〈y∗, y− x〉 ≥ 0},

the sets {x ∈ X : f (x, y) ≥ 0} are closed for all y ∈ X. Moreover, in view of (ii1), the set
{x ∈ X : f (x, y0) ≥ 0} is compact. The last assumption of Theorem 5 follows immediately
from (ii2) and thus the proof is complete.

Remark 4. A problem closely related to the Minty variational inequality problem is the so-called
Stampacchia variational inequality problem. It consists of finding a pair (x0, x∗0) ∈ Gr T such that

〈x∗0 , y− x0〉 ≥ 0, ∀y ∈ X.

It is well known (see, for instance [34] (Proposition 1)) that if the set-valued mapping P is upper
semicontinuous from the line segments in X to the weak* topology of E∗, then any solution of the
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Minty variational inequality problem is also solution for the Stampacchia variational inequality
problem. Consequently, from Theorem 6, a criterion for the existence of solutions for the Stampacchia
variational inequality problem can be easily obtained.

The following proposition provides sufficient conditions for condition (i) of Theorem 6
to be satisfied.

Proposition 1. Condition (i) of Theorem 6 holds that whenever, besides the monotonicity, P satisfies
one of the following assumptions:

(a) -P is pseudomonotone (this means that for every (x, x∗), (y, y∗) ∈ Gr P, the following
implication holds: 〈x∗, y− x〉 ≤ 0 =⇒ 〈y∗, y− x〉 ≤ 0).

(b) P is convex (that is, for all x, y ∈ X and λ ∈ [0, 1], λP(x) + (1− λ)P(y) ⊆ P(λx + (1−
λ)y)).

Proof. See the proofs of [11] (Theorem 10), for case (a), and [35] (Theorem 4.2), for
case (b).

Considering a bifunction f : X × X → R and a set-valued mapping T : X ⇒ X,
we can formulate a more general problem than the equilibrium problem. This is called a
quasi-equilibrium problem and is formulated as follows:

find x0 ∈ X such that x0 ∈ T(x0) and f (x0, y) ≥ 0 for all y ∈ T(x0).

The literature dedicated to quasi-equilibrium problems has been continuously en-
riched in recent years. To the best of our knowledge, the theorem below is the first existing
result in which besides bifunction f a second bifunction is involved.

Theorem 7. Let X be a convex subset of a Hausdorff topological vector space, T : X ⇒ X be
a compact continuous set-valued mapping with nonempty closed and convex values and f , g :
X× X → R be two bifunctions that satisfy the following conditions:

(i) for every x ∈ X and any y ∈ T(x), the set {u ∈ T(x) : g(u, y) > 0} is nonempty and
convex;

(ii) for each x ∈ X the set {y ∈ X : g(x, y) > 0} is open in X;
(iii) g is f -quasiconvex in y;
(iv) the set {(x, y) ∈ X× X : f (x, y) ≥ 0} is closed in X× X;
(v) for every y ∈ X, the set {x ∈ X : f (x, y) ≥ 0} is convex.

Then, there exists x0 ∈ X such that x0 ∈ T(x0) and f (x0, y) ≥ 0, for all y ∈ T(x0).

Proof. We define the set-valued mapping S : X ⇒ X by

S(x) = {u ∈ T(x) : f (u, y) ≥ 0, ∀y ∈ T(x)}.

For an arbitrary x ∈ X, it can be easily checked whether the restrictions of f and g to
T(x) × T(x) satisfy all the assumptions of Theorem 4. From the mentioned theorem,
there exists u ∈ T(x) such that f (u, y) ≥ 0, for all y ∈ T(x). Therefore, S(x) 6= ∅. If
u1, u2 ∈ S(x) and λ ∈ [0, 1], since T(x) is a convex set, λu1 + (1− λ)u2 ∈ T(x). In view of
(v), f (λu1 + (1− λ)u2, y) ≥ 0 for all y ∈ T(x); hence, S(x) is a convex set.

We prove now that S is a closed mapping. Let {(xt, ut)} be a net in the graph of S
converging to (x, u). Then, for each index t, ut ∈ T(xt) and, since T is a closed mapping,
u ∈ T(x). For any y ∈ T(x), since T is lower semicontinuous, there exists a subnet {xti}
of the net {xt} and a net {yi} converging to y, with yi ∈ T(xti ), for each index i. As
uti ∈ S(xti ), f (uti , yi) ≥ 0. Assumption (iv) implies, f (u, y) ≥ 0, hence u ∈ S(x).

Summing up, S is a closed mapping with nonempty convex values. Moreover, since T
is compact, so will be S. Thus, by the Himmelberg fixed point theorem [36], S has a fixed
point, and clearly, this satisfies the desired conclusion.
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In the particular case f = g, it could be of some interest to compare the assumptions
of the previous theorem, with those from [37] (Theorem 2), [11] (Theorem 7), or [38]
(Theorem 2.3). We point out only a few differences. Thus, in [37] Theorem 2, the convexity
of the sets {y ∈ X : f (x, y) < 0} is required. Then, in [11] (Theorem 7), the sets {y ∈ X :
f (x, y) ≤ 0} must be closed and convex. Finally, in [38] (Theorem 2.3), the compactness
of the convex set X is needed and bifunction f is assumed diagonally quasiconvex in the
first variable.

5. Conclusions

In this paper, we obtain first a criterion for the existence of solutions to a generalized
equilibrium problem in which two real bifunctions are involved. Then, sufficient conditions
for the existence of solutions to an equilibrium problem are given. The obtained theorems
are then applied to the Minty variational inequality problem and to quasi-equilibrium
problems. The particularity of our equilibrium results consists of the fact that the clas-
sical equilibrium condition ( f (x, x) = 0 for all x ∈ X) is missing. For this reason, we
believe that in a future paper, we will be able to apply our results to the study of so-called
variational-like inequality problems in which the involved bifunction is not subject to the
equilibrium condition.
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