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Abstract: This paper introduces a mathematical design and analysis of three-phase inverters used in
electric drive applications such as aerospace, electric vehicles, and pumping applications. Different
wide bandgap (WBG) semiconductor technologies are considered in this analysis. Using SiC MOSFETs
and Si IGBTs, two drive systems are developed in order to show the improvement in the efficiency of
the inverter. The efficiency, total losses of the drive systems and the power losses of two inverters are
computed and compared for both drive systems at the same operating condition. The drive system
with SiC MOSFET shows much better performance compared to the drive system with Si IGBT. The
SiC MOSFET system provides a 59.39%, 86.13%, and 29.76% lower conduction losses, switching
losses and drive’s total losses, respectively, compared to the Si IGBT system. The efficiency of the
SiC MOSFET system is 2.46%pu higher than the efficiency of the Si IGBT drive system. Moreover,
this paper introduces a detailed analysis for the dc-link voltage and current ripples in three-phase
inverters. Furthermore, the minimal dc-link capacitor needed to deal with the ripple current and
voltage is investigated. Finally, the performance of the drive with Si IGBT is experimentally tested
under different operating speeds and loads.

Keywords: SynRM; modelling; simulation; conduction loss; inverter; SVPWM; switching loss; Si
IGBT; SiC MOSFET; voltage ripples; current ripples; capacitor

MSC: 65K10

1. Introduction

Due to their great efficiency and torque density, synchronous reluctance motor (SynRM)
drive systems based on power electronics devices have recently received a lot of interest in
contemporary applications. The performance of conventional silicon-based semiconductor
devices has reached a bottleneck and has been challenging to further optimize in recent
years despite their continued widespread use in industry [1]. Power converters are now
being developed toward better efficiency, higher switching frequency, and higher power
density due to the emergence of wide band gap (WBG) devices, which are represented by
silicon carbide (SiC) and gallium nitride (GaN). WBG devices therefore have a very broad
range of applications in some industries with significant demands for power converters,
such as aerospace and electric vehicles (EV). However, the method for evaluating the
switching performance of the devices in inverters needs to meet additional standards as a
result of the rising use of WBG devices. The classic voltage source inverter (VSI) has been
more popular due to the unique needs of current source inverters for devices, hence there
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has been a lot of studies conducted on VSI’s device switching characteristics [1] as well
as modeling switching characteristics [2], calculating switching losses [3], and optimizing
switching trajectories of devices [4]. Conventional motor drive inverters use industrial Si
IGBTs and Si diodes with a standard maximum operating junction temperature of 125 ◦C
for motor drive systems with a power rating of 60 kW [5]. The majority of the time, these
inverters are attached to a heatsink that has an air- or water-cooling system. On account
of the Si material, these systems’ performance is almost at its limit. SiC devices are there-
fore receiving increased attention in motor drive systems. In reference [6], two 250 kW
commercial VSI models for aerospace applications built on Si IGBTs and SiC MOSFETs are
compared. In contrast to the Si IGBT-based design, the SiC MOSFETs VSI offers efficiency
improvements while exhibiting acceptable electromagnetic interference (EMI) levels. The
primary observed disadvantage is the apparent reduced dependability of SiC devices.
Reference [7] compares two 190 kVA SiC- and Si-based industrial VSI projects for 690 V
networks. The SiC-based proposal achieved higher efficiency with lower cost. Investiga-
tion and evaluation of the distinctive behavior of SiC-IGBT and Si-IGBT devices in VSI
under resistive and R-L loads is performed in reference [8]. Higher switching speed, lower
switching loss, and higher efficiency are achieved with SiC-IGBT switches. A performance
of three different 6 kW inverter topologies based on SiC MOSFETs is compared in refer-
ence [9]. It highlights the importance of considering modulation technique, deadtime value
and their effects on various converter components, such as total losses. Several energy
conversion solutions in medium voltage using 3.3 kV- [10], and 10 kV- [11] SiC MOSFET
switches are discussed in references [10] and [11], respectively. The dynamic features of
1.2 kV SiC MOSFET switch are investigated in reference [12]. At very high temperatures,
switch maintains exceptional dynamic properties. However, these findings do not provide
a comparison between the SiC and Si power devices. In reference [13] a dynamic behavior
of SiC IGBT is studied and compared with Si IGBT at the same rated voltage. SiC-IGBT has
a lower equivalent on-resistance than Si-IGBT and is better suited for applications needing
high voltage and current operation. VSIs based on SiC MOSFETs and Si devices fed motor
drive systems are introduced in references [14–16]. According to these studies, SiC power
devices prove higher efficiency than Si devices.

The dc-link capacitor represents another important issue affecting the performance
of the motor drive system. The dc-link capacitor absorbs the harmonic currents that tend
to indicate the presence of the dc bus voltage ripple. To reduce the dc-link voltage ripple,
the capacitor is essential to the proper operation of a three-phase VSI [17]. To further
decrease EMI caused by the switching processes, a dc-link current ripple must be limited.
The dc-link voltage ripple can be reduced by using a greater capacitance value. However,
this increases the capacitor volume and cost, which lowers the inverter’s power density
and tends to cost more per kilowatt. Therefore, selecting the optimal value of the dc-link
capacitor is crucial to the VSI’s functionality. The proper design of the dc-link capacitor
depends on the accurate estimates of its voltage and current ripples. The values of these
ripples are dependent on the pulse width modulation (PWM) switching method [18–25].
Obtaining the peak rms current ripple in the dc-link capacitor using computation method
is introduced in references [18,19]. According to these researches, the rms ripple current is a
function of modulation index and phase displacement. In references [20,21], the impact
of dead time on the value of the input current ripple of three-phase VSI is considered.
Determination of the rms input current using direct current control scheme is invented in
reference [22]. The maximum voltage ripple must be considered when sizing the dc-link
capacitor, especially when the equivalent series resistance of the capacitor is low, and the
smaller value of the capacitor is consequently enough to manage ripple current stress. The
dc-link capacitor voltage ripple reduction methods for multilevel converter are discussed in
references [23,24]. In reference [25], calculation of VSIs’ dc-link voltage ripple considering
reverse recovery of antiparallel diodes is displayed. The impact of load imbalance in VSI
on capacitor voltage ripple is confirmed in references [26–28]. Calculation of the theoretical
value of the dc-link capacitor voltage ripple using voltage control scheme is proposed in
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reference [29]. Investigation of the capacitor voltage ripple of VSI under non-linear output
current is shown proposed in reference [30]. However, these papers do not mention the
change in the power factor and modulation index on the peak rms voltage ripple value.
The variation in the power factor and modulation index on the voltage ripple is discussed
in reference [31].

In this paper, a mathematical design and analysis of three-phase inverters used in
electric drive applications such as aerospace, electric vehicles and pumping applications
is investigated. Different WBG semiconductor technologies are considered in the design
of the inverter. Then, two synchronous reluctance motor drive systems with standard
two-level inverters are created using traditional Si IGBT and SiC MOSFET, respectively,
in order to evaluate the benefits of SiC devices in drive applications. Furthermore, the
power losses of inverters with space vector pulse width modulation (SVPWM) control
are estimated and studied for both drive systems. This paper also includes a full analysis
of the dc-link voltage and current ripples. In addition, the minimum dc-link capacitor
required to cope with the ripple current and voltage is evaluated. Finally, the three-phase
SynRM drive’s performance is experimentally evaluated under various operating speeds
and loads.

2. Drive System Comparison with Si IGBT and SiC MOSFET

This section compares different WBG semiconductors technologies for three-phase
inverters. This is achieved by comparing the performance of three-phase synchronous
reluctance motor drive systems using different WBG semiconductor technologies. Using
SiC MOSFETs and Si IGBTs, two 5.5 kW synchronous reluctance motor driving systems are
developed in order to offer a reasonable measure of the system improvement. The efficiency,
total losses of the drive systems and the power losses of two inverters are computed and
compared for both drive systems at the same operating condition. The specification of
the two drive systems, e.g., motor specification, inverter switches and SVPWM and the
performance comparison of the two drives are introduced in this section.

2.1. Electric Motor

The electric motor in both drives is a three-phase SynRM of 5.5 kW, 4 poles and 36 slots.
The rated condition of this motor is 3000 rpm and 17.3 A (max. value). The average torque,
motor losses and efficiency of this motor at rated condition and at optimal current angle
(55◦) are 17.23 N.m, 290.9 W and 94.88%, respectively [32]. The performance of this motor
is investigated with different inverter semiconductor technologies, e.g., Si and SiC.

2.2. Three-Phase Two-Level Inverter

A three-phase two-level VSI is used. In the first drive system, the inverter has six Si
IGBTs [33] as shown in Figure 1a, whereas the inverter in the second drive system consists of
six SiC MOSFETs [34] as shown in Figure 1b. The difference between the two semiconductor
technologies is summarized in Figure 2, and their data sheets can be found in [33,34].
Figure 2a,b show the forward characteristics of the SiC MOSFET and Si IGBT and their body
diode. It is demonstrated from Figure 2a,b that the SiC MOSFET has lower forward voltage
at the same current level compared to that of Si IGBT. As a result, the SiC MOSFET provides
a lower conduction loss compared to Si IGBT as will be discussed in the next section.

As shown in Figure 2a, SiC MOSFET has much lower on and off time compared to
Si IGBT. The delay on time and rise time of the SiC MOSFET are 68.6% and 65% lower,
respectively, compared to those of Si IGBT. In addition, the delay off time and fall time of
the SiC MOSFET are much lower compared to those of Si IGBT. The delay off time of SiC
MOSFET is 3448% lower compared to that of Si IGBT and the fall time of the SiC MOSFET
is 111% lower compared to that of Si IGBT. In addition, Figure 3 shows that the turn on and
off energy losses are much lower in the case of the SiC MOSFET compared to that of the
Si IGBT. The significant reduction in the turn on and off energy loss of the SiC MOSFET
enables them to provide much lower switching losses, as is presented in the next section.
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2.3. SVPWM and Inverter Losses

In this part, the SVPWM and the calculation of switching and conduction losses of
the inverter are discussed. According to Figure 1, the three-phase inverter consists of six
switches. These switches are only configured in eight different ways to prevent output
short-circuiting through any of the three half-bridge terminals, and the load from open-
circuiting at any instant. There are six active voltage vectors (V1–V6) and two zero output
voltage vectors (V0 [000], V7 [111]) among the eight allowed combinations as demonstrated
in Figure 4a. Consistent with the voltage vector V0 (000), the top switches in the inverter
are off and the bottom switches are on. The reference output voltage of the inverter is
computed using the neighbouring active vectors and zero vector in each sector. The duty
cycles of these vectors are calculated as in (1). In (1), the entire duration periods of vectors
Vα, Vβ and zero vector are Tα, Tβ and Tz, respectively; θv and mv denote the angle of the
reference output vector inside the hexagonal sector and the modulation index, respectively.
The switching sequence of the SVPWM is displayed in Figure 4b [35].

V∗o = dαVα + dβVβ + dzVz,


dα = Tα

Ts
= mi ∗ sin

(
π
6 + θv

)
dβ =

Tβ

Ts
= mi ∗ sin(θv)

d7 = d0 = Tz
Ts

= 1− (dα + dβ)

(1)
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The efficiency is easily determined using the computed output power and the total
estimated losses, which include the machine’s copper and iron losses as well as the switch-
ing and conduction losses of the inverter. In this comparison, the mechanical losses are
disregarded. On the other hand, using the machine’s observed winding resistance and
current amplitude, it is simple to calculate the SynRM copper losses. Resistance is measured
at temperature of 70 ◦C (resistivity = 0.0217ohm mm2/m).

The efficiency of the drive system is given by

η =
Po

Po + Pcu + Piron + Pinverter
, (2)

where Po is the motor’s mechanical output power, which is determined using the FEM
model’s estimated torque by

Po = Te ∗ ωr. (3)

Based on Bertotti’s statistical loss theory, iron losses in the SynRM are computed. The
following are the ways in which the theory is dependent on loss separation into excess,
hysteresis, and classical eddy current losses:

Piron = Ph + Pc + Pe. (4)



Mathematics 2023, 11, 2137 6 of 18

Figure 5 shows the calculation of the conduction losses and switching losses in the
top switch in first leg. In Figure 5, the red signal represents the current flowing in the
switch and the blue signal represents the voltage between switch terminals. The switching
losses are represented by the green signal, and the black signal at the bottom represents the
conduction losses in the switch. The switching losses and the conduction loss are calculated
as the mean value of the green signal and the black signal in Figure 5 over one complete
period of the fundamental frequency. This is given by (5). In (5), VS and VD represent
the voltage between the switch terminal and the diode terminals, respectively, whereas IS
and ID represent the current flowing through the switch diode, respectively. In (5), Ps_loss
represents the conduction losses and the switching of one switch, and the total loss (Pinverter)
is obtained by adding the switching losses and the conduction losses of all switches. This is
achieved by selecting the corresponding voltage and current for each component for each
loss type.

Ps_loss =
1
T

{∫ T

0
VS ∗ IS dt +

∫ T

0
VD ∗ ID dt

}
. (5)
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2.4. Drive System Performance Comparsion with Si IGBT and SiC MOSFET

In this section, two SynRM drive systems of 5.5 kW, four poles, 3000 rpm and 17.3 A
(max) are used to investigate the features of the SiC MOSFET in comparison to Si IGBT. The
performance of the three-phase SynRM has been studied in [36] without considering the
type of inverter switches or losses. The performance of the two drive systems is compared
at rated condition and at optimal current angle (55◦). Note that the two drive systems have
the same optimal current and the same rated condition. The only difference between the
two systems is the type of inverter’s switch. Figure 6a,b compare the conduction losses
and the switching losses at rated condition and at optimal current angle, respectively.
It is demonstrated from Figure 6 and Table 1 that the SiC MOSFET system has 59.39%,
86.13%, and 29.76% reduced conduction losses, switching losses, and total drive losses
when compared to the Si IGBT system. The efficiency of the SiC MOSFET system is 2.46%
pu greater than that of the Si IGBT driving system. Figure 7 compares the conduction losses,
switching losses, total losses, and efficiency of the two systems at different line currents,
optimal current angles, and rated speed. Figure 8 shows the current waveforms of the
motor and switches and diodes of the inverter at rated condition.
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Si IGBT SiC MOSFET

Switching losses (W) 141.41 19.61

Conduction losses (W) 53.53 21.74

Motor losses (W) 290.90 290.90

Total losses for drive (W) 485.84 341.27

Drive system efficiency (%) 91.76 94.22
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Table 1. Comparison of losses and efficiency between Si IGBT and SiC MOSFET at rated condition. 

 Si IGBT SiC MOSFET 

Switching losses (W) 141.41 19.61 

Conduction losses (W) 53.53 21.74 

Motor losses (W) 290.90 290.90 

Total losses for drive (W) 485.84 341.27 

Figure 7. (a) Conduction losses, (b) switching losses, (c) total drive losses and (d) efficiency at
different line currents, optimal current angles, and rated speed.
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3. Design of the DC-Link Capacitor

This section discusses the optimal dc-link capacitor design to overcome voltage and
current sags in the dc-link. The discussion starts with an analysis of the dc-link voltage
ripple. The analytical computation of the current ripples in a dc connection is then examined.
The ideal capacitance of the dc-link callus is then computed.

3.1. Analysis of Voltage Ripple

This section analyzes the voltage ripple in the dc-link of the two-level inverter. Figure 9
shows the configuration of the two-level three-phase inverter with the dc-link capacitor
and the three-phase SynRM. The three-phase motor current can be described as follows:

iA = Imcos (ωt−∅), (6)

iB = Imcos
(

ωt−∅− 2π

3

)
, (7)

iC = Imcos
(

ωt−∅+
2π

3

)
, (8)

where Im, ω, t and ∅ represent the peak current of the motor in A, angular frequency in
rad/s, time in s and the power factor of the motor, respectively.
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The analysis in this section is introduced considering SVPWM that has been presented
in Section 2.3. The duty cycles of the top switches of the inverter can be represented
as follows:

DA =
1
2
+

1
2

micos
(

ωt− π

6

)
, (9)

DB =
1
2
−
√

3
2

micos
(

ωt +
π

3

)
, (10)

DC =
1
2
− 1

2
micos

(
ωt− π

6

)
, (11)

where mi represents the modulation index of the inverter controlled by the SPWVM. It has
a maximum value of 1 and it can be calculated by (12). In (12), VLine and VDC represent the
peak value of the line-to-line voltage and the dc-link voltage, respectively.

mi =
VLine
VDC

. (12)

The inverter current (Iinv) can be calculated using the switching states of the inverter
top switches and the motor currents as follows:

Iinv = S1iA + S3iB + S5iC. (13)

Considering a lossless operation of the inverter, the power in the dc-link or exiting
from the battery is equivalent to the input power to the three-phase SynRM as given by
(14). Then, the average current (Iav) of the inverter which is exiting from the battery can be
given by (15).

VDC Iav =

√
3

2
Vline Im cos∅, (14)

Iav =

√
3

2
mi Im cos∅. (15)

Considering the circuit shown in Figure 9, the capacitor current (icap) can be calculated
as follows:

Icap = Iinv−Iav. (16)

The fundamental formula for the current flowing through a capacitor (icap) is defined
as follows:

icap = C
dvcap

dt
. (17)

Then, the voltage ripple across the capacitor can be derived as follows:

dvcap = ∆V =
icap dt

C
. (18)
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Formula (18) demonstrates that the voltage ripple (∆V) for a particular capacitor is
proportional to the Amp-sec (icap dt = C∆V). By determining an appropriate Amp-sec
formula, one may derive an exact expression for the minimal dc-link capacitance necessary
for a specified voltage ripple criterion.

Figure 10 displays the switching diagram and corresponding current and voltage
waveforms for the top transistors on each leg of the inverter. It is clearly seen from
Figure 10 that there is no current flowing through the inverter in the zero switching states
(0 0 0) and (1 1 1). According to the symmetric in voltage ripples in Figure 10, the following
equations for Amp-sec for various switch combinations are demonstrated:

C∆V1 = −1
2

Ts(1− DA)Iav, (19)

C∆V2 =
1
2

Ts(DA − DB)(IA − Iav), (20)

C∆V3 =
1
2

Ts(DB − DC)(IA + IB − Iav), (21)

C∆V4 = −1
2

Ts DC Iav, (22)

where Ts represents the switching time ( 1
Fsw

) and Fsw is the switching frequency.
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Then, the goal is to calculate the maximum Amp-sec in a given sector using the power
factor and the modulation index. The maximum ampere sec (voltage ripple max [∆Vmax])
can be determined from one of the following expressions C (∆V3 + ∆V4) or C ∆V4 and
these expressions can be described as follows:

C∆V4 = −
√

3
8

mi Im Ts

[
1−micos

(
ωt− π

6

)]
cos∅, (23)

C(∆V3 + ∆V4) = mi Im Ts

[
1
2

sin ωt∗ cos
(

ωt− π

3
−∅

)
−
√

3
8

cos∅ ∗
(

1−micos
(

ωt− π

6

)
+ 2misin ωt

)]
. (24)

For sector 1, the maximum value of |C∆V4| is obtained at unity power factor (cos∅ = 1),
ωt = 0 or π

3 and modulation index of 1√
3
. The maximum value of |C∆V4| is given by (25).

To obtain the maximum value of |C(∆V3 + ∆V4)|, a 3D plot is used as there is no closed
form solution in terms of power factor and the modulation index. A 17.3 A peak current is
used to obtain the 3D plot shown in Figure 11.

|C∆V4|max =
Im Ts

16
(25)
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1
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1

2
+ 𝑐𝑜𝑠(∅) ∗

√3

2
} 

=
1

2
𝑚𝑖 ∗ 𝐼𝑚 {2 ∗ 𝑐𝑜𝑠(∅) ∗

√3

2
} =

√3

2
𝑚𝑖 ∗ 𝐼𝑚 ∗ 𝑐𝑜𝑠(∅), 

(27) 

𝑖𝑟𝑚𝑠
2 =  𝑑𝛼 𝑖𝐴

2+  𝑑𝛽 𝑖𝐶
2 (28) 

𝑖𝑟𝑚𝑠
2 = 𝑚𝑖 cos (𝜔𝑡 +

𝜋

6
) ∗ 𝐼𝑚

2 𝑐𝑜𝑠2(𝜔𝑡 − ∅) + 𝑚𝑖 sin(𝜔𝑡) ∗ 𝐼𝑚
2 𝑐𝑜𝑠2 (𝜔𝑡 − ∅ +

2𝜋

3
) 

=
𝑚𝑖 ∗ 𝐼𝑚

2

2
∗ {𝑐𝑜𝑠 (𝜔𝑡 −

𝜋

6
) −

1

2
𝑠𝑖𝑛(3𝜔𝑡 − 2∅) + 𝑐𝑜𝑠 (𝜔𝑡 −

𝜋

6
− 2∅)} 

=
𝑚𝑖 ∗ 𝐼𝑚

2

2𝜋
∗ {
3

2
+
3

2
−
1

2
cos(2∅) −

1

2
cos(2∅) +3 ∗ sin (

𝜋

6
− 2∅) + 3 ∗ sin (

𝜋

6
+ 2∅)} 

 

=
𝑚𝑖 ∗ Im

2

2π
∗ {1+4 ∗ cos2(∅)}. 
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𝑚𝑖∗𝐼𝑚
2

2𝜋
∗ {1+4 ∗ 𝑐𝑜𝑠2(∅)} −

3

4
𝑚𝑖
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Figure 11. 3D MATLAB plot of |C(∆V3 + ∆V4)| at 15 kHz switching frequency and 17.3 A peak motor
current versus power factor, modulation index and ωt.

3.2. Analysis of Current Ripple

This section analyses the current ripple in the dc-link capacitor. Figure 10 is used in the
ripple current analysis. The switching periods dα and dβ for switching between the states
of (1 0 0) and (1 1 0) are given by (1) and described in Figure 12. The formulas described in
(26 and 27) are expressions to calculate the for the inverter input current’s average value.
The final value of the average current described in (27) gives the same result described in
(15). In the same way, the rms value of the inverter current can be obtained as shown in (28)
and (29).

Iav = dα iA+dβ(iA +iB) = dαiA − dβiC, (26)

Iav = micos
(
ωt + π

6
)
∗ Imcos(ωt−∅)−misin(ωt) ∗ Imcos

(
ωt−∅+ 2π

3
)

= 1
2 mi ∗ Im

{
cos (∅) ∗

√
3

2 − sin (∅) ∗ 1
2 − sin(∅) ∗ − 1

2 + cos (∅) ∗
√

3
2

}
= 1

2 mi ∗ Im

{
2 ∗ cos (∅) ∗

√
3

2

}
=
√

3
2 mi ∗ Im ∗ cos(∅),

(27)

i2rms = dα i2A+dβ i2C (28)
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i2rms = micos
(
ωt + π

6
)
∗ I2

m cos2 (ωt−∅) + misin(ωt) ∗ I2
m cos2(ωt−∅+ 2π

3
)

= mi∗I2
m

2 ∗
{

cos
(
ωt− π

6
)
− 1

2 sin (3ωt− 2∅) + cos
(
ωt− π

6 − 2∅
)}

= mi∗I2
m

2π ∗
{

3
2 + 3

2−
1
2 cos (2∅)− 1

2 cos(2∅)+3 ∗ sin
(

π
6 − 2∅

)
+ 3 ∗ sin

(
π
6 + 2∅

)}
= mi∗I2

m
2π ∗

{
1+4 ∗ cos2(∅)

}
.

(29)
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Then, the capacitor current can be calculated as follows:

I2
c,rms = I2

rms − I2
av =

mi ∗ I2
m

2π
∗
{

1+4 ∗ cos2(∅)
}
− 3

4
mi

2 ∗ I2
m ∗ cos2(∅), (30)

Ic,rms = Im

√
mi
2π
∗
[

1 + cos2(∅) ∗
(

4− 3π

2
mi

)]
. (31)

The RMS ripple dc-link current is given as follows:

RMS Ripple dc-link current =
Ic,rms

Im,rms
=

√
M
π
∗
[

1 + cos2(∅) ∗
(

4− 3π

2
M
)]

. (32)

Figure 13a shows the RMS ripple current at unity power factor and at different mod-
ulation index. It has been determined from Figure 13a that the maximum ripple current
occurs at a modulation index of 0.54. However, the operation of the three-phase SynRM at
unity power factor is not a real operation point. Hence, the RMS ripple current has been
plotted as a function of both power factor and modulation index as shown in Figure 13b.
The maximum value of RMS ripple current occurs at modulation index of 0.5 and unity
power factor. This is also not a real operating point. Hence, the operating point that will be
considered in the calculation is the point that provides the maximum output power. For
the considered SynRM, a 17.3 A peak current, modulation index of 0.7244 and power factor
of 0.6176 provide the maximum power. Then, the RMS ripple current is 6.5 A.
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4. Results and Discussion
4.1. Optimal DC-Link Capacitance

In this section, the type of the DC link capacitor and its voltage rating are investigated.
First, the minimum capacitance required for the maximum voltage ripple is investigated.
Then, the calculated values of capacitance are checked for the RMS ripple current. The
minimum capacitance that can sustain the maximum voltage ripple is as in (33). The value
of |C∆V|Max is the maximum value of this vector [|C∆V4|max, max o f 3D plot]. In (33),
Vripple,max is the allowed peak ripple voltage which can be set to ±2.5% of VDC. For 600 V
dc-link voltage, the value of Vripple,max is 30 V. For the three-phase SynRM introduced in [32],
the peak current of the motor is 17.3 A. Then, the value of |C∆V4|max is 7.2083 × 10−5 and
the maximum value of the 3D plot is 7.2076 × 10−5. Hence, |C∆V|Max is 7.2083 × 10−5.
Then, the minimum-capacitance required to keep voltage ripple under ±2.5% of the dc-link
voltage is 4.8 µF as given by (34). However, this is not the final value as it is guaranteed
that this capacitance can handle the current ripple in the dc-link.

Cmin =
2 ∗ |C∆V|Max

Vripple,max
, (33)

Cmin =
2 ∗ 7.2083 ∗ 10−5

30
= 4.8 µF. (34)

The voltage rating of the capacitor should always be at least twice (or 1.5 times) the
highest voltage that might possibly be present in the circuit. For a 600 dc-link voltage, a
dc-link capacitor with 900 V rating and 4.8 µF is initially selected. There are three types
of dc-link capacitors that are often used in electric drives, including multi-layer ceramic
capacitors, metallized polypropylene film capacitors, and aluminium electrolytic capacitors.
Table 2 compares the relative performance of the three dc-link capacitors [37]. The film
capacitor is preferable in the high dc-link ripple currents. A 5 µF, 920 V film capacitor is
chosen [38]. This capacitor can withstand a 9 A maximum ripple current which is greater
than the maximum RMS ripple current calculated in the previous section (6.5 A). Moreover,
this capacitor offers a 28.83 V ripple voltage which is lower than ±2.5% of VDC.

4.2. Experimental Results

The experimental setup depicted in Figure 14 is utilized to evaluate the experimental
performances of the three-phase drive system which consist of a Si IGBT and 36 slots,
four poles, and 5.5 kW SynRM. A three-phase 10 kW induction motor is linked to the
three-phase SynRM. To measure the SynRM torque, a Lorenz torque sensor is installed
in the connection between the two machines. An incremental encoder installed in the
induction motor’s rotor is used to measure speed. The induction motor is used to regulate
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the speed of the three-phase SynRM while it is in torque control mode of operation. The
three-phase SynRM is managed by a three-phase inverter with 6.6 kHz switching frequency.
In addition, 600 V is the DC bus voltage. The inverter regulating pulses are produced
using digital signal processing (DSP1103) using a space vector pulse width modulation
with field-oriented control. Figure 15a,b compare the measured drive losses and efficiency,
respectively, with the simulated results of the drive system at rated speed, optimal current
angles, and different currents and at two different switching frequencies, e.g., 6.6 kHz and
15 kHz. Note that the mechanical losses have not been considered in the simulation results.
As a result, there is some mismatch between the simulation results and the experimental
results at the same switching frequency (6.6 kHz). The mismatch between the simulated and
measured total losses and efficiency at rated condition, optimal current angle and 6.6 kHz
switching frequency is about 16% and 1.33%, respectively. A good agreement between the
simulated at 15 kHz and measured results at 6.6 kHz is detected in this comparison, which
validates the theoretical comparison introduced in this paper. The agreement has been
achieved because the measured results at 6.6 kHz include the mechanical losses, which
is not included in the simulation results at 15 kHz. In addition, the simulation results at
15 kHz have about 55% higher switching losses than the simulation results at 6.6 kHz as
shown in Table 3. Table 3 compares the simulation results of the Si IGBT and SiC MOSFET
at different switching frequencies, rated conditions and optimal current angles.

Table 2. Comparison between the relative performance of different dc-link capacitors [37].

Ceramic Capacitors Film Capacitors Electrolytic Capacitors

Capacitance inferior medium preferable

Voltage rating inferior preferable medium

Ripple current medium preferable inferior

Frequency preferable preferable inferior

Reliability preferable preferable inferior

Temperature preferable inferior medium

Cost inferior Medium preferable
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Figure 15. (a) Measured total losses and (b) measured efficiency at different loads, at rated speed and
at optimal current angles for the drive system with Si IGBT.

Table 3. Comparison between the simulated performance of Si IGBT and SiC MOSFET at rated
condition and at different switching frequency.

Si IGBT SiC MOSFET

Switching Frequency At 15 kHz At 6.6 kHz At 15 kHz At 6.6 kHz

Switching losses (W) 141.41 63.68 19.61 11.86

Conduction losses (W) 53.53 53.57 21.74 21.74

Motor losses (W) 290.90 290.90 290.90 290.90

Total losses for drive (W) 485.84 408.15 341.27 324.5

Drive system efficiency (%) 91.76 92.98 94.22 94.34

For various rotor speeds, various line currents, and optimal current angles, the
measured losses and efficiency maps of the whole drive system are shown in
Figures 16a and 16b, respectively.
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5. Conclusions

This paper introduced the mathematical design of three-phase inverters. Different
types of WBG switches were considered. This paper compared two SynRM drive systems
with SiC MOSFET and Si IGBT. The SiC MOSFET showed much better performance
compared to the Si IGBT. The efficiency of the SiC MOSFET system is 2.46%pu higher
than that of the Si IGBT drive system. The power losses of inverters controlled by space
vector pulse width modulation (SVPWM) were computed and analyzed in this work for
both drive systems. The comparison was carried out at different loads and at different
switching frequencies, e.g., 6.6 kHz and 15 kHz. When compared to the Si IGBT system and
at 15 kHz switching frequency, the SiC MOSFET system had 59.39%, 86.13%, and 29.76%
reduced conduction losses, switching losses, and drive total losses. With the decrease in
the switching frequency, the switching losses were reduced for both technologies; however,
they significantly reduced in case of the Si IGBT. For the Si IGBT and the SiC MOSFET, the
switching losses at switching frequency of 6.6 kHz was 55% and 39.5% lower, respectively,
than their values at 15 kHz. The considered motor (SynRM) had no winding, cages or
magnet in the rotor. Therefore, the temperature rise was lower compared to that of other
types of electric machines such as induction machine. For the inverter with SiC MOSFTE,
the losses were lower than for the Si IGBT. Therefore, the temperature rise was lower in
SiC MOSFTE compared to that of Si IGBT. Moreover, the performance of the three-phase
SynRM drive was tested at varied operating speeds and loads. This article also included a
thorough assessment of the dc-link voltage and current ripples. Moreover, the minimum
dc-link capacitor required to accommodate the ripple current and voltage was calculated.
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