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Abstract: The deficiency number of one hand, i.e., the number of tiles needed to change in order to
win, is an important factor in the game Mahjong, and plays a significant role in the development
of artificial intelligence (AI) for Mahjong. However, it is often difficult to compute due to the large
amount of possible combinations of tiles. In this paper, a novel discrete differential evolution (DE)
algorithm is presented to calculate the deficiency number of the tiles. In detail, to decrease the
difficulty of computing the deficiency number, some pretreatment mechanisms are first put forward
to convert it into a simple combinatorial optimization problem with varying variables by changing
its search space. Subsequently, by means of the superior framework of DE, a novel discrete DE
algorithm is specially developed for the simplified problem through devising proper initialization,
a mapping solution method, a repairing solution technique, a fitness evaluation approach, and
mutation and crossover operations. Finally, several experiments are designed and conducted to
evaluate the performance of the proposed algorithm by comparing it with the tree search algorithm
and three other kinds of metaheuristic methods on a large number of various test cases. Experimental
results indicate that the proposed algorithm is efficient and promising.
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MSC: 68T20; 90C27

1. Introduction

Mahjong is a traditional, Chinese, tile-based game with a long history and is often
played by four people [1,2]. In this game, each player is devoted to devising a proper
strategy to win as soon as possible, with luck also playing an important role in this process.
Due to its imperfect information, Mahjong has become a popular testbed for artificial
intelligence (AI) research [3–9]. Nowadays, various variants of Mahjong with different
rules for computing paybacks and/or the legality of actions have emerged due to the
individual cultures of different regions and countries. However, they all have similar
processes and can be easily extended by the basic version of Mahjong. Therefore, the basic
version of Mahjong is just considered in the following without loss of generality.

In the basic version of Mahjong, four players are involved, and 108 tiles are used,
consisting of 36 tiles of bamboo type, 36 tiles of character type, and 36 tiles of dot type. At
the start of the game, each player in turn draws thirteen tiles from the tile wall, and then
they each take one tile from the tile wall and discard one tile from their hand. When one
player gets a winning hand or there are no tiles left in the tile wall, the game ends. So, all
players need to continuously change their hands’ tiles in order to ensure that their hands
win quickly, and these processes involve a number of evaluations on the quality of various
cases of tiles, i.e., calculating the minimum number of tiles needed to be changed to win,
which is called the deficiency number [10]. Thereby, computing the deficiency number has
an important role in Mahjong, and can promote AI development for the game. Moreover,

Mathematics 2023, 11, 2135. https://doi.org/10.3390/math11092135 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11092135
https://doi.org/10.3390/math11092135
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11092135
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11092135?type=check_update&version=1


Mathematics 2023, 11, 2135 2 of 21

the winning hand closely depends on the combinations of the tiles, and these combinations
include a sequence of three or four identical tiles (called a pong or kong), a sequence of
three consecutive tiles with the same type (called a chow), and a pair of identical tiles (called
a pair or an eye). A pong or a chow is also called a meld, and a pseudomeld (abbr. pmeld)
refers to a pair of tiles that can constitute a meld. Therefore, computing the deficiency
number is in fact a combinatorial optimization problem, which is often not easily calculated
due to its large search space.

As far as we know, there are very few studies on the calculation of the deficiency
number at present [10–12]. Specifically, in the paper [10], Li and Yan presented a recursive
method and a tree-based method for calculating the deficiency number. In the recursive
method, for one hand with 14 tiles, all cases of 14 tiles with k deficiency must be known in ad-
vance before the deficiency number of one hand is determined to be k + 1. In the tree-based
method, all pseudo-decompositions of the tiles must be found and evaluated, and then
the deficiency number is obtained by the minimum cost of these pseudo-decompositions.
Herein, a pseudo-decomposition is a sequence π of five subsequences, π[0], π[1], . . . , π[4],
where π[i] for 0 ≤ i ≤ 3 can be a meld, a pmeld, a single tile, or empty, and π[4] can be
a pair, a single tile, or empty. The cost of each pseudo-decomposition is the number of
missing tiles compared to the current hand. Wang et al. [11] constructed a theoretical model
of weighted restarting automaton to compute the deficiency number of 14 tiles, where
the tiles are combined into melds and eyes during the process of simplification, and the
number of changed tiles is counted using its weight function. Recently, Wang et al. [12]
further proposed an efficient algorithmic approach, where the tiles in the player’s hand are
first divided into several groups, such as melds, pseudomelds, and isolated tiles, and then
the deficiency number is computed based on the number of pseudomelds and that of the
isolated tiles. Although these approaches can calculate the deficiency number of a Mahjong
hand, the full searches are all implicit in them, which often take too much computational
time and thus cannot meet the actual demand of response time in the game. Therefore, it is
necessary to develop a more promising search approach for the deficiency number.

As is well known, because of the lower requirement on the problem to be solved,
heuristic intelligent search/optimization methods have been regarded as the most impor-
tant tools for solving real problems, especially complicated ones. In addition, various
metaheuristic algorithms have been presented by simulating nature phenomena, animal
behaviors, human activities, or physical criteria, such as the genetic algorithm (GA) [13],
differential evolution (DE) [14], particle swarm optimization (PSO) [15], artificial bee colony
algorithm [16], water cycle algorithm (WCA) [17], squirrel search algorithm [18], gravi-
tational search algorithm (GSA) [19], teaching–learning-based optimization (TLBO) [20],
gaining–sharing knowledge-based algorithm [21], and so on. In detail, more metaheuristic
algorithms can be found in [22], and they have been widely researched and success-
fully applied in many scientific fields and practical problems up to now, including data
clustering [23,24], stock portfolios [25], knapsack optimization problems [26], multitask
optimization [27], and multimodal optimization [28].

As pointed out in [22], among the existing intelligent approaches, differential evolution
(DE) [14] is one of the most popular population-based stochastic optimizers, and has been
proven to be more efficient and robust on various problems. Due to its simplicity and
simple implementation, DE always attracts more attention from researchers, and numerous
DE variants have been put forward to strengthen its performance [29–34] and/or solve
special practical problems [35–39]. For example, by dividing a population into multiple
swarms and randomly selecting the solutions with better fitness values in each swarm to
conduct mutations, Wang et al. [29] developed a novel adaptive DE algorithm. Through
making full use of the information of the best neighbor, one randomly selected neighbor,
and the current individual for each individual to predict the promising region, Yan and
Tian [30] presented an enhanced adaptive DE variant, while, by adaptively combining the
benefits of multiple operators, Yi et al. [34] developed a novel approach for continuous
optimization problems. Moreover, by designing a Taper-shaped transfer function based
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on power functions to transform a real vector representing the individual encoding into a
binary vector, He et al. [35] proposed a novel binary differential evolution algorithm for
binary optimization problems. Meanwhile, for traveling salesman problems, Ali et al. [38]
proposed an improved discrete DE version, where an enhanced mapping mechanism is
devised to map continuous variables to discrete ones, a k-means clustering-based repairing
method is devised to enhance the solutions in the initial population, and an ensemble of
mutation strategies is used to maintain its exploration capability. In particular, a large
number of numerical experiments were conducted in their papers, and the numerical
results validated their effectiveness and superiority. Thereby, DE has a greater potential in a
promising search performance. Following this, we adopt the framework of DE to calculate
the deficiency number of the tiles in this paper, so as to obtain a promising performance.
Specifically, more detailed research on the improvements and applications of DE can be
further referred to in [40].

In this paper, a more efficient method is researched to calculate the deficiency number
of a Mahjong hand, and the framework of DE is adopted to achieve this, based on its
intrinsic advantages. In detail, in order to reduce the difficulty of computing the deficiency
number, some pretreatment mechanisms are first devised to convert the original problem
into a simple combinatorial optimization problem, where the dimensions of the search space
are degraded to five, and each feasible solution may have different lengths. Noticeably, this
makes the dealing problem significantly different to the existing studied discrete and/or
combinatorial optimization problems, in which the size of every solution is fixed and
consistent. Moreover, for this converted new problem, based on the basic framework
of DE, a novel discrete DE (NDDE) algorithm is then specially presented by devising
proper initialization, a mapping solution method, a repairing solution technique, a fitness
evaluation approach, and mutation and crossover operations, which aim to meet the
available search requirement of the discrete space and the characteristic of the varying sizes
of different individuals. Then, the proposed NDDE algorithm is capable of computing
the deficiency number of one hand efficiently and effectively. Finally, a large number of
experiments are designed and conducted to verify the performance of the NDDE algorithm.
Specifically, three representative data sets are employed and tested, including 118,800
hands with one type, 100,000 hands with two types, and 100,000 hands with three types,
and the NDDE algorithm is compared with the tree search method in [10] and three other
kinds of metaheuristic methods. The sensitivity of the parameters involved in the NDDE
algorithm is also investigated. The experimental results show that the proposed algorithm
has a promising performance for the deficiency number of the hand.

For clarity, compared with the existing works, the main contributions and novelties of
this paper are described as follows.

(1) To our knowledge, the research presented in the paper is the first to utilize a heuristic
intelligent algorithm for computing the deficiency number of a Mahjong hand. In
fact, the works on computing the deficiency number of one hand are still rare up to
now, and all of them adopt a deterministic approach. Thus, this study may provide a
new alternative for devising more effective and efficient methods for calculating the
deficiency number.

(2) The original problem of computing the deficiency number is converted into a more
simple combinatorial optimization problem. This may effectively reduce the difficulty
and computational costs of solving it.

(3) To solve the simplified problem above, a novel discrete DE (NDDE) algorithm is
further specially proposed by devising proper initialization, a mapping solution
method, a repairing solution technique, a fitness evaluation approach, and mutation
and crossover operations. Significantly, the simplified problem has the characteristic
that the feasible solutions may have various lengths, which is not involved in the pre-
vious discrete and/or combinatorial optimization problems. Therefore, the proposed
algorithm has different and more rigorous design requirements.
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(4) A large number of experiments are designed and conducted to verify the performance
of the NDDE algorithm, where three representative data sets are employed and
tested, including 118,800 hands with one type, 100,000 hands with two types, and
100,000 hands with three types. Moreover, the NDDE algorithm is compared with
the tree search method in [10] and three other kinds of metaheuristic methods, and
the sensitivity of the parameters involved in the NDDE algorithm is also investigated.
Experimental results indicate that the NDDE algorithm is a more promising technique
for the deficiency number of the hand.

Finally, it should also be mentioned that the reason the framework of DE is chosen
to design the solver in this paper is solely because much of the research reported in
the literature has proven its superiority on various problems, but other metaheuristic
algorithms can also be adopted here, which we will further study in our future work.

The reminder of this paper is organized as follows. Some related works and basic
notions on Mahjong are presented in Section 2. The proposed algorithm for computing the
deficiency number of a Mahjong hand is introduced in Section 3, and the experimental tests
are conducted and analyzed in Section 4. Finally, conclusions are drawn in Section 5.

2. Preliminaries

In this section, the related concepts and research on Mahjong and the classical DE
algorithm shall be described.

2.1. Related Concepts on Mahjong

In this part, some related concepts in Mahjong are introduced to provide a foundation
for the below descriptions. For simplicity, the basic version of Mahjong, denoted as M0, is
considered, which consists of tiles with bamboo type, tiles with character type, and tiles
with dot type. Specifically, these tiles with bamboo, character, and dot type are represented
as follows:

• Bamboos: B1, B2, . . . , B9.
• Characters: C1, C2, . . . , C9.
• Dots: D1, D2, . . . , D9.

Moreover, in M0, each of the above tiles has four identical tiles; thus, there are 108
tiles in M0 in total. Subsequently, some basic notions on Mahjong shall be provided, which
mainly refers to the the literature [10,12].

Definition 1. A pong is a sequence of three identical tiles, that is, a pong has the form of XiXiXi
for X ∈ {B, C, D} and 1 ≤ i ≤ 9; A chow is a sequence of three consecutive tiles with the same
type, that is, a chow has the form of XiXi+1Xi+2 for X ∈ {B, C, D} and 1 ≤ i ≤ 7; An eye
(or pair) is a pair of identical tiles, that is, an eye has the form of XiXi for X ∈ {B, C, D} and
1 ≤ i ≤ 9. A meld is either a pong or a chow.

Definition 2. A pseudochow (pchow) is a pair of tiles XiXj with the same type, having
1 ≤ |j − i| ≤ 2 and X ∈ {B, C, D}, which can become a chow if we add an appropriate tile
with the same type in it. A pseudomeld (pmeld) is a pchow or a pair. We say a tile c completes a
pmeld (ab) if (abc) (after reordering) is a meld. Similarly, a pair is completed from a single tile t if
it is obtained by adding an identical tile to t.

For example, (B1B1B1) is a pong, (C1C2C3) is a chow, (D1D1) is a pair, and (B2B3)
and (C3C5) are two pchows.

Definition 3. A hand is a set of 14 tiles, denoted by H, i.e., a sequence of 14 tiles from M0, where
every tile can not appear more than four times.

Definition 4. A hand H from M0 is winning or complete if it can be decomposed into four melds
and one pair. (For ease of presentation, we do not regard a hand with seven pairs as complete.) Given
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a complete hand H, a decomposition π of H is a sequence of five subsequences of H, where π[i] is
a meld for 0 ≤ i ≤ 3 and π[4] is a pair. If this is the case, we call π[4] the eye of this decomposition.

For example, the hand H1 = (B1B2B3B3B3B8B8B8)(C4C5C6)(D6D7D8) is a winning or
complete hand, and its decomposition is π = (B1B2B3)(B8B8B8)(C4C5C6)(D6D7D8)(B3B3).

As is well known, the hands involved in a Mahjong game are mostly incomplete.
That is, there is no decomposition defined above for these hands. So, corresponding to the
decomposition of a winning hand, another concept of predecomposition is further given
here for the hands.

Definition 5. Given a hand H, the predecomposition (abbr. pDCMP) of H is a sequence π of
five subsequences, π(1), . . . , π(5), of H such that each π(i) (1 ≤ i ≤ 5) is a meld, pair, pchow,
or empty.

Noticeably, unlike the concept of pseudo-decomposition in [10], a single tile is not contained
in the predecomposition and the position of the eye is no longer fixed. For example, with respect
to the above hand H1, the sequence π1 = (B1B2)(B3B3B3)(B8B8)(C4C5C6)(D6D7D8) is one
of its pDCMPs.

Definition 6. Suppose π and π′ are two pDCMPs for one hand H. We say π′ is finer than π if
π(i) is identical to or a subsequence of π′(i) for 1 ≤ i ≤ 5. A pDCMP π is completable if there
exists a decomposition π∗ for H that is finer than π. If this is the case, we call π∗ a completion of
π. Moreover, the cost of a completable pDCMP π, written cost(π), is the number of missing tiles
required to complete π into a decomposition, which consists of four melds and one eye.

In particular, for one pDCMP π of one hand H, we say it has infinite cost if it is
incompletable. Moreover, for the above pDCMP π1 of H1, its cost is 1 since it can be
completed by one tile, B3.

Definition 7. For one hand H, the minimal number of necessary tile changes for making T a
winning is called the deficiency number (or simply deficiency) of H. If the deficiency of H is `,
we write d f ncy(H) = `. Obviously, for a winning hand H, it holds that d f ncy(H) = 0.

Based on the above notions, we can see that for one hand, H, its deficiency number
can be obtained by finding all its possible predecompositions and then comparing their
differences with the ideal decompositions.

2.2. Research on Mahjong Game

With the development of artificial intelligence (AI) techniques, games are continuously
regarded as one of the most important test platforms. In particular, for games with perfect
information, such as checkers [41], chess [42] and Go [43,44], AI has now even been able to
beat the best human players. In contrast, for imperfect information games [45–49], there
are still few works since players have to deal with some invisible information during the
game, especially for Mahjong.

As stated in the Introduction, there have been various variants of Mahjong due
to the unique cultures of each region and country. Among them, Riichi Mahjong is a
popular version played in Japan, and most of the current research on Mahjong is based
on it [5,8,9,49–52]. Specifically, Li et al. [51] proposed a Mahjong AI system, suphx, based
on reinforcement learning, and the test results on the “Tenhou” platform showed its
effectiveness. Kurita [5] abstracted the Mahjong process by defining multiple Markov
decision processes, and then constructed an effective search tree for optimal decision-
making. Mizukami and Tsuruoka [49] built a strong Mahjong AI by modeling opponent
players and performing Monte Carlo simulations. Yoshimura et al. [50] proposed a tabu
search method of optimal movements without using game records, while Sato et al. [52]
presented a new method to classify the opponent players’ strategy by analyzing Mahjong
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playing records. Additionally, for the version of bloody Mahjong, Gao and Li [8] developed
a fusion model by using the deep learning and XGBoost algorithm to extract the Mahjong
situation features and derive the card strategy, respectively. In particular, a more detailed
review about the existing works on Mahjong AI can be further found in ref. [9], where the
advantages and disadvantages of each method are analyzed.

Unlike the above works that aim to develop Mahjong AI players, there are still few
studies to evaluate the quality of a Mahjong hand, which is more helpful for a player to
devise an appropriate strategy during the game [10–12]. In [10], Li and Yan first introduced
the notation of the deficiency number for measuring the quality of a hand, and developed
two different calculation methods for it, namely, the recursive method and the tree-based
method. After this, Wang et al. [11] presented a theoretical model of weighted restarting
automaton for computing the deficiency number of 14 tiles. In the developed model, the
tiles are combined into melds and eyes in the process of simplification, and the number of
changed tiles is counted by its weight function. Moreover, by dividing the tiles into some
groups, such as melds, pseudomelds, and isolated tiles, in advance and fully considering
the relation between their numbers, Wang et al. [12] recently further proposed an efficient
algorithm to calculate the deficiency number of 14 tiles. Even though these above methods
have made some progress in measuring the quality of a hand, they all contains the idea
of full searches, which might make their computational time too long to timely satisfy the
actual demand of response time during a game. Therefore, it is necessary to devise a more
promising technique for calculating the deficiency number.

2.3. Traditional DE Algorithm

For the convenience of later descriptions, the detailed operations of a classical DE is
drawn as follows, including initialization, mutation, crossover, and selection [14]. Specifi-
cally, the minimization problem min{ f (~x)|xmin,j ≤ xj ≤ xmax,j, j = 1, 2, . . . , D} is consid-
ered here, where ~x = (x1, x2, . . . , xD) is the solution vector, D is the dimension of the search
space, and xmin,j and xmax,j are the lower and upper bounds of the j-th component of the
search space, respectively.

First, one population, P0, consisting of NP solutions is randomly created in the search
space. Each solution is denoted by ~x0

i = (x0
i,1, x0

i,2, . . . , x0
i,D) with i = 1, 2, . . . , NP, and NP is

the size of population. Concretely, the j-th component of ~x0
i is generated by

x0
i,j = xmin,j + rand · (xmax,j − xmin,j), (1)

where rand is a random number uniformly distributed in [0, 1].
After initialization of the population, for each solution ~xg

i at g generation, the mutation
operation is executed to create its mutation individual ~vg

i . The detailed process of operator
‘DE/rand/1’ can be provided as

~vg
i = ~xg

r1 + F · (~xg
r2 −~xg

r3), (2)

where r1, r2, and r3 are three random integers in [1, NP] and have r1 6= r2 6= r3 6= i, and
F is a scaling factor.

Then, by combining the components of ~vg
i and its corresponding target individual ~xg

i ,
one trial individual ~ug

i = (ug
i,1, ug

i,2, . . . , ug
i,D) is created with the crossover operation. The

rule of the binomial crossover method is just described here as:

ug
i,j =

{
vg

i,j, if rand ≤ Cr or j = randn(i),
xg

i,j, otherwise
(3)

where ug
i,j, vg

i,j, and xg
i,j are, respectively, the j-th components of ~ug

i , ~vg
i , and ~xg

i , Cr ∈ [0, 1] is
the crossover rate, and randn(i) returns a random integer within [1, D], which ensures that
~ug

i obtains at least one component from ~vg
i .
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Finally, the selection operation is conducted to update the current population by
comparing each target solution ~xg

i with its trial vector ~ug
i based on their fitness values. In

particular, the greedy selection strategy can be expressed as follows.

~xg+1
i =

{
~ug

i , if f (~ug
i ) ≤ f (~xg

i )
~xg

i , otherwise.
(4)

where f (·) is the objective function to be optimized.
Note that DE with (4) will either get better or remain at the same fitness status, but

never deteriorate. Meanwhile, when DE is activated for one optimization problem, the
mutation, crossover, and selection operations will in turn be executed until one satisfying
solution is found or the prescribed termination criterion is met.

3. Proposed Algorithm

As described and discussed in the Introduction, the deficiency number evaluates the
quality of a Mahjong hand and is helpful for a player to devise an appropriate strategy,
which can facilitate the development of Mahjong AI. However, due to the fact that the tiles
in one hand always have a large number of possible combinations, it usually cannot be
easily calculated. To address this issue, several approaches have been presented, but they
are very limited and always require too much computational time. Therefore, inspired
by the advantages of DE, such as simplicity, easy implementation, strong robustness,
and superior performance, we propose a novel discrete DE variant (NDDE) to compute
the deficiency number of a Mahjong hand in this section. Specifically, the problem of
computing the deficiency number is first converted to a simpler combinatorial optimization
problem, and a new DE variant is presented for it by devising proper initialization, a
mapping solution method, a repairing solution technique, a fitness evaluation approach,
and mutation and crossover operations.

3.1. Simplified Problem of Deficiency Number

As stated in [10], the problem of computing the deficiency number is in fact an
optimization problem and can be regarded as a combinatorial optimization problem to
solve, i.e., finding one proper combination of the tiles that has minimal differences between
it and its corresponding ideal winning hand. Recently, several approaches have been
proposed to calculate the deficiency number of the tiles based on this [10–12]. However,
there are often too many combinations in the search space, which might degrade the
efficiency of these methods. To alleviate this demerit, we propose converting the problem
of computing the deficiency number into a simpler one, where the dimension of the new
search space is reduced to five. The details of the concrete processes are described in
the following.

For one Mahjong hand H, we first search all its possible melds and pmelds and denote
them by S. The reason for this is that the decomposition of a winning hand is constituted by
four melds and one eye, and it can be completed by the predecomposition, which consists
of melds and/or pmelds. Then, the problem of computing the deficiency number can be
alternatively described as:

min
π∈Π

g(π) (5)

where π = (π(1), π(2), π(3), π(4), π(5)) is the predecomposition of H with π(i) (1 ≤ i ≤ 5)
being a meld, pair, or pchow from S or empty, Π is the set of all predecompositions of H, and
g(π) denotes the differences between π and its ideal decomposition, i.e., having g(π) = cost(π),
which will be further discussed in the next subsection.

According to the definition of Equation (5), all possible melds and pmelds of one
Mahjong hand H must be found and contained in S, so as to ensure the completeness of
all its predecompositions. Moreover, since the meld has the modes of chow and pong, the
pmeld has the modes of pair and pchow, and the pchow always has two different modes,
such as (D6D7) and (D6D8); then, S can be formed by considering each case above for
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each tile. Note that, to form a winning hand, the pchow must be able to constitute a chow,
and thus, the number of tiles used to complete the pchow should be less than four in H.
Thereby, for a Mahjong hand H, its related set S can be generated as follows. First, we find
the distinct tiles of H and denote them by St, while initializing the set S to be empty. Then,
for each tile Xi ∈ St, the following five cases are successively checked to create all possible
melds and pmelds, which will be added into S.

Case 1. If Xi+1 ∈ H and the number of Xi−1 or Xi+2 in H is less than four, then add pchow
(XiXi+1) into S;

Case 2. If Xi+2 ∈ H and the number of Xi+1 in H is less than four, then add pchow (XiXi+2)
into S;

Case 3. If Xi+1 ∈ H and Xi+2 ∈ H, then add chow (XiXi+1Xi+2) into S;

Case 4. If the number of Xi in H is more than two, then add pair (XiXi) into S;

Case 5. If the number of Xi in H is more than three, then add pong (XiXiXi) into S.

Particularly, Cases 1, 2, and 4 can provide all the possible pmelds, and Cases 3 and 5
can give all the possible melds involved in H.

In summary, from the above descriptions, all the possible melds and pmelds can be
obtained for each Mahjong hand H, and then every predecomposition involved in it can
be created by using S. Thus, the predecompositions obtained by the tree-based search
algorithm will be contained in the search space Π of the new problem. Meanwhile, since the
tree-based search algorithm is a full search approach, the legal solution for the new problem
can also be obtained by it. So, the proposed operations cannot affect the deficiency number
of one Mahjong hand, and the converted problem and its original one are equivalent.
Moreover, it is easy to find that the dimension of this new problem is just five, and its search
space is decided by the length of S. Additionally, the generation process of S is relatively
cheap, and its size of S is often smaller; therefore, the new problem has a smaller search
space and is easier to solve.

3.2. Proposed NDDE Algorithm

In this subsection, the special components of the NDDE algorithm shall be introduced,
including the initialization, mapping solution method, repairing solution technique, fitness
evaluation approach, and mutation and crossover operations.

3.2.1. Initialization of Population and Mapping Solution

According to the framework of DE, when DE is activated, an initial population with
NP solutions will first be created. In this paper, since the objective function is a discrete
one, the following special method is used to initialize the population P0.

For convenience, we let NS denote the size of the set S, each solution ~x0
i denote a pre-

decomposition π, and then have ~x0
i = (x0

i,1, x0
i,2, . . . , x0

i,5) with i = 1, 2, . . . , NP. Specifically,
for each element x0

i,j of ~x0
i , j = 1, 2, . . . , 5, it will be created by

x0
i,j = randint(NS), (6)

where randint(A) returns a random integer uniformly distributed in [1, A].
Moreover, from Equation (6), one can easily find that each solution in P0 is only

represented by some integer values, and they are not compatible with the new problem
described in Equation (5). Thus, a mapping method is further provided here for matching
the solutions of the population with those of the new problem. In particular, for each
solution ~x0

i in P0, its corresponding solution π0
i for the new problem can be obtained by

π0
i = (π0

i (1), π0
i (2), π0

i (3), π0
i (4), π0

i (5)), (7)

where π0
i (j) is the x0

i,j-th element of S for j = 1, 2, . . . , 5, which may be a meld or pmeld.
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From the above descriptions, the solutions matching the DE algorithm and the new
problem can all be obtained. Noticeably, the operations of initializing the population and
mapping it are both simple and easy to implement. Thus, these operations will not add
severe computational burdens.

3.2.2. Repairing Solution Technique

As described above, through the proposed mapping method, each individual in a
population will generate a corresponding solution for the new problem. However, there is
still a shortcoming in it, that is, the mapped solutions cannot be guaranteed to be feasible.
In fact, for one Mahjong hand H and a mapped solution πi, the number of some tiles in
πi may exceed that in H. Thereby, a repairing technique is also necessary to correct these
infeasible solutions.

For the sake of saving the computational cost of the algorithm, the following simple
repairing approach is used in this paper. For one Mahjong hand H and a mapped solution
πi, all distinct tiles of πi are first found and recorded in one set, denoted by Sp. Then, for
each tile Xi in Sp, we separately count its numbers in πi and H, and if the number in πi is
larger than that in H, we gradually remove one meld or pmeld containing Xi from πi until
its number in πi is less than or equal to that in H. At the same time, when one meld or
pmeld is removed in πi, its corresponding element in ~xg

i will also be set to empty. Clearly,
by this repairing method, each mapped solution will be changed to be feasible, and this
correcting process is very easy to achieve.

3.2.3. Fitness Evaluation Approach

In order to determine which solutions will be selected in the next iteration, their
fitness values should be evaluated as well. At each generation g, the fitness value of
each individual ~xg

i in population Pg is evaluated by the cost of its corresponding mapped
solution π

g
i for the new problem. That is, we let f (~xg

i ) = g(πg
i ) in this paper.

Concretely, for a mapped solution πg, according to g(πg) = cost(πg) and the defini-
tion of cost(πg), i.e., the number of missing tiles required to complete πg into a decomposi-
tion, the fitness value of ~xg

i can be calculated by

f (~xg
i ) =


4−m, if m + n = 5 and p = 1,
5−m, if m + n = 5 and p = 0,
9− 2 ∗m− n, if m + n < 5.

(8)

Herein, m and n are the numbers of meld and pmeld in π
g
i , respectively, and p is the index

of whether there is a pair in π
g
i . If there is a pair in π

g
i , then we have p = 1; otherwise,

p = 0.
Moreover, it should be mentioned that there are still two other special cases in the

evaluation of the solution. For one predecomposition πg, the first case is that it has
m + n = 5 and contains two identical pairs. In this case, one of the two pairs in πg should
have formed a meld, but the number of tiles in πg will have increased to four. Thus, the
actual cost should be added by one due to the invalid pmeld. Another case is that it has
m = 4, n = 0, and the remaining two different tiles will have formed a pong in πg. In this
case, we further need to form a pair to complete πg, but the remaining tiles cannot form a
pair. Therefore, we need to change both of these two tiles to form a pair and the actual cost
of πg should be two.

For example, considering one Mahjong hand H = (B1B2B3B3B3B3B4B8)(C4C5C9)
(D6D7D8) and its three predecompositions π1 = (B1B2B3)(B3B4)(B3B3)(C4C5)(D6D7D8),
π2 = (B1B2B3)(B3B3B3)(C4C5)(D6D7D8), and π3 = (B2B3B4)(B1B3)(B3B3)(C4C5)(D6D7),
by using the above evaluation approach, we can find that for π1, it has m = 2, n = 3, and
p = 1; thus, g(π1) = 2. While for π2, it has m = 3, n = 1, and p = 0; thus, g(π2) = 2. For
π3, it has m = 1, n = 4, and p = 1; thus, g(π2) = 3.
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In conclusion, from the above descriptions, the proposed fitness evaluation method
can accurately assess the quality of each solution in the population.

3.2.4. Mutation and Crossover Operators

To fully search the decision space and ensure the computational efficiency of the
algorithm, the mutation operator “DE/rand/1” and the binomial crossover operation are
enhanced and employed to generate the mutant and trial individual, respectively, in the
proposed NDDE algorithm.

Especially considering the fact that the search space involved in the NDDE algorithm
is discrete and the lengths of different solutions may be various, a discrete version of
“DE/rand/1” is devised and employed in this paper. In detail, for each individual ~xg

i at
g generation, its mutant individual ~vg

i = (vg
i,1, vg

i,2, . . . , vg
i,5) can be generated by

vg
i,j =

{
round(xg

r1,j + F ∗ (xg
r2,j − xg

r3,j)), if xg
r1,j 6= ∅ and xg

r2,j 6= ∅ andxg
r3,j 6= ∅,

randint(NS), otherwise
(9)

where j = 1, 2, . . . , 5, r1, r2, and r3 are three random integers in [1, NP] with r1 6= r2 6= r3 6= i,
F is a scaling factor, round(A) denotes the nearest integer around A. In particular, we set
F = 0.5 in this paper.

Similarly, based on the property of varying variables of individuals and to make
full use of the information of the target individual, the following modified binomial
crossover operation is developed and used to generate the trial individuals. Specifically,
for each individual ~xg

i and its mutant individual ~vg
i , the corresponding trial individual

~ug
i = (ug

i,1, ug
i,2, . . . , ug

i,5) is obtained by

ug
i,j =

{
xg

i,j, if xg
i,j 6= ∅ and rand ≤ Cr,

vg
i,j, otherwise

(10)

where Cr ∈ (0, 1) is the crossover rate, and especially, we set Cr = 0.5 here.
As described above, the proposed mutation and crossover operator can broadly search

the search space, fully utilize the acquired information, and have a simple implementing
process. Consequently, they are capable of boosting the search ability of the algorithm for
finding the deficiency number of one Mahjong hand.

Finally, after generating the trial individual for each target one, the population will be
updated by comparing them based on their fitness values, and the best one among them
will enter the new population. To achieve this process, the greedy selection strategy (see
Equation (4)) is utilized in this paper. Overall, by integrating the proposed initialization,
mapping solution method, repairing solution technique, fitness evaluation approach, and
mutation and crossover operations, the framework of the proposed NDDE algorithm is
shown in Algorithm 1. To improve the understanding of this paper, a flowchart of the
proposed approach for computing the deficiency number is provided in Figure 1, where
G and Gmax denote the current number and maximum number of iterations, respectively.

It should be pointed out that, unlike the existing approaches for obtaining the de-
ficiency number in [10–12], the proposed method simplifies the original problem of cal-
culating the deficiency number and makes full use of the benefits of DE to improve the
computational efficiency. Specifically, by previously finding all possible melds, pmelds, and
pairs contained in one hand and constructing the form of the solution based on the structure
of the decomposition, the problem of calculating the deficiency number is converted to a
more simple combinatorial optimization problem. Meanwhile, according to the properties
of discrete and varying variables of the new problem, a proper initialization, mapping
solution method, repairing solution technique, fitness evaluation approach, and mutation
and crossover operations are separately developed, and then a novel discrete DE algorithm
is proposed. Thereby, the proposed method can effectively and efficiently compute the
deficiency number of one Mahjong hand. It should also be mentioned that, for the hands
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with a larger deficiency number, the proposed approach might be less efficient than the
tree-based deterministic algorithms. This is because the ones with a larger deficiency
number always just contain a few melds, pmelds, and/or pairs, which might lead to few
child nodes for each search step in the deterministic methods and then reduce the search
cost, while the stochastic algorithms need to conduct the predefined searches for each hand
at all times. Moreover, compared to the general discrete and/or combinatorial optimization
problems, the simplified problem involved in this paper has a special characteristic that its
feasible solutions may have various lengths. So, the previous discrete DE versions are not
able to directly solve this problem. Meanwhile, for solving the simplified problem, other
metaheuristic algorithms can be alternatively adopted instead of DE by designing some
proper operations, which we will further study in our future work.

Figure 1. The flowchart of the proposed method in this paper for computing deficiency number.
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Algorithm 1 (The framework of the proposed NDDE algorithm).

1: Input: the given hand H, the initial size of population NP, the maximum number of
iterations Gmax.

2: Generate the set S consisting of all possible melds and pmleds for H, and calculate NS.
3: Set the current generation g = 0.
4: Initialize the population Pg by Equation (6), map and repair each individual in Pg by

Equation (7) and the proposed repairing technique described in Section 4.2.2, respectively.
5: Evaluate the fitness value of each individual in Pg by Equation (8).
6: while g ≤ Gmax do
7: for i = 1 : NP do
8: Execute the proposed mutation operation to generate ~vg

i by Equation (9);
9: Execute the proposed crossover operation to generate ~ug

i by Equation (10);
10: Repair ~ug

i by Equation (7);
11: Evaluate the fitness value of ~ug

i by Equation (8);
12: Execute the selection strategy for the current individual ~vg

i and its trial individual
~ug

i by Equation (4);
13: end for
14: Set g = g + 1;
15: end while
16: Output: the best (minimal) fitness value.

4. Experimental Analyses

In this part, the performance of the proposed NDDE algorithm is evaluated by con-
ducting a series of experiments on a large number of various, randomly generated test
hands, including 118,800 hands with one type, 100,000 hands with two types, and 100,000
hands with three types. Meanwhile, the influence analyses of the parameters involved
in the NDDE algorithm are investigated in terms of both search accuracy and running
time, and the tree search algorithm (TSA) in [10] and three other metaheuristic algorithms,
including PSO [15], GA [13], and TLBO [20], are also compared with the NDDE algorithm.
Finally, the effectiveness of the NDDE algorithm is further demonstrated in a large number
of Mahjong game battles.

In these experiments, the performance of each algorithm is measured by the accuracy
rate and average running time. Moreover, in order to make fair comparisons and obtain
statistical conclusions, each algorithm is run 30 times independently for each hand, and
three widely used statistical tests, including the t test [53], Wilcoxon rank sum test [54], and
Friedman test [55], are further adopted to distinguish the differences between the NDDE
algorithm and each compared method. All algorithms are all implemented in Python 3.0
on a personal laptop with Intel i7-6700 CPU and 16 GB RAM.

4.1. Influence Analyses of NP and Gmax

Herein, the influences of NP and Gmax on the performance of the NDDE algorithm are
analyzed. As stated in Algorithm 1, NP determines the number of solutions created at each
iteration, while Gmax decides the total iterations of the NDDE algorithm. Thus, various
values for them might cause different performances of the NDDE algorithm. Specifically,
in order to show the influence of each parameter, the full factorial design (FFD) [56] is
used here, and NP and Gmax are set to four and six different values, respectively, i.e.,
NP ∈ {10, 20, 30, 50} and Gmax ∈ {10, 30, 50, 100, 200, 500}. Tables 1 and 2 list the accuracy
rate and average running time, respectively, of the NDDE algorithm on three kinds of test
hands with one run. Note that when the actual deficiency number for a hand is found, the
proposed NDDE algorithm will be terminated, and the corresponding running time is used
just to measure its performance.
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Table 1. Accuracy rates of NDDE algorithm with various NP and Gmax on three kinds of test hands.

NP

Gmax
10 30 50 100 200 500

One type

10 40.246% 73.034% 85.332% 95.154% 98.879% 99.902%
20 56.237% 85.348% 93.325% 98.337% 99.774% 99.988%
30 65.250% 90.253% 96.000% 99.219% 99.927% 99.997%
50 75.591% 94.689% 98.093% 99.751% 99.988% 100%

Two types

10 73.177% 92.509% 96.929% 99.407% 99.915% 99.998%
20 84.632% 97.065% 99.044% 99.878% 99.992% 100%
30 89.621% 98.464% 99.607% 99.955% 99.998% 100%
50 93.979% 99.368% 99.873% 99.994% 100% 100%

Three types

10 87.124% 97.477% 99.146% 99.878% 99.982% 100%
20 93.707% 99.154% 99.797% 99.977% 100% 100%
30 96.130% 99.613% 99.930% 99.994% 100% 100%
50 98.066% 99.863% 99.990% 99.999% 100% 100%

From Table 1, it can be seen that the accuracy rate of the NDDE algorithm is closely
related to the values of NP and Gmax, and gradually improves with their increase in all
cases. Specifically, for the hands with one type, the accuracy rate of the NDDE algorithm
exceeds 90% when Gmax = 30 and NP = 30 and 50, Gmax = 50 and NP = 20, 30, and 50,
and every value for NP with Gmax = 100, 200, and 500. The accuracy rate of the NDDE
algorithm is 100% when Gmax = 500 and NP = 50. Moreover, for the hands with two
types, the accuracy rate of the NDDE algorithm exceeds 90% except when Gmax = 10 and
NP = 10, 20, and 30, while it reaches 100% when Gmax = 200, NP = 50 and Gmax = 500,
NP = 20, 30, and 50. Moreover, for the hands with three types, the accuracy rate of the
NDDE algorithm exceeds 90% except when Gmax = 10 and NP = 10, while it reaches 100%
when Gmax = 200 and NP = 20, 30, and 50, and every value for NP with Gmax = 500. In
addition, from Table 2, one can further find that the average running time of the NDDE
algorithm is also dependent on the values of NP and Gmax, and it always gradually increases
with their increase in all cases. Specifically, when the types of the hands increase, the average
running time of the NDDE algorithm on them gradually decreases. The reason for this
might be that as the types of the hands increase, the corresponding search space will be
reduced. Hence, the proposed NDDE algorithm can always obtain the actual deficiency
number for all hands with certain search costs.

Table 2. Average running time of NDDE algorithm with various NP and Gmax on three kinds of test hands.

NP

Gmax
10 30 50 100 200 500

One type

10 4.97 × 10−3 s 1.01 × 10−2 s 1.20 × 10−2 s 1.48 × 10−2 s 1.56 × 10−2 s 1.72 × 10−2 s
20 8.13 × 10−3 s 1.40 × 10−2 s 1.64 × 10−2 s 1.85 × 10−2 s 1.88 × 10−2 s 1.99 × 10−2 s
30 1.11 × 10−2 s 1.81 × 10−2 s 1.98 × 10−2 s 2.07 × 10−2 s 2.22 × 10−2 s 2.11 × 10−2 s
50 1.54 × 10−2 s 2.21 × 10−2 s 2.40 × 10−2 s 2.44 × 10−2 s 2.55 × 10−2 s 2.52 × 10−2 s

Two types

10 3.28 × 10−3 s 4.96 × 10−3 s 5.49 × 10−3 s 5.90 × 10−3 s 6.04 × 10−3 s 6.22 × 10−3 s
20 4.94 × 10−3 s 6.39 × 10−3 s 7.22 × 10−3 s 7.21 × 10−3 s 7.22 × 10−3 s 7.36 × 10−3 s
30 6.08 × 10−3 s 7.39 × 10−3 s 7.68 × 10−3 s 7.82 × 10−3 s 8.06 × 10−3 s 7.92 × 10−3 s
50 7.95 × 10−3 s 9.00 × 10−3 s 9.28 × 10−3 s 9.61 × 10−3 s 9.74 × 10−3 s 9.57 × 10−3 s

Three types

10 2.31 × 10−3 s 3.08 × 10−3 s 3.12 × 10−3 s 3.22 × 10−3 s 3.25 × 10−3 s 3.27 × 10−3 s
20 3.07 × 10−3 s 3.67 × 10−3 s 3.79 × 10−3 s 3.84 × 10−3 s 3.84 × 10−3 s 3.86 × 10−3 s
30 3.73 × 10−3 s 4.24 × 10−3 s 4.34 × 10−3 s 4.35 × 10−3 s 4.38 × 10−3 s 4.34 × 10−3 s
50 4.83 × 10−3 s 5.23 × 10−3 s 5.21 × 10−3 s 5.28 × 10−3 s 5.21 × 10−3 s 5.23 × 10−3 s

For the sake of clarity, Figures 2 and 3 further depict the accuracy rate and average
running time of the NDDE algorithm on all kinds of hands. From Figures 2 and 3, it can
easily be seen that whenever either NP or Gmax increase, the accuracy rate of the NDDE
algorithm improves for each type of hand. Meanwhile, with the increase in NP, the average
running time of the NDDE algorithm increases in each case, while the NDDE algorithm
has a minimal average running time on the hands with three types. Thus, it is essential to
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set suitable NP and Gmax in the NDDE algorithm, and we let NP = 20 and Gmax = 50 in
the following experiments due to its promising performance in terms of both accuracy rate
and average running time.

(a)

(b)

(c)

Figure 2. Accuracy rates of NDDE algorithm with various NP and Gmax on three kinds of test hands.
(a) Hands with one type, (b) hands with two types, and (c) hands with three types.
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Figure 3. Average running time of NDDE algorithm with various NP and Gmax = 50 on three kinds
of test hands.

4.2. Comparisons and Discussions

In this subsection, in order to verify the performance of the NDDE algorithm, one
typical deterministic method, namely TSA [10], and three other famous metaheuristic
algorithms, including PSO [15], GA [13], and TLBO [20], are compared with it on all
the above cases of hands. Specifically, to persuasively estimate the performance of these
methods, each approach is run 30 times independently for each hand, and the average
accuracy rate and running time of 30 runs on each kind of hand are employed to measure
its performance. Moreover, t tests [53], Wilcoxon rank sum tests [54], and Friedman
tests [55] are also utilized to show the differences between their performances.

It should be mentioned that PSO [15] is a famous swarm intelligent optimization
algorithm, GA [13] is a typical approach belonging to evolutionary computation, and
TLBO [20] is a promising metaheuristic method inspired by human activities. Meanwhile,
the proposed NDDE algorithm is developed based on just the basic framework of DE.
So, these methods are very representative and suitable and thus chosen as the compared
ones here.

4.2.1. Comparisons of NDDE Algorithm with TSA

First, one typical deterministic method, namely TSA [10], is compared with the NDDE
algorithm on all three kinds of hands. To clearly demonstrate the performance of the NDDE
algorithm, its two versions, named NDDE1 and NDDE2, where NP and Gmax are set to 20
and 50 and 50 and 500, respectively, are simultaneously employed here to compare with
TSA. Tables 3 and 4 provide their average and statistical results of 30 runs on each kind of
hand in terms of the accuracy rate and running time, respectively. Herein, pt-value and
pw-value denote the p-values of the t test [53] and Wilcoxon rank sum test [54], respectively
(the same below).

From Tables 3 and 4, it can be seen that NDDE1 has the worst results among them
in all cases, and NDDE2 and TSA each obtain the actual deficiency number for all hands.
Meanwhile, with respect to the average running time, TSA takes the longest time in each
case, and NDDE1 takes less time than NDDE2. Moreover, according to the results of the t
test and Wilcoxon rank sum test reported in both Tables 3 and 4, NDDE1 has significant
differences compared with TSA, and NDDE1 and NDDE2 are both significantly faster than
TSA in all cases. Thus, the proposed NDDE is more effective and efficient than TSA for the
deficiency number of one Mahjong hand.
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Table 3. The average and statistical results of TSA, NDDE1, and NDDE2 on three kinds of hands in
terms of accuracy rate.

Hands Methods Best Result Worst
Result

Median
Result Mean Result Standard

Deviation pt-Value pw-Value

One type
TSA 100% 100% 100% 100% 0.00 - - - -

NDDE1 93.191% 93.503% 93.301% 93.308% 7.07 × 10−4 <0.0001 <0.0001
NDDE2 99.999% 100% 100% 100% 3.19 × 10−6 0.0192 0.0214

Two types
TSA 100% 100% 100% 100% 0.00 - - - -

NDDE1 99.013% 99.129% 99.070% 99.070% 3.21 × 10−4 <0.0001 <0.0001
NDDE2 100% 100% 100% 100% 0.00 1.0000 1.0000

Three types
TSA 100% 100% 100% 100% 0.00 - - - -

NDDE1 99.760% 99.808% 99.788% 99.785% 1.21 × 10−4 <0.0001 <0.0001
NDDE2 100% 100% 100% 100% 0.00 1.0000 1.0000

Table 4. The average and statistical results of TSA, NDDE1, and NDDE2 on three kinds of hands in
terms of running time.

Hands Methods Best Result
(s)

Worst
Result (s)

Median
Result (s)

Mean Result
(s)

Standard
Deviation pt-Value pw-Value

One type
TSA 1.88 × 10−1 1.89 × 10−1 1.88 × 10−1 1.88 × 10−1 1.66 × 10−4 - - - -

NDDE1 1.57 × 10−2 1.59 × 10−2 1.58 × 10−2 1.58 × 10−2 3.87 × 10−5 <0.0001 0.0004
NDDE2 2.40 × 10−2 2.43 × 10−2 2.41 × 10−2 2.41 × 10−2 8.74 × 10−5 <0.0001 0.0004

Two types
TSA 4.32 × 10−2 4.41 × 10−2 4.36 × 10−2 4.36 × 10−2 3.48 × 10−4 - - - -

NDDE1 7.05 × 10−3 7.48 × 10−3 7.09 × 10−3 7.12 × 10−3 9.04 × 10−5 <0.0001 0.0004
NDDE2 7.95 × 10−3 8.94 × 10−3 8.03 × 10−3 8.10 × 10−3 2.10 × 10−4 <0.0001 0.0004

Three types
TSA 1.72 × 10−2 1.72 × 10−2 1.72 × 10−2 1.72 × 10−2 4.46 × 10−6 - - - -

NDDE1 3.85 × 10−3 4.91 × 10−3 3.94 × 10−3 3.97 × 10−3 1.86 × 10−4 <0.0001 0.0004
NDDE2 5.18 × 10−3 5.30 × 10−3 5.21 × 10−3 5.21 × 10−3 2.59 × 10−5 <0.0001 0.0004

4.2.2. Comparisons of NDDE Algorithm with Three Other Famous Metaheuristic Algorithms

To further demonstrate the benefit of the NDDE algorithm, three other famous stochas-
tic intelligent algorithms, including PSO [15], GA [13], and TLBO [20], are also compared
with it in all cases of hands above. Specifically, in these chosen compared methods, the
same mapping, repairing, and evaluation methods as in the NDDE algorithm are adopted,
and the size of the population and the maximum number of iterations are also set to 20
and 50, which is consistent with the setting of the NDDE algorithm. Moreover, to show the
differences between these compared methods and the NDDE algorithm, the three statistical
tests above are further adopted to give statistical conclusions. Tables 5 and 6 list the average
and statistical results of 30 runs on each kind of hand in terms of the accuracy rate and
running time, respectively, and Table 7 reports their final comparison results based on the
Friedman test [55].

As seen from Tables 5 and 6, the NDDE algorithm has a better accuracy rate than PSO,
GA, and TLBO in all cases, and there are significant differences between them and the
NDDE algorithm according to both the t test and Wilcoxon rank sum test. Meanwhile, in
terms of running time, the NDDE algorithm also has the least time on all kinds of hands,
and significantly performs best based on the statistical results. The reason for this might
be because GA needs to calculate the selection probability for each individual at each
generation, PSO always needs to record and update the personal best individual for each
solution, and TLBO has to additionally compute the mean point of the whole population
and compare the two target individuals based on their performances to determine the
search direction. So, the NDDE algorithm has a more efficient search procedure than the
others. Moreover, from Table 7, according to the Friedman test, the NDDE algorithm has
the top performance among them on all three kinds of hands in terms of both the accuracy
rate and running time. Thereby, the NDDE algorithm is the most promising solver for
computing the deficiency number.
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Table 5. The average and statistical results of NDDE algorithm, PSO, GA, and TLBO on three kinds
of hands in terms of accuracy rate.

Hands Methods Best Result Worst
Result

Median
Result Mean Result Standard

Deviation pt-Value pw-Value

One type

PSO 80.900% 81.200% 81.100% 81.100% 6.05 × 10−4 <0.0001 <0.0001
GA 42.600% 43.000% 42.800% 42.800% 1.08 × 10−3 <0.0001 <0.0001

TLBO 67.300% 67.700% 67.500% 67.500% 8.29 × 10−4 <0.0001 <0.0001
NDDE 93.200% 93.500% 93.300% 93.300% 7.07 × 10−4 - - - -

Two types

PSO 94.300% 94.500% 94.400% 94.400% 5.71 × 10−4 <0.0001 <0.0001
GA 72.500% 72.900% 72.700% 72.700% 9.47 × 10−4 <0.0001 <0.0001

TLBO 91.100% 91.400% 91.300% 91.300% 6.50 × 10−4 <0.0001 <0.0001
NDDE 99.000% 99.100% 99.100% 99.100% 3.21 × 10−4 - - - -

Three types

PSO 97.800% 97.900% 97.800% 97.800% 3.09 × 10−4 <0.0001 <0.0001
GA 86.300% 86.700% 86.500% 86.500% 9.58 × 10−4 <0.0001 <0.0001

TLBO 97.000% 97.100% 97.100% 97.100% 3.28 × 10−4 <0.0001 <0.0001
NDDE 99.800% 99.800% 99.800% 99.800% 1.21 × 10−4 - - - -

Table 6. The average and statistical results of NDDE algorithm, PSO, GA, and TLBO on three kinds
of hands in terms of running time.

Hands Methods Best Result
(s)

Worst
Result (s)

Median
Result (s)

Mean Result
(s)

Standard
Deviation pt-Value pw-Value

One type

PSO 2.09 × 10−2 2.20 × 10−2 2.10 × 10−2 2.10 × 10−2 1.85 × 10−4 <0.0001 <0.0001
GA 2.85 × 10−2 2.93 × 10−2 2.86 × 10−2 2.88 × 10−2 2.41 × 10−4 <0.0001 <0.0001

TLBO 2.89 × 10−2 3.52 × 10−2 3.00 × 10−2 3.03 × 10−2 1.36 × 10−3 <0.0001 <0.0001
NDDE 1.57 × 10−2 1.59 × 10−2 1.58 × 10−2 1.58 × 10−2 3.87 × 10−5 - - - -

Two types

PSO 1.04 × 10−2 1.05 × 10−2 1.05 × 10−2 1.05 × 10−2 3.46 × 10−5 <0.0001 <0.0001
GA 1.68 × 10−2 1.78 × 10−2 1.70 × 10−2 1.71 × 10−2 3.00 × 10−4 <0.0001 <0.0001

TLBO 1.38 × 10−2 1.55 × 10−2 1.44 × 10−2 1.44 × 10−2 3.94 × 10−4 <0.0001 <0.0001
NDDE 7.05 × 10−3 7.48 × 10−3 7.09 × 10−3 7.12 × 10−3 9.04 × 10−5 - - - -

Three types

PSO 5.87 × 10−3 6.17 × 10−3 6.09 × 10−3 6.08 × 10−3 6.18 × 10−5 <0.0001 <0.0001
GA 9.68 × 10−3 1.07 × 10−2 9.81 × 10−3 9.91 × 10−3 2.15 × 10−4 <0.0001 <0.0001

TLBO 7.77 × 10−3 1.09 × 10−2 7.98 × 10−3 8.10 × 10−3 5.64 × 10−4 <0.0001 <0.0001
NDDE 3.85 × 10−3 4.91 × 10−3 3.94 × 10−3 3.97 × 10−3 1.86 × 10−4 - - - -

Table 7. The final comparison results of NDDE algorithm, PSO, GA, and TLBO on all kinds of hands
according to Friedman test.

Algorithm
Accuracy Rate Running Time

NDDE PSO GA TLBO NDDE PSO GA TLBO

Rank 1.00 2.00 3.67 3.33 1.00 2.00 4.00 3.00

Furthermore, in order to clearly illustrate the performance of the NDDE algorithm,
the convergence curves of the NDDE algorithm, PSO, GA, and TLBO are also depicted
here on six different hands, including H1 = (B4B4B6B6B6B7B7B7B7B8B9B9B9B9), H2 =
(B3B5B5B5B5B6B6B6B7B7B8B8B9B9), H3 = (B1B2B4B5B5)(C2C3C3C3C4C4C5C7C7), H4 =
(B4)(C1C1C3C4C4C4C4C5C7C8C8C9C9), H5 = (B4B6)(C5C7C8C9)(D1D1D2D2D3D7D7D8),
and H6 = (B3)(C9)(D1D4D5D6D6D6D7D7D8D8D9D9). Herein, H1 and H2 have just one
color, H3 and H4 have two colors, and H5 and H6 have three colors. From Figure 4, one
can easily find that the NDDE algorithm always has a better convergence performance
than PSO, GA, and TLBO on each hand. Therefore, the NDDE algorithm has a more
promising performance.
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Figure 4. Convergence curves of NDDE algorithm and PSO, GA, and TLBO on six test hands. (a) H1,
(b) H2, (c) H3, (d) H4, (e) H5, and (f) H6.

4.3. Effectiveness of NNDE on Mahjong Game Battles

In this part, the practicality of the NDDE algorithm is further evaluated by comparing
it with the tree-based search method (TSA) [10] in a Mahjong battle with four players. In
this test, 1000 randomly generated states of Mahjong are employed, where all players have
drawn their hands and the order of tiles on the wall is fixed, and for each Mahjong game,
two rounds are played. Moreover, all players adopt the same strategy to make the decisions
for each action, such as pong, chow, and kong [10], except for the method employed to
calculate the deficiency number. Specifically, for each state of the game, player 1 and player
3 use the NDDE algorithm to compute the deficiency number, while player 2 and player 4
adopt TSA in the first round. In contrast, player 1 and player 3 use TSA to compute the
deficiency number, while player 2 and player 4 adopt the NDDE algorithm in the second
round. The sum of the scores obtained by player 1 and player 3 in the first round and by
player 2 and player 4 in the second round is recorded as the final score to evaluate the
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effectiveness of the NDDE algorithm. Herein, we set the basic score in game as 1, and let
NP = 20 and Gmax = 50 in the NDDE algorithm. After conducting these 1000 different
games, the final score of the NDDE algorithm on them is −1.173. Importantly, it should be
mentioned that the NDDE algorithm with NP = 20 and Gmax = 50 has accuracy rates of
93.325%, 99.044%, and 99.797% on the hands with one, two, and three types, respectively,
which can be found in Table 1. This result means that the NDDE algorithm has almost the
same performance as TSA in the real battles. Thus, the NDDE algorithm is a promising
approach for calculating the deficiency number of a Mahjong hand.

5. Conclusions

In this paper, a novel DE-based approach was presented to calculate the deficiency
number of one Mahjong hand, which plays an important role in Mahjong and is helpful for
boosting its AI development. Concretely, in order to decrease the difficulty of computing
the deficiency number, some pretreatment mechanisms were first presented to convert
the original problem into a simpler combinatorial optimization one, where the dimension
of the search space of the new problem was reduced to five, and the feasible solutions
might have various lengths. Meanwhile, inspired by the benefits of DE, such as simplicity,
ease of implementation, a strong robustness, and a superior performance, a novel discrete
DE (NDDE) variant was specially developed for solving this new problem by devising
proper initialization, a mapping solution method, a repairing solution technique, a fitness
evaluation approach, and mutation and crossover operations. Compared to the existing
methods for calculating the deficiency number, where the full searches are all implicit
in them, thus being very costly, the proposed algorithm employed the framework of the
stochastic intelligent approach, and the problem of calculating the deficiency number was
converted into a simpler one to solve in this paper. Thereby, the proposed approach is
capable of more effectively and efficiently computing the deficiency number of one Mahjong
hand. Finally, the performance of the proposed algorithm was evaluated by comparing
with the tree search algorithm and three other kinds of metaheuristic methods on a large
number of various test cases, and the sensitivity of the parameters involved in the NDDE
algorithm was also investigated. The experimental results indicated that the proposed
algorithm is more efficient and promising.

It should also be mentioned that this paper only adopted the framework of DE in
the design of the algorithm due to its previous superior practical experiences, and the
most simple version of DE only was used. Therefore, in our future work, we will focus on
devising other solvers for calculating the deficiency number based on other metaheuristic
algorithms, the existing enhanced DE variants, and discrete DE versions. Meanwhile, we
will also focus on designing a hybrid method by properly integrating the merits of both the
metaheuristic methods and the deterministic ones for calculating the deficiency number of
a Mahjong hand.
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