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Abstract: Of the various characteristics of network structure, the community structure has received
the most research attention. In social networks, communities are divided into overlapping communi-
ties and disjoint communities. The former are closer to the actual situation of real society than the
latter, making it necessary to explore a more effective overlapping community detection algorithm.
The label propagation algorithm (LPA) has been widely used in large-scale data owing to its low time
cost. In the traditional LPA, all of the nodes are regarded as equivalent relationships. In this case,
unreliable nodes reduce the accuracy of label propagation. To solve this problem, we propose the
influence-based community overlap propagation algorithm (INF-COPRA) for ranking the influence
of nodes and labels. To control the propagation process and prevent error propagation, the algorithm
only provides influential nodes with labels in the initialization phase, and those labels with high
influence are preferred in the propagation process. Lastly, the accuracy of INF-COPRA and existing
algorithms is compared on benchmark networks and real networks. The experimental results show
that the INF-COPRA algorithm significantly improves the extentded modularity (EQ) and normal
mutual information (NMI) of the community, indicating that it can outperform state-of-art methods
in overlapping community detection tasks.

Keywords: complex network; community detection; overlapping community; label propagation
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1. Introduction

Community detection is a basic task in complex network analysis. In complex net-
works, the community structure is defined as a group in the network [1,2]. The vertices
within the same community are closely connected, while those between different com-
munities are sparse. Community detection is widely used in different fields, and plays
an important role in network structure analysis. For example, detecting the community
structure of social networks [3–5] can help users to locate groups with similar interests.
In bioinformatics [6], community detection can reveal the interaction patterns among
proteins or genes. Moreover, in infectious disease prevention [7,8] community detection
can provide a better understanding of infectious disease mechanisms and scope. Thus,
detecting the community structure is pivotal for mining the significance of data gener-
ated by interpersonal interactions in social networks, strengthening relationships between
individuals, and achieving more accurate data classification.

Researchers around the world have proposed many methods to perform the task of
community detection, including optimization-based methods and heuristic algorithms.
Optimization-based methods optimize the modularity [9,10] or likelihood function [11]
through the design of a specific objective. Currently, search methods based on biological
evolution (e.g., ant colony optimization [12], genetic algorithms [13], etc.) are widely uti-
lized to optimize the designed objective. Unlike optimization-based methods, heuristic
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methods assume that the formation of community structure is dynamic and can be de-
scribed by a generation model (e.g., Markov chain [14]), and that in general the community
structure can be obtained by inputting the network into generation models.

However, with the growth of network scale, network topology becomes more complex.
To detect communities, there are several problems that must be resolved. The majority of
traditional community detection algorithms use the number of communities as a known
parameter or obtain the number of communities with the assistance of the maximum mod-
ularity [15]. However, community detection algorithms based on modularity make it easy
to disregard small-scale communities, which can affect the accuracy of the algorithm to an
extent. Further, the structure of overlapping communities is complex. Several practices [16]
have shown that the interaction between users of a real network is highly complex, which
accounts for overlapping communities. For example, in a social context, a particular person
may be deeply connected to their family while being related to coworkers and sports club
members as well. From the perspective of network science, the organization of nodes into
different groups should be considered by community detection methods [17]. The existing
overlapping community detection algorithm is usually proposed in a specific environment,
and cannot be applied to different network structures [18]. Lastly, the time expenses of
the algorithm are large. In the era of big data, the scale of social networks has gradually
increased. Community detection in large-scale network calls for high algorithmic efficiency.
Traditional community detection algorithms cannot effectively mine large-scale networks,
making it urgent to develop low-complexity algorithms.

Label propagation [19] is a method that only uses the network topology structure
to discover communities, and often shows better performance compared to other algo-
rithms when processing large-scale data [20,21]. Therefore, the label propagation algorithm
(LPA) has gained the attention of many researchers over the past decade. The existing
research [22,23] has covered optimization of the LPA to enhance its robustness and stability.
Despite this, two problems limit its stability and effectiveness. First, in the label initializa-
tion phase the algorithm treats all of the nodes equally and assigns labels to all of the nodes.
This practice requires a lot of time, and introduces errors when propagating labels. Second,
in the label propagation stage, multiple alternative labels exist and the algorithm randomly
selects from them. This leads to instability of the algorithm and difficulty in finding the
optimal solution. To solve the instability of label propagation and improve its accuracy, we
propose the influence-based community overlap propagation algorithm (INF-COPRA).

INF-COPRA uses weights to describe every node and label of the network to consider
its importance. The main idea of INF-COPRA is as follows. In the initialization phase, we
construct a node influence function; nodes with an influence greater than a certain threshold
are labeled to control the propagation sequence and prevent error propagation. In the label
propagation stage, we construct a label influence function and select labels with greater
influence according to a certain order, where the function comprehensively considers the
importance of the labels and their corresponding nodes. By reducing the randomness
of the algorithm, we optimize the performance of the algorithm. Finally, the results on
Lancichinetti–Fortunato–Radicchi (LFR) benchmark networks and five real networks show
that our method effectively improves the accuracy and stability of community detection,
especially in large-scale complex networks.

The rest of this paper is organized as follows. In Section 2, we introduce related works
about community detection algorithms, including both disjoint and overlapping commu-
nity detection algorithms. In light of the shortcomings of current community detection
algorithms, we propose our INF-COPRA algorithm in Section 3. In Section 4, we present ex-
periments on validation datasets to prove the accurancy of our algorithm. Lastly, Section 5
provides the conclusions of this paper and the future outlook for additional research.

2. Related Work

In this section, we review the existing research on community detection. Based on
different detection targets, community detection algorithms can be divided into disjoint
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community detection and overlapping community detection algorithms [24]. Thus, we
summarize the existing research from the two aspects of disjoint community detection and
overlapping community detection.

2.1. Disjoint Community Detection Algorithm

The purpose of a disjoint community detection algorithm is to divide the nodes
in a complex network into multiple independent sets. Any two sets do not intersect,
and any node can only belong to one community, which is the initial form of community
detection. Common disjoint community detection algorithms can be primarily divided into
sub-graph segmentation, hierarchical clustering, the modularity optimization algorithm,
the bionic computing method, and heuristic methods. Below, we review several of the
classical algorithms.

The graph segmentation method is derived from task allocation in parallel computing.
The first method proposed to solve the problem of community mining was the Kernighan–
Lin (KL) [25] algorithm, which sets the size of two communities in advance and gradually
adjusts the distribution of nodes in the community to make the target function of the
algorithm reach the maximum or approximate maximum. However, this method cannot
determine the stopping condition of the algorithm when the number of communities is
unknown. In the community detection algorithm based on hierarchical clustering [26],
a similarity measure is defined to quantify the similarity between nodes. Common mea-
sures include cosine similarity and the Jaccard index. Different nodes are grouped into
corresponding communities based on their similarity. The modularity optimization algo-
rithm [27] is one of the most widely used methods in community detection. Modularity
is used to measure the quality of the division of specific communities in the network.
By searching the possible communities in the network, it is possible to locate the partition
with the largest modularity. Owing to the high time complexity of the exhaustive search,
approximate optimization methods, including greedy algorithms and simulated annealing,
are often used in practice. For example, the Louvain algorithm [28], among the most classic
modularity optimization algorithms today, iteratively optimizes the local community until
it can no longer improve the global modularity.

2.2. Overlapping Community Detection Algorithm

Because communities often overlap in real networks, overlapping community discov-
ery [29] is gradually receiving more research attention. The classic research on overlapping
communities [30] includes algorithms based on clique percolation, label propagation, local
spectral clustering, random walks, and local optimization.

The clique percolation method (CPM) algorithm [31] is an early effective algorithm
for detecting overlapping communities; in this method, a clique is a complete sub-graph
existing in the network, that is, a set of any two connected nodes. Based on the assumption
that multiple cliques overlap to form a community, the community is detected by searching
for adjacent cliques. Zhang et al. [32] used non-negative matrix factorization (NMF) to
solve the problem of community mining. This algorithm can calculate the membership
of nodes with respect to every community. However, the community parameters of this
method are based on modularity optimization, and the calculation cost of the algorithm is
large. Algorithms based on a random walk [33] focus on the time required for the random
walk to escape from the community. Because a random walk should be trapped in a
community for a long time, it is possible to find communities by maximizing the random
walk within the same community. Algorithms [34,35] based on local optimization seek to
optimize the fitness function describing the local topological structure in order to achieve a
near-optimal solution. Reducing the problem of community mining in social networks to a
local optimization problem represents a convincing solution, This is because the process
of forming associations is initiated by the participants in a localized way, making this
approach very intuitive. The ClusterONE algorithm [36] continuously selects seeds and
uses the yield function to find the local optimal cluster around the seeds. The COPRA
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algorithm [19,37] modifies the classic LPA algorithm, ensuring that every node can retain
multiple labels to find overlapping community structures. In the SLPA algorithm [38],
SLPA provides storage for every node to store the received information, that is, the labels.
The probability of receiving labels stored by nodes is interpreted as membership strength.
SLPA does not require the number of communities at the beginning of the algorithm,
allowing it to be determined based on the label clustering in the network.

In summary, the existing overlapping community detection algorithms are either un-
stable or not suitable for large-scale networks [39]. By contrast, LPA only uses the network
topology to detect the community in the network. It requires neither prior information
about the community nor a predefined fitness function [19]. Thus, it has often shown better
performance than other algorithms when processing large-scale data [40]. In order to design
an overlapping community detection algorithm suitable for large-scale data, our proposed
approach integrates the ideas of label propagation and an influence mechanism, resulting
in an improved model by controlling the accuracy of label propagation in the network.

2.3. LPA for Overlapping Community Detection

Because this paper focuses on optimizing LPA for overlapping community detection,
we introduce the flow of the LPA in this section.The problem of community detection in
the network using LPA can be transformed into the problem of finding nodes with the
same label in the network. Nodes with the same label are considered to belong to the same
community. The procedure of the overlapping community detection algorithm based on
label propagation is as follows:

1. Label initialization; given a network G = (V, E) with |V| nodes, for any node v ∈ V
in the network, assign a separate label c(v) to every v, with the membership of node v
to label c(v) being 1;

2. Update the label of node v based on the neighbors (Formula (1)). If there are multiple
labels to choose from, randomly select γ labels from the alternative labels. The param-
eter γ is the maximum number of labels that a node can have;

3. If the algorithm reaches the set maximum number of iterations, the algorithm stops;
otherwise, continue to step 2;

4. The community is divided based on the node label.

Hre, bt(c, v) represents the membership of label c with respect to node v in the t-th
iteration.bt = (c, v) represents the subordinate coefficient of node v to community c, The
calculation formula of bt(c, v) is as follows:

bt(c, v) =
∑y∈N(v) bt−1(c, y)

|N(v)| , (1)

where ∑y∈N(v) bt−1(c, y) indicates the sum of the subordinate coefficients of label c for the
neighbors of node v during the t− 1 iteration, while N(v) represents the neighbors of node
v, and |N(v)| is the number of those neighbors.

Because of the explosive growth of data scale, community detection algorithms based
on label propagation have received more research attention lately. To improve the stability
and robustness of the LPA, researchers have made various modifications to it. However,
such methods rely on random selection, which can limit the accuracy of the detected
communities.To address this issue, we propose INF-COPRA in this paper. Our algorithm
utilizes node and label sorting techniques to enhance the accuracy of the algorithm while
preserving the low computational complexity of label propagation. By incorporating a
novel initialization method and a deterministic label updating rule, our algorithm can
achieve higher accuracy in identifying overlapping communities compared with existing
label propagation-based methods.
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3. Influence-Based Community Overlap Propagation Algorithm

In this section, we propose INF-COPRA. We optimize the initialization phase and label
propagation phase of the COPRA algorithm. Next, we introduce the process of INF-COPRA
in detail.

The present section details the INF-COPRA algorithm, as depicted in Figure 1. By iden-
tifying important nodes in the network as community centers and spreading from these
central nodes to their neighbors, it is possible to calculate the influence of different commu-
nities on every node. When the influence exceeds a certain threshold, it is determined that
a particular node belongs to a particular community.

Therefore, the first step involves computing the influence of every node using the
prescribed Formula (2), after which the nodes are arranged in descending order of influence
and assigned diverse labels. Labels are assigned exclusively to nodes with an influence
exceeding the mean influence. In the subsequent label propagation stage, the label of a
given node is updated iteratively while considering its neighbors. In cases where there
are multiple potential labels, the label with the highest label influence is selected using
Formula (3). Upon satisfaction of the termination condition, the algorithm determines the
community structure based on the labels assigned to the nodes.

Figure 1. Flowchart of INF-COPRA, which consists of (a) calculate the influence of nodes through
local and location information, (b) sort the influence of nodes and assign labels to nodes with high
influence, (c) update the labels through the labels of neighbors, (d) after the iteration, the community
is divided based on the labels carried by the nodes.

Next, we introduce the initialization and label propagation phases of INF-COPRA.

3.1. Initialization in INF-COPRA

In the initialization phase of the COPRA algorithm, it is customary to consider all
of the unlabeled samples as equivalent and later transmit label information to all of the
neighbors without considering its reliability [29]. However, this approach may result in
the propagation of inaccurate labels, mainly owing to unreliable samples, consequently
leading to a considerable reduction in the clustering accuracy. To address this issue, we
propose the integration of an influence function that calculates the influence of every node,
and set a threshold accordingly. Specifically, we label only the influential nodes during
the initialization stage, thereby controlling the propagation sequence and preventing the
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spread of erroneous labels. This approach enhances the accuracy of the COPRA algorithm
and effectively mitigates the impact of unreliable samples on the clustering process.

The influence of nodes is mainly contingent upon local, global, and positional infor-
mation. The computation of global information has high time complexity and is unsuitable
for large networks, as previously noted in the literature [41]. Conversely, Kitsak et al. [42]
posited that while local information is computationally efficient, it is not a definitive factor
affecting nodes’ propagation ability. Hence, in order to better elucidate the propagation
performance of nodes this paper employs an influence calculation technique based on
the K-core value and degree. This method is more suitable for assessing nodes’ propaga-
tion performance.

K-core decomposition is a widely employed method in network analysis. It involves
the iterative elimination of nodes with a degree of 1 and their corresponding edges in the
network until all of the nodes in the network possess a degree greater than 1 and the K-core
value of the removed nodes is 1. Progressively eliminating all of the nodes in the network
culminates in the K-core values of all of the nodes in the network. While the K-core value
can provide a rough approximation of the propagation ability of a network, it may not
be comprehensive enough. Thus, this paper adopts an influence calculation technique
that comprehensively integrates the “degree” and “K-core” of nodes, which respectively
capture their local information and positional information. Together, these two metrics
serve as the standard for accurately assessing node influence and enable precise community
division. The influence calculation function for node i is as defined in Formula (2):

NI(i) =
di√

∑n
j=1 d2

j

+
ki

max
(
k j
) , (2)

where di is the degree of node i, dj represents the degree of the neighbors of node i, n
represents the number of neighbors of node i, ki represents the K-core value of node i,
and max(k j) represents the maximum K-core value of the neighbor of node j. In our formula,
a node is more important when it has a greater degree than its neighbor. When a node is at
the core location of the network and its neighbor node is at the edge, its influence is greater.

During the initialization phase, we initially calculate every node’s influence by ap-
plying Formula (2), sort the nodes based on their influence, and allocate distinct labels to
nodes with influence exceeding the average value. Unlike the conventional LPA practice
of assigning labels to all of the nodes, our proposed technique has the advantage of mit-
igating time complexity during the initialization phase and preventing the propagation
of erroneous labels through unreliable nodes. The algorithm in the initialization phase is
presented below as Algorithm 1.

Algorithm 1 Initialization
Input: network G = (V, E), V is the node set in the network, E is the edge set in the network
Output: node influence sequence dc
1: if node i is the neighbor of node j then
2: Aij=1
3: else
4: Aij=0

5: for each node vi do
6: NI(i) = di√

∑n
j=1 d2

j

+ ki
max(kj)

7: dx=order node by NI(i)
8: dc = dx(NI(i) > avg(ΣNI(i)))
9: return dc
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3.2. Label Propagation in INF-COPRA

INF-COPRA adopts a synchronous update strategy; that is, a node selects a label
based on the node’s membership to the label and retains labels with membership exceeding
a given threshold. Because the label represents a community in the network, a node’s
membership with respect to a label represents its membership in the community, and is
collectively referred to as the node’s membership. During COPRA, nodes only preserve
labels with a membership above a certain threshold. However, if multiple alternative labels
are present then the COPRA algorithm randomly selects one, leading to poor stability and
difficulty in identifying optimal labels. To address these issues, we introduce the concept of
the comprehensive label influence. The factors determining comprehensive label influence
include the label subordinate coefficient and the sum of node degrees. By considering the
order of influence, we select labels with greater influence to reduce algorithmic randomness.
We propose Formula (3) for computing label influence, which comprehensively considers
the impact on the label selection process considering label influence factors:

LI(c, v) =
|Nc(v)|
|N(v)| +

(
1− e−∑iεNc(v) d(i)

)
, (3)

where LI(c, v) represents the influence of label c on node v, |N(v)| represents the number of
neighbors of node v, and |Nc(v)| represents the number of neighbors that carry the label
c. Furthermore, ∑iεNc(v) d(i) denotes the sum of node degree that have been assigned the
label c.

The label influence comprehensively considers the importance of the label and its
location. In this paper, the frequency of label appearance is regarded as the importance of a
label; the more frequently a label appears, the more important it is. In addition, the labels
located at different nodes have different probabilities of being propagated to other nodes;
thus, in this paper we take the degree of the node where the label is located as the location
importance of the node. The label propagation stage is described in Algorithm 2.

Algorithm 2 Propagation
Input: network G = (V, E), threshold ρ
Output: label list ls
1: for each node v do
2: LI(c, v) = |Nc(v)|

|N(v)| +
(

1− e−∑iεNc(v) d(i)
)

3: if LI(c, v)< ρ then
4: ls.delete(c)
5: else
6: ls.add(c)
7: return ls

4. Experiments
4.1. Datasets

To verify the effectiveness of the algorithm, we selected five real networks with differ-
ent scales and LFR artificial networks with different characteristics to serve as experimental
data. The five real networks were the Karate Club [43], Dolphins [44], American Univer-
sity Football Game [24], Facebook User, and Enron E-Mail Communication Network [45]
databases. The statistical properties of the networks are shown in Table 1.

To generate synthetic networks, we utilized the LFR benchmark network model [46].
The parameter settings for the LFR benchmark network are provided in Table 2. By
manipulating the mixing parameters and overlapping density, we generated a diverse set
of artificial networks while keeping the other parameters at their default values. Note that
the LFR benchmark network assumes that the degree of nodes and the size of communities
in the network follow power-law distributions with power-law distribution indices of t1 and
t2. The mixing parameter, denoted as µ, ranges from 0 to 1, and represents the proportion of
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connections between different community structures within the same network, while Cmin
represents the number of nodes in the smallest community, Cmax represents the number of
nodes in the largest community, On represents the proportion of overlapping nodes in the
total number of nodes in the network, and Om represents the number of communities to
which overlapping nodes belong. Through the adjustment of these parameters, we could
generate networks with distinct and varying characteristics.

Table 1. Statistical characteristics of real network datasets.

Node Edge

karate 34 78
dolphins 62 159
football 115 613

Facebook 4039 88,234
Email 36,692 183,831

Table 2. Parameter settings of LFR.

Network N µ On

LFR-µ 1000–8000

0.1 -
0.2 -
0.3 -
0.4 -
0.5 -
0.6 -

LFR-On 1000–8000

- 0.1
- 0.2
- 0.4
- 0.6
- 0.8

4.2. Evaluation Metrics

In the context of real networks, standard community divisions are frequently unavail-
able. Therefore, modularity was utilized as the primary evaluation index to assess the
performance of the algorithm. Conversely, for synthetic networks that possess standard
community divisions, normalized mutual information (NMI) was utilized to evaluate the
similarity between the communities detected by the algorithm and the actual communities.
In the subsequent sections we provide detailed explanations of these two evaluation metrics.

NMI was introduced by Danon et al. [47], and is commonly used to evaluate the
accuracy of community detection algorithms when analyzing networks with a known
community structure. Mutual information measures the similarity between the communi-
ties discovered by the algorithm and the actual community structure. The resulting value
is confined to the range of [0–1], where a value closer to 1 indicates a higher degree of
similarity between the two community structures, indicating more effective algorithmic
performance. The calculation of NMI is presented as follows:

NMI
(

P, P′
)
=

−2 ∑
|P|
i=1 ∑

|P′ |
j=1 nij log

(
nij ·n

nP
i ·n

P′
j

)
∑
|P|
i=1 nP

i log
(

nP
i

n

)
+ ∑

|P′ |
j=1 nP′

j log
(

nP′
j
n

) , (4)

where P represents the community structure detected by the algorithm, P′ represents the
real community structure of the network, |P| represents the number of detected communi-
ties, |P′| represents the number of real communities, nij represents the number of common
nodes in Pi and P′j , and n is the number of nodes.
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Modularity is a method proposed by Mark Newman to assess the robustness of a
network community structure [9]. Because modularity does not consider overlapping
nodes, it can only be used as an evaluation metric for disjoint community detection.
To evaluate the quality of division in overlapping communities, Shen Wei-hua et al. [48]
introduced extended modularity (EQ), which considers the overlapping degree of nodes
based on the Q function. The computation method is as follows:

EQ =
1

2m ∑
c

∑
i,j∈Ck

1
OiOj

[
Aij −

kik j

2m

]
, (5)

where m represents the number of edges in the network, Aij is the adjacency matrix of
the network, ki and k j represent the degrees of node i and node j, respectively, and Oi
represents the number of communities that node i belongs to at the same time. If EQ is 1 or
close to 1, the community structure is obvious; however, in actual networks the value of
EQ is usually in the range of [0.3–0.7].

5. Results and Discussion

In this section, we present the results of a community detection conduced on LFR
benchmark networks and real networks. Considering the availability of a known com-
munity structure in LFR benchmark networks, we utilized NMI as the evaluation metric.
By contrast, modularity was employed as the evaluation metric for real networks, which
frequently lack a standard community division. To provide a comprehensive analysis of
the algorithm’s effectiveness, we present the experimental results for synthetic networks
and real networks separately.

5.1. Results on Synthetic Networks

The mixing parameter µ in LFR benchmark networks represents the proportion of
connections between different community structures within the same network, while On
represents the proportion of overlapping nodes. Higher values of µ and On indicate a
greater degree of blurring at the boundary between different communities and a corre-
spondingly complex network structure. By controlling these two parameters, it is possible
to identify the benchmark networks with different attributes. Therefore, we constructed
four types of synthetic networks with different sizes containing 1000, 2000, 5000, and
8000 nodes. We adjusted the µ and On values to modulate the complexity of the network,
enabling a comprehensive multidimensional evaluation of our algorithm’s effectiveness.

By manipulating µ within the range of [0.1–0.6] while keeping the other parameters
constant, we constructed networks containing 1000, 2000, 5000, and 8000 nodes. On this
basis, we compared the performance of COPRA [19], CPM [31], SLPA [38], LFM [49],
DANMF [50], EMOFM-SC [51], and our proposed algorithm. The experimental results are
presented in Table 3. Both the COPRA and SLPA algorithms show improvements upon
label propagation. The COPRA algorithm maintains multiple labels for every node and
calculates the membership of every label to achieve the purpose of detecting overlapping
communities. By contrast, SLPA records the historical label sequence of each node in the
iteration process, counts the frequency of label occurrence in the sequence, and filters
out the low-frequency labels according to the set threshold. The CPM algorithm detects
communities by looking for maximal cliques in the network. The LFM algorithm expands
from an arbitrary seed node to form a community through local optimization and stops ex-
panding when the fitness value of the community stops increasing. The DANMF algorithm
combines the advantages of a deep autoencoder network (DAN) and non-negative matrix
factorization (NMF), and can perform effective dimensionality reduction and clustering on
high-dimensional network data, thereby achieving efficient community detection. Finally,
the EMOFM-SC algorithm is an evolutionary multi-objective optimization-based fuzzy
method for overlapping community detection.

In Table 3, N denotes the number of nodes in the synthetic networks, which were set
at 1000, 2000, 5000, and 8000. Note that the maximum number of nodes was limited to
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8000 owing to the inability of certain algorithms to detect community structures in larger
networks. Every column of the table represents the NMI of the communities identified by
every algorithm in the network with varying structures. A higher NMI value represents
greater accuracy in community detection. We varied the mixing parameter µ from 0.1 to
0.6, corresponding to the six rows of the table, while keeping the number of nodes constant.
All of the other LFR parameters were set to their default values.

For mixing parameters falling within the range of [0.1–0.3], the proportion of con-
nections between nodes in different communities is low, indicating a clear boundary and
an obvious community structure within the network. Irrespective of node number, our
proposed algorithm INF-COPRA consistently exhibits higher accuracy in this scenario. At µ
values close to 0.1, the NMI value of our proposed algorithm approaches 1, demonstrating
that the communities identified by our algorithm are similar to the standard community
when the community structure of the network is clear. In addition, despite its low time
complexity, the CPM algorithm produces communities of unsatisfactory quality. Even
when µ is small, the communities identified by the CPM algorithm deviate significantly
from the standard community.

Table 3. The NMI values of every algorithm under different mixing parameters.

N µ INF-COPRA COPRA CPM SLPA LFM DANMF EMOFM-SC

1000

0.1 0.97 0.9 0.224 0.68 0.8 0.94 0.963
0.2 0.92 0.74 0.15 0.59 0.62 0.81 0.835
0.3 0.73 0.58 0.071 0.49 0.47 0.78 0.802
0.4 0.45 0.13 0.043 0.32 0.24 0.55 0.611
0.5 0.29 0.05 0.026 0.07 0.25 0.5 0.478
0.6 0.2 0.006 0.0009 0.02 0.19 0.34 0.38

2000

0.1 0.98 0.9 0.23 0.6 0.917 0.95 0.947
0.2 0.97 0.76 0.17 0.59 0.803 0.84 0.909
0.3 0.83 0.6 0.08 0.54 0.526 0.78 0.853
0.4 0.55 0.06 0.05 0.32 0.291 0.48 0.732
0.5 0.29 0.01 0.02 0.07 0.25 0.44 0.205
0.6 0.2 0.009 0.007 0.02 0.177 0.36 0.082

5000

0.1 0.98 0.6 0.3 0.88 0.78 0.9 0.927
0.2 0.95 0.5 0.28 0.79 0.7 0.88 0.884
0.3 0.9 0.24 0.27 0.68 0.61 0.86 0.851
0.4 0.64 0.009 0.07 0.22 0.4 0.58 0.673
0.5 0.28 0.007 0.05 0.07 0.23 0.34 0.258
0.6 0.08 0.006 0.015 0.002 0.14 0.2 0.104

8000

0.1 0.96 0.74 0.67 0.7 0.81 0.9 0.916
0.2 0.94 0.68 0.59 0.6 0.75 0.87 0.805
0.3 0.8 0.47 0.42 0.48 0.54 0.52 0.649
0.4 0.6 0.29 0.27 0.3 0.36 0.27 0.531
0.5 0.32 0.04 0.02 0.1 0.18 0.005 0.152
0.6 0.2 0.006 0.0009 0.02 0.09 0.0004 0.093

As the µ value gradually increases and the network structure becomes more complex,
the accuracy of every algorithm gradually decreases, and COPRA, SLPA, and CPM even
approach zero. In certain networks with high µ, our algorithm is not as accurate as
DANMF and EMOFM-SC, however it outperforms other algorithms be a considerable
margin. This means that there is room for improvement in our proposed algorithm when
faced with complex community structures. We speculate that when the boundaries between
communities become blurred, the interference of label propagation in the network gradually
increases, which affects the final experimental results. It is remarkable that our algorithm
can show good performance as the number of nodes reaches 8000, when other algorithms
gradually lose the ability to mine community structure but our algorithm is able to maintain
good results.
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Subsequently, we held the other parameters constant while varying On (representing
the overlapping density) in the range of [10–80%]. The experimental results are presented
in Table 4, where N denotes the number of nodes in the synthetic network, which was set
to 1000, 2000, 5000, and 8000.

An intriguing result can be seen for the networks consisting of 8000 nodes. Specifically,
when the overlapping density reaches 80% all of the algorithms except for those based
on label propagation fail to converge, and are unable to effectively identify communities
within the network. Although the SLPA and COPRA algorithms are able to identify
communities, there is a significant disparity between their outcomes and the standard
community division. By contrast, our proposed algorithm demonstrates a high degree
of similarity with the standard community division, thereby validating the efficacy of
INF-COPRA. These findings underscore the accuracy of our algorithm, particularly when
dealing with networks characterized by ambiguous community boundaries.

Table 4. The NMI values of every algorithm under different overlapping densities.

N On INF-COPRA COPRA CPM SLPA LFM DANMF EMOFM-SC

1000

0.1 0.95 0.85 0.48 0.88 0.78 0.89 0.923
0.2 0.91 0.74 0.38 0.79 0.7 0.82 0.905
0.4 0.63 0.2 0.16 0.38 0.42 0.65 0.647
0.6 0.35 0.009 0.07 0.02 0.16 0.39 0.478
0.8 0.2 0.002 0.05 0.007 0.07 0.26 0.091

2000

0.1 0.98 0.6 0.32 0.77 0.77 0.89 0.875
0.2 0.96 0.56 0.3 0.79 0.68 0.88 0.893
0.4 0.69 0.1 0.12 0.38 0.46 0.65 0.649
0.6 0.33 0.004 0.06 0.02 0.25 0.37 0.531
0.8 0.09 0.002 0.03 0.007 0.15 0.2 0.192

5000

0.1 0.95 0.73 0.65 0.71 0.82 0.89 0.798
0.2 0.91 0.67 0.59 0.7 0.74 0.86 0.634
0.4 0.8 0.47 0.42 0.28 0.55 0.51 0.571
0.6 0.6 0.29 0.27 0.02 0.37 0.28 0.208
0.8 0.32 0.03 0.017 0.007 0.2 0.005 0.081

8000

0.1 0.95 0.755 0.265 0.71 0.482 0.489 0.693
0.2 0.928 0.738 0.159 0.6 0.374 0.486 0.592
0.4 0.809 0.492 0.106 0.28 0.192 0.32 0.502
0.6 0.563 0.011 0.065 0.1 0.162 0.28 0.291
0.8 0.32 0.008 - 0.01 - - -

5.2. Results on Real Networks

In addition to constructing the LFR benchmark network, we assessed the effectiveness
of every algorithm on five real datasets. Considering the absence of a standard community
division for these datasets, we utilized EQ as the evaluation metric. The EQ values for
every algorithm are presented in Table 5.

Table 5. Comparison of EQ values of different algorithms in real networks.

INF-COPRA COPRA CPM SLPA LFM DANMF EMOFM-SC

karate 0.413 0.387 0.116 0.214 0.328 0.39 0.257
dolphins 0.392 0.379 0.287 0.381 0.341 0.375 0.272
football 0.591 0.359 0.331 0.353 0.513 0.603 0.301

Facebook 0.558 0.456 0.263 0.505 0.386 0.386 0.409
Email 0.392 0.224 0.013 0.317 0.348 0.35 0.28

In the Karate and Dolphins datasets the number of nodes was less than 100, and the
INF-COPRA algorithm ranks first. This indicates that our algorithm can effectively detect
network communities even in small-scale networks. While the EQ value of INF-COPRA
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on the Football dataset is slightly lower than that of DANMF, the execution time of INF-
COPRA is far lower than that of the community mining algorithms based on NMF, and the
time complexity is not on the same level either. Furthermore, INF-COPRA ranks second
after DANMF, with both being far more effective than other algorithms. On the Facebook
and Enron datasets, INF-COPRA achieves the best results, with an EQ value 10% higher
than the second-best algorithm. This shows from another dimension that the algorithm
proposed in this paper has significant advantages in large-scale networks.

To further assess the efficacy of the INF-COPRA algorithm, we present visualiza-
tions of the community detection results obtained utilizing INF-COPRA on real networks.
Figure 2 illustrates the community division produced by INF-COPRA on the Karate net-
work (EQ = 0.413), which is partitioned into two communities, namely, purple and green.
Notably, nodes 3 and 20 are overlapping nodes that belong to the two communities. The vi-
sualization results obtained using the Karate dataset underscore the practical significance
of INF-COPRA. This is because this dataset depicts social relationships within a karate club
in which disagreements between two managers have led members to align themselves into
seperate communities that reflect the internal dynamics of the club.

Figure 2. Community division of INF-COPRA on the Karate network.

Figure 3 visualizes the community division in the Dolphins network (EQ = 0.392),
which is divided into four different communities, with nodes 20, 39, and 40 being overlap-
ping nodes. This indicates that dolphins are not only active within a single group, and have
frequent connections with other dolphin communities.

Figure 3. Community division of INF-COPRA on the Dolphins network.
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Figure 4 visualizes the community divisions in the Football network (EQ = 0.591),
which is divided into nine different communities. The size of every community in the
Football network is similar because the number of players on each football team is simi-
larly limited. The results indicate that the algorithm can accurately identify the different
communities in the network while considering the special attributes of every community.

Figure 4. Community division of INF-COPRA on the Football network.

Figure 5 visualizes the community divisions in the Facebook network (where only 10%
of the nodes in the network are visualized, EQ = 0.558), which is divided into four different
communities. There are two “super communities” in the Facebook network in which
most nodes are located; at the same time, there are frequent interactions between the two
communities. This shows that users with the same interests tend to be frequently connected
in social networks.

Figure 6 visualizes the community division of the Enron network (where only 1% of
the nodes in the network are visualized, EQ = 0.392).The community structure of the Enron
network is relatively complex, and it has no clear boundaries between communities. Nodes
located in different communities have frequent communication.

5.3. Discussion

In our comparative algorithm, we primarily include local community detection meth-
ods. Local community detection methods aim to identify communities based on the local
structure of the network, including the nodes’ direct neighbors. These methods typically
start with a seed node and iteratively expand the community by adding or removing nodes
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according to local criteria. Label propagation methods, by contrast, aim to partition the
network according to the nodes’ labels or attributes. In these methods, every node is
assigned labels, and the labels are propagated through the network until a stable partition
is reached.

Figure 5. Community division of INF-COPRA on the Facebook network.

In terms of performance, local community detection methods tend to be faster than
label propagation methods; however, they may not produce the most accurate results.
Label propagation methods, by contrast, may be more accurate; however, they may require
additional computational resources. As can be seen in the results, the different parameters
of the LFR network affect the results as well. In small-scale networks, as the parameters
(both µ and On) increase gradually and the boundary between different communities
becomes blurred, and the accuracy of INF-COPRA falls below that of DANMF. Based on
our analysis, we think that this is because the label propagation method only uses the
topology of the network. Label propagation methods can be considered a hybrid between
local and global community detection methods. Although they rely on the local similarity
between nodes, they can propagate information globally through the network, resulting
in a more global division. However, the final division remains influenced by the local
structure of the network. While this idea improves the efficiency of the algorithm, it may
cause the loss of higher-order information in the network. Concurrently, the algorithm
can propagate information globally through the network, making more complex network
structures less conducive to the propagation of labels. When the number of nodes in the
network increases gradually, INF-COPRA can maintain high accuracy, which confirms the
conclusion that it is applicable to large-scale networks.
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Figure 6. Community division of INF-COPRA on the Enron network.

6. Conclusions

In this paper, we have proposed INF-COPRA to detect overlapping communities.
INF-COPRA utilizes a new initialization and label propagation method that removes
unnecessary labels, thereby improving the accuracy and robustness of community detection.
In particular, we developed two functions to control the process of label propagation. In
the first, we sort the nodes by importance and only assign labels to the important ones,
reducing the time cost and avoiding label error propagation. Second, when facing multiple
alternative nodes, we prioritize those with the highest influence, ensuring that correct
messages are transmitted in every iteration. Experimental results on various synthetic
networks and real networks demonstrates that INF-COPRA outperforms other state-of-
the-art methods on community discovery tasks. On synthetic networks, our algorithm was
able to identify communities that were highly similar to the standard community. On real
networks, our method achieved better modularity. Nevertheless, on certain small-scale
networks our algorithm may not achieve the best results owing to subjective influence and
label settings. In addition, network generation factors may affect this approach. Moreover,
INF-COPRA has a number of limitations, including that it is applicable only to undirected
and unweighted networks. Future research will explore applying the INF-COPRA model
to directed weighted networks and extending it to dynamic networks.
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