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Searching for a solution to the equation (1) articles in the form of operators âi and â†i is

inconvenient, since there are no methods for solving such equations based on the properties

of these operators. It is much easier to pass to writing in the form of a differential equation

in canonical field variables, where âi = 1√
2
(Qi + ∂

∂Qi
) and â†i = 1√

2
(Qi − ∂

∂Qi
). It is then

convenient to represent the vector potential in the form of canonical variables [1–4] Âi,a =

βicui

(
Qi cos(kira) + i ∂

∂Qi
sin(kira)

)
, where βi =

√
4π
ωiV

. The quantity β2
i has the dimension

of energy and, relative to the photon energy ωi, is a very small quantity even in very strong

electromagnetic fields [5]. It is easy to see this at a qualitative level if we make estimates of

the dimensionless parameter β2
i /ωi, which is always β2

i /ωi � 1 in reasonable cases (in the CGS

system of units, the value 4πe2

mω2
i V

). As a result, it is necessary to solve the differential equation

with the Hamiltonian

Ĥ =
1

2

2∑
i=1

ω
′

i

(
Q2
i −

∂2

∂Q2
i

)
+

1

2

∑
a

p̂2
a +

2∑
i=1

βiui
∑
a

(
Qi cos(kira) + i

∂

∂Qi

sin(kira)

)
p̂a +

2∑
i,j=1

Ai,jQi
∂

∂Qj

+BQ1Q2 + C
∂

∂Q1

∂

∂Q2

. (S1)

In the Eq.(S1) the coefficients will be defined as

ω
′

i = ωi

√
1 + β2

i /ωi, Ai,j = iβiβjuiuj
∑
a

sin(kjra) cos(kira),

B = β1β2u1u2

∑
a

cos(k1ra) cos(k2ra), C = −β1β2u1u2

∑
a

sin(k1ra) sin(k2ra). (S2)

Let us estimate which expressions in the equation Eq.(S1) can be ignored due to the smallness

of the parameter β2
i /ωi. To do this, it is necessary to consider the Eq.(S1) in the case when

the effect of the electromagnetic field on the charges will be maximum, i.e. for kira → 0. It

should be added that this condition coincides with the dipole approximation. In this case, the

Eq.(S1) has an exact solution. We add that this solution can be found using [6], where a similar
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problem was solved.

In the case when the interaction is maximum, i.e. when kira → 0 then Eq.(S1) of the

manuscript will be

Ĥ =
1

2

2∑
i=1

ω
′

i

(
Q2
i −

∂2

∂Q2
i

)
+

1

2

∑
a

p̂2
a + α̂Q1 + β̂Q2 +BQ1Q2,

α̂ = β1u1

∑
a

p̂a, β̂ = β2u2

∑
a

p̂a. (S3)

A similar Hamiltonian was considered in [6]. In that work, two free particles were considered;

in our work, we do not limit the number of free particles. Despite this, one can see that the

results obtained in [6] can be easily extended to the case of any number of particles. Following a

similar change of variables, which are presented in [6], one can obtain the Hamiltonian Eq.(S3)

in the form

Ĥ =
1

2

2∑
i=1

ω
′′

i

(
y2
i −

∂2

∂y2
i

)
+

1

2

∑
a

p̂2
a +

(
Ây1 + B̂y2

)∑
a

p̂a,

Â =

√
ω

′
1

ω
′′
1

(
β1u1 cos θ −

√
ω

′
2

ω
′
1

β2u2 sin θ

)
, B̂ =

√
ω

′
2

ω
′′
2

(√
ω

′
1

ω
′
2

β1u1 sin θ + β2u2 cos θ

)
,

tan θ =
ε

|ε|
√
ε2 + 1− ε, ε =

ω
′
2 − ω

′
1

2B
,

ω
′′

1 = ω
′

1

√√√√1−

√
ω

′
2

ω
′
1

B

ω
′
1

tan θ, ω
′′

2 = ω
′

2

√√√√1 +

√
ω

′
1

ω
′
2

B

ω
′
2

tan θ,

y1 =

√
ω

′′
1

ω
′
1

(
Q1 cos θ −

√
ω

′
1

ω
′
2

Q2 sin θ

)
, y2 =

√
ω

′′
2

ω
′
2

(√
ω

′
2

ω
′
1

Q1 sin θ +Q2 cos θ

)
. (S4)

Next, a method for solving the Schrödinger equation with Hamilton Eq.(S4) is presented in [6].

Let’s write the result of this solution

pi,l =
∣∣∣∑
k,n,m

Ci,l
k,i+l−ke

− i
~En,mtAn0,m0

n,m Bn,m
k,i+l−k

∣∣∣2, En,m = ω
′′

1

(
n+

1

2

)
+ ω

′′

2

(
m+

1

2

)
, (S5)

where pi,l is the probability of detecting i and l photons in the first and second modes, respec-
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tively, if the initial number of photons in the Fock state in these modes is n0,m0, respectively.

Bn,m
k,p = (−1)(k−n)θ(k−n)(−1)(p−m)θ(p−m)

√
k!

n!

sgn(n−k)√
p!

m!

sgn(m−p)

e
− 1

4

(
α
′2

+β
′2
)

×
(
α

′

√
2

)|n−k|(
β

′

√
2

)|m−p|
L
|n−k|
(n+k−|n−k|)/2

((
α

′

√
2

)2
)
L
|m−p|
(m+p−|m−p|)/2

((
β

′

√
2

)2
)
,

An0,m0
n,m = (−1)(n0−n)θ(n0−n)(−1)(m0−m)θ(m0−m)

√
n!

n0!

sgn(n0−n)√
m!

m0!

sgn(m0−m)

e
− 1

4

(
α
′2

+β
′2
)

×
(
α

′

√
2

)|n0−n|(
β

′

√
2

)|m0−m|

L
|n0−n|
(n0+n−|n0−n|)/2

((
α

′

√
2

)2
)
L
|m0−m|
(m0+m−|m0−m|)/2

((
β

′

√
2

)2
)
,

Ci,l
k,p =

µi+k
√
p!k!

(1 + µ2)
k+p
2

√
i!l!

P
(−(1+p+k),p−i)
k

(
−2 + µ2

µ2

)
, (S6)

where Lba(z) are Laguerre polynomials, θ(x) is the Haveside tetta function, sgn(x) is the signum

function, and the coefficients α
′

= Ap0

ω
′
1

, β
′

= Bp0

ω
′
2

(p0 is the total initial momentum of all

electrons), P
(b,c)
a (x) is the Jacobi polynomial, and µ = tan θ. Let’s estimate the dimensionless

parameters α
′

and β
′
. You can see that the order of these parameters will be the same ∼√

β2

ω

√
E0

ω
(E0 is the kinetic energy of the electrons). The first parameter was evaluated at

the beginning of the paper, where it was said that
√

β2

ω
� 1. The second parameter

√
E0

ω
in

the general case can also be considered small, or at least such that ∼
√

β2

ω

√
E0

ω
� 1. As a

result, the niche parameters are α
′ � 1 and β

′ � 1. In this case, you can see that the result is

independent of 1
2

∑
a p̂

2
a + α̂Q1 + β̂Q2 in Eq.(S3) and these terms can be ignored in the more

general case when kira can be an arbitrary value.

This estimate shows that the statistical properties of photons in an electromagnetic field

for a small parameter β2
i /ωi do not depend on the operator p̂a. This is quite an obvious

statement if we assume that free electrons do not absorb photons, which means that when they

are scattered, the movement of electrons in an electromagnetic field cannot affect the statistics

of scattered photons. It should be added that this analysis and our problem are only suitable

for Thomson scattering ~ω � mc2. As a result, it is necessary to solve the following field

equation ĤΦ = i∂Φ
∂t

, where

Ĥ =
1

2

2∑
i=1

ω
′

i

(
Q2
i −

∂2

∂Q2
i

)
+

2∑
i,j=1

Ai,jQi
∂

∂Qj

+BQ1Q2 + C
∂

∂Q1

∂

∂Q2

. (S7)

The solution of this kind of differential equations has not previously been found in the lit-

erature. The underlying problem is the diagonalization of this equation. If we assume that

we have a dipole interaction, then in Eq.(S7) only the coefficient B is preserved, while the

coefficients Ai,j and C will be equal to zero. In this case, the method of diaganization of the

Hamiltonian is well known, it is the change of variables, eg [7–9]. The method of diaganization

of the Hamiltonian when there is only one of the coefficients Ai,j was developed in [10] through

a unitary transformation. In our task, we combined these two methods into one with some
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additions. To diagonalize the Hamiltonian Eq.(S7) we first make a change of variables in the

form Q1/
√
ω

′
1 = x cos θ+y sin θ, Q2/

√
ω

′
2 = (−x sin θ + y cos θ) (1+δ), where θ and δ are some

unknown coefficients. At the second stage of diaganization, we carry out a unitary transfor-

mation over the Hamiltonian now depending on the variables {x, y}, i.e. Ĥ = Ĥ(x, y). This

means that we represent Φ = Ŝ−1Φ
′
, where Φ

′
= ŜΦ. This wave function Φ

′
will correspond to

the Hamiltonian Ĥ
′

= ŜĤ(x, y)Ŝ−1, and the conditions ĤΦ = EΦ and Ĥ
′
Φ

′
= EΦ

′
, where E

is the energy eigenvalue. We choose the unitary operator Ŝ in the form Ŝ = eiγ
∂
∂x

∂
∂y eiαxy [10],

where γ and α are some coefficients. Thus, we get the Hamiltonian Ĥ
′

which has an analytical

form, where there are 4 unknown coefficients θ, δ, γ, α. You can also see from Eq.(S7) that we

also have 4 mixed dependencies, which means that 4 mixed dependencies will be on {x, y}. As

a result, having compiled a system of fourth-order equations and equating the coefficients for

mixed dependences to zero, we can reduce the Hamiltonian Ĥ
′

to a diagonal form.

Let us pose the problem of diaganalyzing the Hamiltonian Eq.(S7). We make the change of

variables Q1/
√
ω

′
1 = x cos θ+ y sin θ, Q2/

√
ω

′
2 = (−x sin θ + y cos θ) (1 + δ), where θ and δ are

some unknown coefficients. As a result, we get the Hamiltonian

Ĥ =
1

2

(
ω

′2
1,xx

2 − a′ ∂2

∂x2

)
+

1

2

(
ω

′2
2,yy

2 − b′ ∂
2

∂y2

)
+

2∑
i,j=1

A
′

i,jxi
∂

∂xj
+B

′
xy + C

′ ∂

∂x

∂

∂y
,

ω
′2
1,x = ω

′2
1 cos2 θ + ω

′2
2 (1 + δ)2 sin2 θ −B

√
ω

′
1ω

′
2 sin 2θ(1 + δ),

ω
′2
2,y = ω

′2
2 cos2 θ(1 + δ)2 + ω

′2
1 sin2 θ +B

√
ω

′
1ω

′
2 sin 2θ(1 + δ),

A
′

1,1 = A1,1 cos2 θ + A2,2 sin2 θ − 1

2
sin 2θ

(
A1,2

1 + δ

√
ω

′
1

ω
′
2

+

√
ω

′
2

ω
′
1

A2,1(1 + δ)

)
,

A
′

2,2 = A1,1 sin2 θ + A2,2 cos2 θ +
1

2
sin 2θ

(
A1,2

1 + δ

√
ω

′
1

ω
′
2

+

√
ω

′
2

ω
′
1

A2,1(1 + δ)

)
,

A
′

1,2 =
1

2
(A1,1 − A2,2) sin 2θ +

A1,2

1 + δ

√
ω

′
1

ω
′
2

cos2 θ −

√
ω

′
2

ω
′
1

A2,1(1 + δ) sin2 θ,

A
′

2,1 =
1

2
(A1,1 − A2,2) sin 2θ − A1,2

1 + δ

√
ω

′
1

ω
′
2

sin2 θ +

√
ω

′
2

ω
′
1

A2,1(1 + δ) cos2 θ,

B
′
=

1

2
sin 2θ

(
ω

′2
1 − ω

′2
2 (1 + δ)2

)
+B

√
ω

′
1ω

′
2

(
cos2 θ(1 + δ)− sin2 θ(1 + δ)

)
,

C
′
= −sin 2θ

2
+

sin 2θ

2(1 + δ)2
+

C√
ω

′
1ω

′
2

cos 2θ

1 + δ
,

a
′
= cos2 θ +

sin2 θ

(1 + δ)2
+

sin 2θ

1 + δ

C√
ω

′
1ω

′
2

, b
′
= sin2 θ +

cos2 θ

(1 + δ)2
− sin 2θ

1 + δ

C√
ω

′
1ω

′
2

, (S8)

where x1 = x, x2 = y.

We need to find a solution to the Schrödinger equation ĤΦ = i∂Φ
∂t

, where the Hamiltonian Ĥ

is determined from Eq.(S8). Next, we perform a unitary transformation over the desired wave

function Φ = Ŝ−1Φ
′
, where Φ

′
= ŜΦ. This wave function Φ

′
will correspond to the Hamiltonian

Ĥ
′

= ŜĤ(x, y)Ŝ−1, and the conditions ĤΦ = EΦ and Ĥ
′
Φ

′
= EΦ

′
, where E is the energy
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eigenvalue. We choose the unitary operator Ŝ in the form Ŝ = eiγ
∂
∂x

∂
∂y eiαxy, where γ and α are

some coefficients. Having carried out all the calculations, we can see that the Hamiltonian Ĥ
′

has a finite form (the action of the operators gives a zero value at the 3rd stage). To carry out

such calculations, we use the well-known expansion

eX̂ Ŷ e−X̂ = Ŷ +
[
X̂, Ŷ

]
+

1

2!

[
X̂,
[
X̂, Ŷ

]]
+

1

3!

[
X̂,
[
X̂,
[
X̂, Ŷ

]]]
+ . . . .

As a result, the Hamiltonian Ĥ
′

can be reduced to a diagonal form (under the condition

β2
i /ωi � 1 described in the paper) if the unknown coefficients are (to simplify the notation and

further calculations, we rename θ = θ1)

α = ε1 −
ε1
|ε1|

√
1 + ε21, γ =

ε1
2|ε1|

1√
1 + ε21

, tan 2θ1 = 2
4π
V
|u1u2|

ω2
2 − ω2

1

∑
a

cos(∆kra)

ε1 =
ω2

2 − ω2
1

2 cos 2θ1
4π
V
|u1u2

∑
a sin(∆kra)|

, δ =
C

ω1

cot 2θ1 + i
A1,1 + A2,2

2ω1ε1 sin 2θ1

. (S9)

Passing for convenience to the dimensionless variables {x, y} (this is also taken into account in

the coefficients α and β in Eq.(S9)), we obtain the Hamiltonian in the diagonal form

Ĥ
′
=

Ω1

2

(
x2 − ∂2

∂x2

)
+

Ω2

2

(
y2 − ∂2

∂y2

)
+ (A

′

1,1 − iαC)x
∂

∂x
+ (A

′

2,2 − iαC)y
∂

∂y
,

Ω1 =
√

Ω0 + σ, Ω2 =
√

Ω0 − σ, σ = i
ε1
|ε1|

√
1 + ε21(A

′

1,2 − A
′

2,1),

Ω0 = ω2
0a

′
b
′
+ iω0ε1(A

′

1,2 + A
′

2,1), ω0 = i

√
A

′
2,1ω

′2
1,x − A

′
1,2ω

′2
2,y

a′A
′
1,2 − b

′A
′
2,1

. (S10)

Given that a/Ω1 � 1 and b/Ω2 � 1 (since a ∼ β2 and b ∼ β2, and Ω1 ∼ ω and Ω2 ∼ ω) we

get the solution

Φ
′

k(x) = Cke
−x2/2Hk(x), Φm(y) = Cpe

−x2/2Hp(y),

Ek = Ω1

(
k +

1

2

)
+ c1, Ep = Ω2

(
p+

1

2

)
+ c2, (S11)

where Hk(x) are Hermite polynomials, c1 and c2 non-essential constants, Ek and Ep energy.

Find the total energy Ek,p = Ek +Ep. We take into account that σ/Ω1 � 1 and σ/Ω2 � 1. We

take into account that σ/Ω1 � 1 and σ/Ω2 � 1. Expanding in a series in terms of this small

parameter and discarding constant values (which do not affect the quantities under study), we

get Ek,p = Ω0(k+ p) + σ
2ω1

(k− p) (Here we have taken into account that Ω0 = ω1 to the nearest

β2/ω). Further, we will use this energy Ek,p, although, as will be shown below, the number of

photons in the system remains k + p = const, and it means that the first term in the energy

is a constant value and can be ignored. Consider the parameter σ
ω1

. It is easy to show that it

will be equal to

σ

ω1

= Ω
√

1 + ε2, Ω =
4π
∣∣u1u2

∑
a e

i∆kra
∣∣

ω1V
, ε =

ω2 − ω1

Ω
. (S12)
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As a result, the general solution of our problem, without choosing the initial conditions, will

look like

Φ
′
(x, y, t) =

∑
k,p

Ak,pΦ
′

k(x)Φ
′

p(y)e−iEk,pt, (S13)

where Ak,p are expansion coefficients. To find Φ(x, y, t) = e−iαxye−iγ
∂
∂x

∂
∂yΦ

′
(x, y, t). As a result,

we get

Φ(x, y, t) =
∑
k,p

Ak,pe
−iEk,ptΦk,p(x, y), Φk,p(x, y) = e−iαxye−iγ

∂
∂x

∂
∂yΦ

′

k(x)Φ
′

p(y),

Φ(Q1, Q2, t) = Φ(x, y, t), x = Q1 cos θ −Q2 sin θ, y = Q1 sin θ +Q2 cos θ. (S14)

Also, the wave function Φ(Q1, Q2, t) can be expanded in terms of eigenfunctions of the noninter-

acting system |Φ(Q1, Q2, t)〉 =
∑

n,m cn,m|n〉|m〉e−iεn,mt, where pn,m = |cn,m|2 is the probability

of finding in the first and second mode n and m photons, respectively. Using Eq.(S14) and this

expansion, it is easy to show that

cn,m =
∑
k,p

As1,s2k,p A∗n,mk,p e−iEk,pt, As1,s2k,p = 〈Φk,p(Q1, Q2)|s1, s2〉, (S15)

where |s1, s2〉 = |Φ(Q1, Q2, t = 0)〉, and s1, s2 is the initial number of photons (before interac-

tion) in the Fock state in the first and second modes, respectively.

At first glance, the expression As1,s2k,p in Eq.(S15) is not analytically calculated, because

we do not even know the analytical form of the function Φk,p(x, y), see Eq. (S14). The

expression Φk,p(x, y) can be represented not as an operator action on Φ
′

k(x)Φ
′
p(y) , but in

integral form. To do this, we need to represent Φ
′

k(x) through the Fourier integral, i.e. Φ
′

k(x) =
(−i)n√

2π
Cn
∫∞
−∞ e

− p
2

2 Hn(p)eipxdp. As a result, we get

Φk,p(x, y) = e−iαxye−iγ
∂
∂x

∂
∂yΦ

′

k(x)Φ
′

p(y) =

(−i)nCnCm√
2π
√

1 + αγ

∫ ∞
−∞

e−
p2

2 Hn(p)e
ix

(
p√

1+αγ
−αy
)
e
− 1

1+αγ

(
y+ γp√

1+αγ

)2

Hm

(y + γp√
1+αγ√

1 + αγ

)
dp. (S16)

It can be seen that the function Φk,p(x, y) is representable only in integral form, and the Fourier

transform Φk,p(p, y) = 1√
2π

∫∞
−∞Φk,p(x, y)eipxdx of it is an analytic function, we obtain

Φk,p(p, y) = CkCpi
ne−

ξ
2

(p−αy)2Hk

(√
ξ(p− αy)

)
e−

ξ
2

(y+αp)2Hp

(√
ξ(y + αp)

)
, ξ =

1

1 + α2
.(S17)

The coefficient As1,s2k,p in Eq.(S15) can be calculated in another way using Eq.(S17). For this,

we note that in Eq.(S14)

Φ(p, y, t) =
1√
2π

∫ ∞
−∞

Φ(x, y, t)eipxdx =
∑
k,p

Ak,pe
−iEk,ptΦk,p(p, y). (S18)
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From Eq.(S18) one can see (similarly to Eq.(S15)) that

cn,m =
∑
k,p

As1,s2k,p A∗n,mk,p e−iEk,pt, As1,s2k,p = 〈Φk,p(p, y)|Φ(p, y, t = 0)〉. (S19)

Find Φ(p, y, t = 0) from initial conditions

Φ(p, y, t = 0) =
1√
2π

∫ ∞
−∞

Φ(x, y, 0)eipxdx =
∑
k1,p1

(−i)k1Bs1,s2
k1,p1

(θ1)|k1, p1〉, (S20)

where |k1, p1〉 = |k1〉p1〉 these are Fock states, and |k1〉 depends on the variable p, Bs1,s2
k1,p1

(θ1) =

〈Φk,p(x, y)|s1, s2〉 (of course considering that x = Q1 cos θ1−Q2 sin θ1, y = Q1 sin θ1 +Q2 cos θ1).

Next, you can see that the function Φk,p(p, y) = CkCpi
ke−

p′2
2 Hk(p

′)e−
y′2
2 Hp(y

′) has exactly the

same structure as Φk,p(x, y) if you notice that p
′

= p cos θ2 − y sin θ2, y
′

= y cos θ2 + p sin θ2

(tan θ2 = α). As a result, then we get by substituting Eq.(S24) into Eq.(S21) (for clarity, let’s

add As1,s2k,p = As1,s2k,p (Θ))

As1,s2k,p (Θ) =
∑
k1,p1

(−i)k1Bs1,s2
k1,p1

(θ1)B∗k,pk1,p1
(θ2). (S21)

The properties of the coefficient Bn,m
k,p have been well studied before, see eg. [7, 8, 10] and it is

equal to

Bn,m
k,p (θ) =

µk+n
√
k!p!

(1 + µ2)
s1+s2

2

√
n!m!

P
(−(1+s1+s2),p−n)
k

(
−2 + µ2

µ2

)
, µ = tan θ, (S22)

where Pα,β
γ (x) are Jacobi polynomials and the condition n + m = k + p is satisfied. From

the properties of this coefficient, one can immediately say that the number of photons will be

conserved s1 + s2 = n + m. This is an important conclusion of this theory. Further, it can be

shown that there is a certain relation between the two angles θ1 and θ2, namely

ε =
ε1ε2√

1 + ε21 + ε22
, tan 2θ1 =

1

ε1
, tan 2θ2 =

1

ε2
. (S23)

Using the properties of the Jacobi polynomials and Eq.(S23), one can show that the angle Θ

in Eq.(S21) satisfies the condition tan 2Θ = 1/ε. Moreover, it turns out that the coefficients

Bn,m
k,p (θ) = An,mk,p (θ). As a result, we get that

An,mk,p (Θ) =
µk+n
√
k!p!

(1 + µ2)
s1+s2

2

√
n!m!

P
(−(1+s1+s2),p−n)
k

(
−2 + µ2

µ2

)
, µ = tan Θ. (S24)

It was shown in [7] that Eq.(S21) can be represented in a more convenient form by expressing

it in terms of the reflection coefficient and the phase shift.

As a result, we can find the probability of detecting the system in the final states n and m

in the first and second modes, respectively, when the system transitions from the initial Fock
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state s1, s2 in the form Pn = 〈|cn,s1+s2−n|
2〉, where

cn,m =

s1+s2∑
k=0

As1,s2k,s1+s2−kA
∗n,m
k,s1+s2−ke

−2ik arccos(
√

1−R sinφ),

An,mk,p =
µk+n
√
k!p!

(1 + µ2)
s1+s2

2

√
n!m!

P
(−(1+s1+s2),p−n)
k

(
−2 + µ2

µ2

)
,

µ =

√
1 +

1−R
R

cos2 φ− cosφ

√
1−R
R

, (S25)

where Pα,β
γ (x) are Jacobi polynomials and the condition n + m = s1 + s2 is satisfied, i.e. the

number of photons is stored in the system. The coefficient R and φ have the meaning of the

reflection coefficient, and φ are the phases, which will be equal

R =
sin2

(
Ωt/2

√
1 + ε2

)
(1 + ε2)

, cosφ = −ε
√

R

1−R
,

Ω =
4π
∣∣u1u2

∑
a e

i∆kra
∣∣

ω1V
, ε =

ω2 − ω1

Ω
, (S26)
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