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Abstract: At present, there is no non-perturbative theory of scattering of nonclassical electromagnetic
waves by free electrons that describes the scattering process completely with the help of quantum
physics. In this paper, such a theory is presented, which takes into account the statistics and the
number of scattered photons. This theory is completely analytical for an arbitrary number of electrons
in the system and, in a particular case, is equivalent to the previous theory of scattering as the number
of incident photons tends to infinity. It is shown that this theory can differ greatly from the previously
known theory of Thomson scattering in the non-perturbative case and at relatively small numbers
of incident photons. In addition, this theory is applicable to the scattering of ultrashort pulses by
free electrons.
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1. Introduction

The scattering of electromagnetic waves by free charged particles is currently well
studied using classical physics and is being studied using quantum physics [1–6]. If we
consider the energy of incident photons as h̄ω � mc2, then such scattering is called Thom-
son scattering [1] (low-energy limit of Compton scattering), where ω is the electromagnetic
field frequency, h̄ is Planck’s constant, m is the electron mass and c is the speed of light
in a vacuum. Thomson scattering is one of the most important fundamental processes in
electrodynamics [7]. This scattering is found in astrophysics [8], can serve as an important
diagnostic for measuring high-temperature plasma [2,3] and is the basis for diffraction
analyses of matter [6,9–11], as well as the basis for creating sources of high-energy X-ray
radiation controlled by accelerators (Thomson or Compton sources) [12,13]. At present, in
connection with the development of quantum optics, the problem of scattering of nonclas-
sical electromagnetic fields by free electrons is of interest and relevant [14].

It is well known that the most complete theory describing the interaction of radiation
with matter is based on quantum physics, i.e., where the radiation field, the substance
with which it interacts and the scattered radiation are described completely by quantum
physics. In the case of radiation scattering by free electrons, there is no complete quantum
solution to this problem. Usually, such a solution is limited to the quantum consideration
of electrons and scattered radiation [4,6,9], but the incident field is usually given classically.
This is quite understandable, since it is mathematically difficult to consider the problem
taking into account the quantum components of the incident radiation, and this problem
has not been solved so far. For a long time, it was believed that there could be no significant
corrections due to the quantum nature of electromagnetic fields. At a qualitative level,
it seems that with a small number of photons, i.e., in the case of weak interactions, the
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dependence of the scattered radiation on the intensity should be linear, and therefore
coinciding with the Thomson formula.

In this work, based on the exact solution of the Schrödinger equation, an analytical
solution was found for a system of free electrons in a quantized field of incident and
scattered radiation. Based on this solution, the probabilities of detecting m scattered
photons and their statistics are obtained for given statistics and a given number of incident
photons. The solution obtained when the number of incident photons tends to infinity
coincides with the previously well-known scattering theory based on the concept of an
external classical field. Furthermore, the result obtained can be extended to the case of
interaction of electrons with ultrashort pulses (including nonclassical ones), and in this
case, as the number of incident photons tends to infinity, our theory also passes into the
previously known approach. At high intensities or a relatively small number of incident
photons, our theory may differ significantly from the case of an external classical field using
the Thomson formula, i.e., the quantum effects will be significant.

2. Solving Quantum Equations

Consider a multi-electron system interacting with a quantized electromagnetic field.
Let us represent the electromagnetic field in terms of the transverse vector potential A in
the Coulomb gauge divA = 0 [15,16]. In this case, the Hamiltonian of such a system will
consist of an incident electromagnetic field and a scattered one, as well as a multielectron
system interacting with these fields. Let us first consider a two-mode electromagnetic field,
where the mode with index i = 1 (with frequency ω1 and polarization u1) corresponds
to the incident electromagnetic field, and the mode with index i = 2 (with frequency ω2
polarization u2) corresponds to the scattered field. It should be added that the consideration
of the incident field as a two-mode field is quite obvious from the point of view of quantum
electrodynamics. It is well known that in the simplest case, scattering from the point of
view of quantum electrodynamics is described as the annihilation of an incident photon of
a given mode and the birth of another photon of a given mode, after which summation is
performed over all final states of the produced photon [17]. In quantum electrodynamics,
this process is considered from the point of view of perturbation theory and is usually
limited to the first, second and, very rarely, the third order of perturbation theory. Here,
we consider the exact solution of this problem. In this case, the Hamiltonian of the entire
system can be represented as (the atomic system of units to be used will be h̄ = 1, |e| = 1
and m = 1, where e is the electron charge):{

Ĥ1 + Ĥ2 +
1
2 ∑

a

(
p̂a +

1
c

Âa

)2
}

Ψ = i
∂Ψ
∂t

, (1)

where Ĥi = ωi â†
i âi is the Hamiltonian for the 1st and 2nd modes; âi and â†

i are the photon an-
nihilation and creation operators for the i mode, respectively; p̂a is the electron momentum

operator with the number a; Âa = Â1,a + Â2,a, where Âi,a =
√

2πc2

ωiV
(ui âieikira + u†

i â†
i e−ikira)

this is the i mode vector potential acting on the a electron [15,16]; sum ∑a in Equation (1)
is taken over all electrons of the system under consideration; and V is the volume of
quantization of the electromagnetic field.

The solution to Equation (1) can be found analytically (in order not to mix mathemat-
ics with physics, the solution of this equation is given separately in the Supplementary
Materials). As a result, we can find the probability of detecting the system in the final states
n and m in the first and second modes, respectively, when the system transitions from the
initial Fock state s1, s2 in the form Pn = 〈|cn,s1+s2−n|2〉, where
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cn,m =
s1+s2

∑
k=0

As1,s2
k,s1+s2−k A∗n,m

k,s1+s2−ke−2ik arccos(
√

1−R sin φ),

An,m
k,p =

µk+n√k!p!

(1 + µ2)
s1+s2

2
√

n!m!
P(−(1+s1+s2),p−n)

k

(
−2 + µ2

µ2

)
,

µ =

√
1 +

1− R
R

cos2 φ− cos φ

√
1− R

R
, (2)

and Pα,β
γ (x) are Jacobi polynomials. The condition n + m = s1 + s2 is satisfied, i.e., the

number of photons is stored in the system [18]. The symbol 〈...〉 means averaging over
all electronic states, the coefficient R refers to the reflection coefficient and φ is the phases,
which will be equal to

R =
sin2

(
Ωt/2

√
1 + ε2

)
(1 + ε2)

, cos φ = −ε

√
R

1− R
,

Ω =
4π
∣∣u1u2 ∑a ei∆kra

∣∣
ω1V

, ε =
ω2 −ω1

Ω
, (3)

where ∆k = k2 − k1 is the recoil momentum during scattering and
∣∣∑a ei∆kra

∣∣ is the modu-

lus, which can also be represented in another form
√

∑a,b cos(∆k∆r), where ∆r = ra − rb.
It can be seen that the dependence on the coordinates, as well as the dependence on the
momentum, is determined only by the difference. In Equation (2), no matter what value of
φ ∈ (0, π/2) we choose, the value Pn will not depend on φ.

It is well known that scattering in quantum electrodynamics is the process of the
creation of a photon from a vacuum state upon the annihilation of an incident photon [15,16].
In our case, the vacuum state will be the second mode, i.e., we assume that s2 = 0, and
the external incident field will be determined by the number of photons s1 (hereinafter, for
simplicity, we will rename s1 = s). In this case, the probability Pm in its simplest form can
be represented

Pm =
s!

m!(s−m)!
〈Rm(1− R)s−m〉. (4)

Equation (4) is quite simple and obeys the well-known expansion in Newton’s binomial
(remember that the condition s = m + n is satisfied). The most important thing in this
expression is the determined value of the coefficient R. Despite the fact that the system
under study is multi-parametric, the entire dependence was reduced to a single reflection
coefficient R, which contains all the quantities of this problem.

3. Results

We have obtained the probability of the incident radiation mode interacting with the
scattered radiation mode. In reality, in the vacuum state, there are an infinite number
of modes, each mode of which interacts with the mode of the incident radiation via
Equation (4). In this case, the number of produced photons will be determined not only
by the number of produced photons with a certain mode, but also by the total number of
produced photons from all modes. Let us denote the number of photons produced from
the k mode as mk, and represent the dependence of the R coefficient on k as R = R(k).
Before presenting the average scattered photon energy ε, it should be added that we must
take into account the Bose statistics for such scattered photons. In order to do this, we first
consider the case when photons of one k0 mode with a given polarization are incident,
then ε = ∑k′ ∑Mk ∏k Pmk ωk′mk′ , where the sum k

′
is taken over all modes, including

k
′
= k, and the sum over Mk is taken over all quantum numbers mk and all modes k, i.e.,

Mk = m1, m2, m3.... This way of finding ε will take into account all possible combinations of
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photons determined by Bose statistics. As a result, the average energy of scattered photons
will be ε, and we obtain

ε = ∑
k

s

∑
mk=0

mkωkPmk = s
∫

ωk〈R(k)〉
d3kV
(2π)3 , (5)

where ∑k is the summation over all modes of scattered radiation, including the summation
over polarizations. It should be added that the first term in Equation (5) is well known in
quantum electrodynamics scattering calculations [17]. Equation (5) is applicable for the
scattering of s photons of one mode k0 in the Fock state. Following the general rules of
probability, in order to take into account the different statistics of incident photons with
different modes, which in the general case should obey the Bose statistics, it is necessary that

ε = ∑
k0

∑
sk0

Psk0
sk0

∫
ωk〈R(k)〉

d3kV
(2π)3 , (6)

where Psk0
is the probability of detecting sk0 photons in the k0 mode. It should be added

that the coefficient R depends on the frequency ω0 = |k0|c (previously, we denoted it as
ω1). If we consider monochromatic incident photons with frequency ω0, then ∑k0

→ 1.
Let us calculate ε, and for this we take into account that ε� 1, except for the case when

the frequencies of the incident and scattered photons coincide. This is a direct consequence
of the fact that the quantity Ω/ω � 1. Using this condition, one can obtain that

dε

dΩn
=

1
π2c3 ∑

k0

sk0 ω2
k0

〈 ∣∣∣∑
a

ei∆k0ra(u0 × n)
∣∣∣ F(x)

〉
,

x =
4πt

ωk0 V

∣∣∣(u0 × n)∑
a

ei∆k0ra
∣∣∣ (7)

where Ωn is the solid angle into which scattering occurs, sk0 = ∑sk0
Psk0

sk0 ,
∆k0 = ω0/c(n− n0) is the electron recoil momentum during elastic photon scattering and
the unit vectors n = k/|k|, n0 = k0/|k0|. The function F(x) is an important dependence
in our theory, not just in the case of coherent incident radiation, and is shown in Figure 1. It
does not have a precise analytical form and is calculated as

F(x) =
1

2π

∫ ∞

−∞

2− πH−1(x
√

1 + ε2)

1 + ε2 dε,

F(x) =

{
π
4 x, x � 1

1− cos(x)
x , x � 1,

(8)

where Hν(x) is a Struve function. Furthermore, the function F(x) has a very accurate
analytical approximation (error� 1%) in the form

F(x) =
π

4
x

1 + 0.1263x3.95 +
0.1044x3.657

1 + 0.1044x3.657

(
1− cos(x)

x

)
. (9)

Figure 1. The dependence of the function F(x) on the dimensionless parameter x is presented.
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Next, we consider one of the special cases, which is related to Thomson scattering by
classical incident radiation. It is well known that the quantum electromagnetic field volume

V can be represented in terms of the electric field amplitude [15,16] as E2
0

8π V = ∑k0
sk0 ωk0 .

Let the number of incident photons approach infinity, i.e., V → ∞. Indeed, an infinite
number of photons can exist only in an infinite volume (of course, if we assume that the
electric field E0 is not infinite). Then, we obtain the dependence F(x) = π

4 x, and as a result
we also obtain

dε

dΩn
=

E2
0t

8πc3 ∑
k0

∣∣∣(u0 × n)∑
a

ei∆k0ra
∣∣∣2Pεk0

, (10)

where Pεk0
=

sk0
ωk0

∑k0
sk0

ωk0
is the probability of detecting photons with energy sk0 ωk0 . For

example, in the case of linearly polarized monochromatic incident radiation in one direction,
one can obtain

d2ε

dtdΩn
=

E2
0

8πc3 〈
∣∣∣(u0 × n)∑

a
ei∆k0ra

∣∣∣2〉. (11)

Of course, Equation (11) is easy to change in the case of non-linearly polarized light,
for example, for unpolarized light, |u0 × n|2 → |u0 × n|2 = 1

2 (1 + (n0n)2). Equation (11)
coincides with the expression for the scattering of a classical electromagnetic field by free
electrons [7,17]. In the case of one electron in the system, the average dependence in
Equation (11) becomes 〈...〉 = 1 and we get the well-known Thomson formula.

Equation (10) can be extended to the case of using classical ultrashort laser pulses
(USPs). In the USP scattering theory, the pulse interaction time is equal to the pulse duration
τ, i.e., t = τ [9,19–22]. In our case, the time t is the time of interaction of the incident radia-
tion with electrons. Thus, if we assume in our theory that t = τ, and Pεk0

are no longer equal
to one, then we will get an extension of our theory to the case of interaction with USPs. In-
deed, usually the frequency distribution in USPs is concentrated near the carrier frequency
with dispersions of the order of ∼ 1/τ, i.e., (ωk0 −ωc) . 1/τ. Usually, when talking about
USPs, this represents the dependence of the electric field on time, i.e., the form of the USPs.
Equation (10) can also be easily represented in this form if we consider the expression

E2
0τPεk0

. This expression can be expressed in another form: E2
0τPεk0

=
∣∣∣E0
√

τPεk0

∣∣∣2, where

E0
√

τPεk0
= 1√

2πτ

∫ ∞
−∞ E(t)eiωk0

tdt. Then, E(t) = τ√
2π

∫ ∞
−∞ E(ωk0)e

−iωk0
tdωk0 (designa-

tion introduced E(ωk0) = E0
√

Pεk0
). For example, if we choose a Gaussian frequency

distribution Pεk0
= 1

π e−
1
π (ωk0

−ωc)2τ2
(
∫

Pεk0
d(ωk0 τ) = 1), then E(t) = E0e−iωcte−

π
2 (

t
τ )

2
. It

can be observed that as τ → ∞, we obtain the well-known expression for the electric field
of a plane wave E(t) = E0e−iωct. As a result, the scattered energy of the USP will be

dε

dΩn
=

τ

8πc3

∫
∑
k0

|E(ωk0)|
2〈
∣∣∣(u0 × n)∑

a
ei∆k0ra

∣∣∣2〉. (12)

Equation (12) completely coincides with the quantum theory of scattering of classical
ultrashort pulses [9].

As an example, consider the case of scattering of monochromatic photons by one
electron, but with any statistics of the incident photons. In this case, we normalize the
scattered energy to the energy (εs) at F(x → ∞)→ 1 (let us call εs the saturation energy).
As a result, we obtain

ε = εsδs, εs =
h̄e2

m
sω2

0
c3 (CGS s.u.),

δs =
∫ |u0 × n|F(x|u0 × n|)

π2 dΩn, (13)
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where x =
E2

0 t
2ω2

0s
(ω0 is the frequency of the incident radiation) and s = ∑s Pss is the average

number of photons with statistics Ps, see Figure 2. It should be said that the parameter x
can be expressed in terms of the known pondermotive energy x =

2Upt
s (where Up = 2π I

cω2
0

is

the ponderomotive energy and I is the intensity of the incident radiation).

Figure 2. The normalized energy ε
εs

depending on the dimensionless parameter x.

The physical meaning of the energy εs is clear based on the fact that such an energy
is obtained at t → ∞; therefore, it is called the saturation energy. In addition, the energy
of εs can be represented as εs = ε0α h̄ω0

mc2 , where α = e2

h̄c is the fine-structure constant and
ε0 = h̄ω0s is the energy of the incident radiation. It can be seen from this expression
that the scattered energy is always many times lower than the incident radiation energy
(α ≈ 1/137, h̄ω0

mc2 � 1), i.e., εs � ε0. It is also seen that there is a maximum value of the
scattering energy. The value of this energy is easy to calculate and will be εmax = 1.301εs
for x = 3.287. There is also a connection between the Thomson scattering energies εT and
εs considered here. It is easy to show that the relation is εT = 2/3εsx.

4. Conclusions

In this work, a general theory of radiation scattering by free electrons was developed.
This theory is completely quantized and takes into account the statistics and the number of
incident and scattered photons. In this theory, when the number of incident photons tends
to infinity, the theory is equivalent to the previously known theory of scattering, including
the theory of scattering of ultrashort pulses. The theory presented here has been developed
in a general form and takes into account an arbitrary number of electrons in the system and
also has a simple analytical form. It should be added that the theory presented here is not
the first of this kind of research (e.g., [14] and the references therein), but the first where
the incident and scattered electromagnetic field (including nonclassical) for an arbitrary
number of electrons is taken into account nonperturbatively.

A significant advantage of this theory is that it takes into account an arbitrary number
of electrons in the system (in the general case, charged particles). It is well known that
scattering can be coherent or incoherent, which is considered in our theory. In other
words, depending on the spatial distribution of the electron density, either coherent or
incoherent scattering can dominate or both types of scattering can be comparable. This
is usually an important factor in the scattering of radiation in a plasma. If we take into
account the quantum nature of the incident radiation, i.e., when the number of photons
is not infinite, then, obviously, the role of coherence and incoherence may differ from
previously known cases. Thus, the scattering of nonclassical radiation (with a finite number
of incident photons or their nonclassical statistics) by a multielectron system is one of the
applications of this theory. It should be added that the result obtained is based on the
solution of Equation (1) and the final result has a simple analytical form, which simplifies
the use of the developed theory. It can also be seen that, quite “beautifully” from a
mathematical point of view, when the number of incident photons tends to infinity, our
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result turns into the one previously known in scattering theory (see Equations (10) and (11)),
which confirms the correctness of the solution to Equation (1) and the developed theory.

It should be added that this theory is suitable for any electromagnetic fields where no rela-
tivistic effects arise when it interacts with electrons, i.e., for fields where h̄ω � mc2 and |e|E0

mωc � 1.
Thus, this theory can be applied to both classical and nonclassical electromagnetic fields. It
should be added that this theory will also work for quantum entangled photons, squeezed
light or single photons. To do this, it suffices to determine the statistical properties of these
fields Psk0

and, as a result, the average number of incident photons sk0 = ∑sk0
Psk0

sk0 , see
Equation (7). How the scattering will depend on such “nonclassical” properties will be
determined by the specific case and is one of the applications of this theory.

In general, this theory will expand the limits of using the scattering of electromagnetic
waves in matter, since this theory moves into the area of quantum optics. Indeed, quantum
optics studies the quantum properties of the interaction of radiation with matter, and this
theory points to just such properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math11092094/s1, File S1: Quantum theory of scattering of non-
classical fields by free electrons. References [7,15–18,23–27] are cited in the Supplementary Materials.

Funding: The study was supported by the Russian Science Foundation, project no. 20-72-10151.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Please direct requests to the corresponding author of this article.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Thomson, J.J. On electrical oscillations and the effects produced by the motion of an electrified sphere. Proc. Lond. Math. Soc.

1883, 1, 197–219. [CrossRef]
2. Prunty, S.A. A primer on the theory of Thomson scattering for high-temperature fusion plasmas. Phys. Scripta 2014, 89, 128001.

[CrossRef]
3. Glenzer, S.H.; Redmer, R. X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys. 2009, 81, 1625–1663.

[CrossRef]
4. James, R. The Optical Principles of the Diffraction of X-rays (Ox Bow); Ox Bow Press: Woodbridge, CT, USA, 1982.
5. Jones, N. Crystallography: Atomic secrets. Nature 2018, 505, 602–603. [CrossRef] [PubMed]
6. Dixit, G.; Vendrell, O.; Santra, R. Imaging electronic quantum motion with light. Proc. Natl. Acad. Sci. USA 2012, 109, 11636–11640.

[CrossRef] [PubMed]
7. Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields, 4th ed.; Butterworth-Heinemann: Oxford, UK, 1980; Volume 2, p. 444.
8. Longair, M.S. High-Energy Astrophysics; Cambridge Univiversity Press: Cambridge, UK, 2011; p. 880.
9. Makarov, D. Quantum theory of scattering of ultrashort electromagnetic field pulses by polyatomic structures. Opt. Express 2019,

27, 31989–32008. [CrossRef] [PubMed]
10. Makarov, D.N.; Makarova, K.A.; Kharlamova, A.A. Specificity of scattering of ultrashort laser pulses by molecules with

polyatomic structure. Sci. Rep. 2022, 12, 4976. [CrossRef]
11. Eseev, M.; Matveev, V.; Makarov, D. Diagnostics of Nanosystems with the Use of Ultrashort X-Ray Pulses: Theory and Experiment

(Brief Review). JETP Lett. 2021, 114, 387–405. [CrossRef]
12. Leemans, W.P.; Schoenlein, R.W.; Volfbeyn, P.; Chin, A.H.; Glover, T.E.; Balling, P.; Zolotorev, M.; Kim, K.J.; Chattopadhyay, S.;

Shank, C.V. X-ray based subpicosecond electron bunch characterization using 90◦ Thomson scattering. Phys. Rev. Lett. 1996,
77, 4182–4185. [CrossRef]

13. Powers, N.D.; Ghebregziabher, I.; Golovin, G.; Liu, C.; Chen, S.; Banerjee, S.; Zhang, J.; Umstadter, D.P. Quasi-monoenergetic and
tunable X-rays from a laser-driven Compton light source. Nat. Photon. 2014, 8, 28–31. [CrossRef]

14. Khalaf, M.; Kaminer, I. Compton scattering driven by intense quantum light. Sci. Adv. 2023, 9, eade093. [CrossRef] [PubMed]
15. Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995; p. 1166.
16. Scully, M.; Zubairy, M. Quantum Optics; Cambridge University Press: Cambridge, UK, 1997; p. 630.
17. Berestetskii, V.B.; Lifshitz, E.; Pitaevskii, L.P. Quantum Electrodynamics; Butterworth-Heinemann: Oxford, UK, 1982; Volume 4, p. 667.
18. Makarov, D.N. Quantum entanglement and reflection coefficient for coupled harmonic oscillators. Phys. Rev. E 2020, 102, 052213.

[CrossRef] [PubMed]

https://www.mdpi.com/article/10.3390/math11092094/s1
https://www.mdpi.com/article/10.3390/math11092094/s1
http://doi.org/10.1112/plms/s1-15.1.197
http://dx.doi.org/10.1088/0031-8949/89/12/128001
http://dx.doi.org/10.1103/RevModPhys.81.1625
http://dx.doi.org/10.1038/505602a
http://www.ncbi.nlm.nih.gov/pubmed/24476871
http://dx.doi.org/10.1073/pnas.1202226109
http://www.ncbi.nlm.nih.gov/pubmed/22753505
http://dx.doi.org/10.1364/OE.27.031989
http://www.ncbi.nlm.nih.gov/pubmed/31684420
http://dx.doi.org/10.1038/s41598-022-09134-8
http://dx.doi.org/10.1134/S0021364021190061
http://dx.doi.org/10.1103/PhysRevLett.77.4182
http://dx.doi.org/10.1038/nphoton.2013.314
http://dx.doi.org/10.1126/sciadv.ade0932
http://www.ncbi.nlm.nih.gov/pubmed/36598998
http://dx.doi.org/10.1103/PhysRevE.102.052213
http://www.ncbi.nlm.nih.gov/pubmed/33327210


Mathematics 2023, 11, 2094 8 of 8

19. Leone, S.R.; McCurdy, C.W.; Burgdörfer, J.; Cederbaum, L.S.; Chang, Z.; Dudovich, N.; Feist, J.; Greene, C.H.; Ivanov, M.;
Kienberger, R.; et al. What will it take to observe processes in “real time”? Nat. Photon. 2014, 8, 162–166. [CrossRef]

20. Henriksen, N.E.; Moller, K.B. On the Theory of Time-Resolved X-ray Diffraction. J. Phys. Chem. B 2008, 112, 558–567. [CrossRef]
[PubMed]

21. Krausz, F.; Ivanov, M. Attosecond physics. Rev. Mod. Phys. 2009, 81, 163. [CrossRef]
22. Astapenko, V.A.; Sakhno, E.V. Excitation of a quantum oscillator by short laser pulses. Appl. Phys. B 2020, 126, 23. [CrossRef]
23. Tey, M.K.; Chen, Z.; Aljunid, S.A.; Chng, B.; Huber, F.; Maslennikov, G.; Kurtsiefer, C. Strong interaction between light and a

single trapped atom without the need for a cavity. Nat. Phys. 2008, 4, 924–927. [CrossRef]
24. Makarov, D. Coupled Harmonic Oscillator in a System of Free Particles. Mathematics 2022, 10, 294. [CrossRef]
25. Makarov, D. Coupled harmonic oscillators and their quantum entanglement. Phys. Rev. E 2018, 97, 042203. [CrossRef]
26. Han, D.; Kim, Y.S.; Noz, M.E. Illustrative example of Feynman’s rest of the universe. Am. J. Phys. 1999, 67, 61–66. [CrossRef]
27. Makarov, D. Quantum entanglement of a harmonic oscillator with an electromagnetic feld. Sci. Rep. 2018, 8, 8204. [CrossRef]

[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/nphoton.2014.48
http://dx.doi.org/10.1021/jp075497e
http://www.ncbi.nlm.nih.gov/pubmed/18052363
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1007/s00340-019-7372-z
http://dx.doi.org/10.1038/nphys1096
http://dx.doi.org/10.3390/math10030294
http://dx.doi.org/10.1103/PhysRevE.97.042203
http://dx.doi.org/10.1119/1.19192
http://dx.doi.org/10.1038/s41598-018-26650-8
http://www.ncbi.nlm.nih.gov/pubmed/29844533

	Introduction
	Solving Quantum Equations
	Results
	Conclusions
	References

