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Abstract: Applications of non-Newtonian fluids have been widespread across industries, accom-
panied by theoretical developments in engineering and mathematics. This paper studies a two-
dimensional multi-term time fractional viscoelastic non-Newtonian fluid model by using two au-
tonomous consecutive spectral collocation strategies. A modification of the spectral approach is
implemented, leading to an algebraic system of equations able to obtain an approximate symmetric
solution for the model. Numerical examples illustrate the effectiveness of the technique in terms of
accuracy and convergence.
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1. Introduction

Fractional calculus has been proven more effective than the classical integer calculus
for describing a variety of natural scenarios [1], and emerged as a crucial tool within the
scope of mathematical modeling [2,3], with a plethora of applications [4,5]. Indeed, several
anomalous phenomena and complex systems in multiple areas have been studied using
fractional differential equations [6], since they have advantages over the integer-order ones
for describing real processes with memory [7].

A Newtonian fluid is a type of fluid that obeys Newton’s law of viscosity, which states
that the shear stress of a fluid is directly proportional to its rate of shear strain. In other
words, the viscosity of a Newtonian fluid remains constant regardless of the applied shear
stress or strain rate. This makes Newtonian fluids relatively simple to model and analyze
mathematically. Examples of Newtonian fluids include water, air, and most oils. However,
many real-world fluids exhibit non-Newtonian behavior, where the viscosity changes with
the applied stress or strain rate. These fluids require more complex models to describe
their behavior.

Non-Newtonian fluid models are used to describe fluids that do not follow the tradi-
tional Newtonian model of viscosity. These fluids often exhibit complex behavior, such as
shear-thinning or shear-thickening, where the viscosity of the fluid changes depending on
the applied force. There are many different models used to describe these types of fluids,
including the Power-law model, the Herschel-Bulkley model, and the Casson model. These
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models are often used in engineering and scientific applications, such as in the design of
non-Newtonian fluids for use in food products, cosmetics, and even in hydraulic fracturing
fluids for oil and gas exploration. By understanding the behavior of non-Newtonian fluids,
we can better design and optimize processes that rely on these materials.

Over the last few decades, non-Newtonian fluids have been widely used in engineering
applications. Non-Newtonian fluids’ constitutive equations are significantly more complex
than those describing Newtonian ones. Fractional differential equations have been adopted
to describe non-Newtonian fluids, since they are well-suited for dealing with viscoelastic
properties [8], yielding results in accordance to experimental data [9,10].

The flow of an incompressible Oldroyd-B fluid [11] bounded by two rigid plates is
described by the following model, which is one of the most significant:

ε
∂ν+1Y
∂ην+1 +

∂Y
∂η

= λ∆Y+ λβ
∂ν3 ∆Y
∂ην3

, (1)

where Y is the velocity field (meter/second), ε represents the relaxation time (second), β is
the retardation time (second), λ = µ

ρ and µ stand for the dynamic viscosity (Pascal·second),
and ρ is the density of the fluid.

Sutton [12] summarized its fundamental electromagnetic properties. When exposed
to a magnetic field, under the assumption of low magnetic Reynolds number, the flow
of a Oldroyd-B fluid between two infinite parallel rigid plates is challenging to model.
Khan et al. [13] investigated the generalized Oldroyd-B fluid in a porous medium with the
influence of Hall current. Zheng et al. [14] explored the interaction of two plates with slip
boundaries and achieved the exact solution for the flow magnetohydrodynamics by some
transform techniques.

The exact solution of the generalized Oldroyd-B fluid was obtained using generalized
G- or H-functions [14,15]. Fetecau et al. [16] derived an exact solution for a two-dimensional
fluid model. However, because multi-term fractional fluid models are difficult to solve
analytically, many researchers studied alternative approaches [17,18] based on numerical
methods. Finite difference [19,20], finite element [21,22], finite volume [23,24], and spectral
methods [25,26] have been the most commonly used for solving fractional equations.

In the last four decades, spectral methods [27–29] have been widely used in several
areas. Firstly, techniques based on Fourier expansion were applied, namely for dealing
with simple geometric area and periodic boundary conditions. Afterwards, sophisticated
techniques were developed, and spectral methods emerged as powerful tools to solve
different kinds of problems. Indeed, due to their thoroughness and exponential rates of
convergence, spectral methods reveal superiority when compared with their counterparts.
They include the collocation [30,31], tau [32], Galerkin [33], and Petrov-Galerkin [34]
variants. Regardless of the technique adopted, spectral methods express the problem
as a finite series of several functions. Then, the coefficients are chosen such that the
absolute error is minimized as well as possible. In the spectral collocation technique [35,36],
the numerical solution is implemented in order to almost satisfying the problem. On the
other hand, the residuals are permitted to be zero at the collocation points.

Spectral schemes can be applied to a wide range of problems, including integral and
integro-differential equations [37], fractional differential equations [38], optimal control,
and variational problems. However, global spectral schemes [39] have received little at-
tention, when compared to other classical methods, as finite difference and finite element,
for solving fractional order differential equations. Although the approach has disadvan-
tages like the inability to represent physical processes in spectral space and parallelizing
difficulties on distributed memory computers, it is highly accurate, converges quickly,
and is straightforward.

In this paper we propose a spectral method for approximating a fractional non-
Newtonian fluid model (FNNFM). The solution of the model is expressed as a limited
expansion of shifted Legendre polynomials for the independent variables, and the residuals
are estimated at the shifted Legendre quadrature points. The proposed collocation scheme
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is investigated for both temporal and spatial discretizations. The shifted Legendre collo-
cation method is proposed, with a suitable modification for treating the intial-boundary,
for spatial and temporal discretization. This treatment improves greatly the accuracy
of the scheme. The solutions of the problem are approximated as a finite expansion of
shifted Legendre polynomials for the discretization of the spatial and temporal variables.
Consequently, the spatial and temporal derivatives of this finite expansion are evaluated
explicitly at some quadrature nodes. The resulting equations, when combined with the ini-
tial conditions, generate a system of algebraic equations that can be solved by any suitable
method. In addition, we investigate the effectiveness of the proposed technique in terms of
accuracy and convergence.

The paper is structured into 5 sections. Section 2 presents some preliminary tools
as well as information about shifted Legendre polynomials. Section 3 introduces the
spectral collocation method to solve the time FNNFM. Section 4 presents some numerical
examples to illustrate the effectiveness and accuracy of the technique. Section 5 summarizes
some conclusions.

2. Adopted Notation and Preliminary Concepts
2.1. Caputo Fractional Derivative

Definition 1. Given a function Y(ζ), its Caputo fractional derivative [40] is:

c
0Dθ

ξY(ξ) =
1

Γ(ϑ− θ)

∫ ξ

0
(ξ − ζ)ϑ−ξ−1 dϑY(ζ)

dζϑ
dζ, ϑ− 1 < θ ≤ ϑ, ξ > 0, (2)

where ϑ = dθe and

Γ(n) =
∫ ∞

0
e−ttn−1dt, n > 0

is the Gamma function.

2.2. Brief Introduction to Shifted Legendre Polynomials

A class of mathematical functions known as Legendre polynomials is crucial in many
branches of physics and engineering. They are defined as solutions to the Legendre’s
equation, a particular differential equation that frequently appears in spherical symmetry-
related issues. The polynomials are orthogonal in the range [−1, 1], so unless they are
identical, their inner product over this range is zero. Numerous fields, including quantum
mechanics, electromagnetism, and signal processing, as well as approximation theories
and numerical methods for solving differential equations, use Legendre polynomials. The
Legendre polynomials Pm(t) fulfil the Rodrigues formula, meaning that [41,42]

Pm(t) =
(−1)m

2mm!
Dm((1− t2)m), (3)

with pth derivative given by

P(p)
m (τ) =

m−p

∑
r=0(m+r=even)

Cp(m, r)Pr(t), (4)

where

Cp(m, r) =
2p−1(2r + 1)Γ( p+m+r+1

2 )Γ( p+m−r
2 )

Γ( 3−p+m+r
2 )Γ( 2−p+m−r

2 )Γ(p)
.

The property of orthogonality [43] is written as

(Pm(t),Pl(t))w =

1∫
−1

Pm(t)Pl(t)w(t) = hmδlm, ω(t) = 1, hm =
2

2m + 1
. (5)
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Using the Legendre-Gauss-Lobatto quadrature, ref. [43] we obtain

1∫
−1

ψ(t)dt =
N
∑
j=0

vN,jψ(tN,j), (6)

for ψ ∈ S2N−1 [−1, 1].
Let us express the discrete inner product by means of the expression

(ψ, ϕ)w =
N
∑
j=0

ψ(tN,j) ϕ(tN,j)vN,j. (7)

Definition 2. The shifted Legendre polynomial is given by [44]

Pξend
ς (x) = Pς

(
2
(

x
ξend

)ε

− 1
)

, ς = 0, 1, · · · , 0 ≤ ξ ≤ ξend. (8)

Theorem 1. For vξend , f (x) = 1, a complete L2
vξend , f

[0, ξend]-orthogonal system is obtained [45]

ξend∫
0

Pξend
i (x)Pξend

j (x)vξend , f (x) dx = δijhξend ,k, (9)

where hξend ,k =
ξend

2(2k+1) .

Corollary 1. Let PM = span{Pξend ,r : 0 ≤ r ≤ K} be the finite space of fractional-polynomials.
Using (9), the function Υ(ξ) ∈ L2

W f
[0, ξend] can be obtained as

Υ(ξ) =
∞

∑
r=0

$rPξend ,r(ξ), $r =
1

hξend ,r

ξend∫
0

Pξend
ς (ξ)Υ(ξ)Wξend , f (ξ) dξ.

3. Solving the Time FNNFM

The time FNNFM [46,47] is dealt with the Gauss–Lobatto and the Gauss–Radau shifted
Legendre collocation techniques [43], yielding:

$1
∂ν1Y
∂ην1

+ $2
∂Y
∂η

+ $3
∂ν2Y
∂ην2

+ $4Y = $5∆Y+ $6
∂ν3 ∆Y
∂ην3

+ Υ(ξ, η), (ξ, η) ∈ Ω• ×Ω�, (10)

where $1, $2, $3, $4, $5 and $6 are constants and Ω• ≡ [0, ξend], Ω� ≡ [0, ηend], and

∂Y
∂η

∣∣∣∣∣
η=0

= ω0(ξ), Y(ξ, 0) = ω1(ξ), x ∈ Ω•,

Y(0, η) = ω2(η), Y(ξend, η) = ω3(η), η ∈ Ω�.

(11)

Expression (10) represents various types of fractional diffusion equations. The gen-
eralized Oldroyd-B fluid model (1), the time fractional diffusion-wave equation [48]
($2 = $4 = 0), and the generalized Maxwell fluid model [49] ($3 = 0) are some particular
cases. A detailed derivation of the flow problem is discussed in reference [47].
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The truncated solution is

YN,M(ξ, η) =
N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ)Pηend

ι (η), (12)

where Pξend
ς (ξ) and Pηend

ι (η) are shift Legendre polynomials (see [50,51] for more details).
The time derivatives are then computed as

∂Y
∂η

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ)Pηend ,1

ι (η),

∂2Y
∂η2 =

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ)Pηend ,2

ι (η),

(13)

where Pηend ,s
ι (η) = Ds

tP
ηend
ι (η) [52]. Moreover, the space derivatives are

∂Y
∂ξ

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend ,1
ς (ξ)Pηend

ι (η),

∂2Y
∂ξ2 =

N
∑
ς=0

M
∑
ι=0

πς,ιPξend ,2
ς (ξ)Pηend

ι (η).

(14)

The derivative ∂ν1Y
∂ην1 is calculated as:

∂ν1Y
∂ην1

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ) c

0D
ν1
ηend(P

ηend
ι (η))

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ)Pηend ,ν1

ι (η),

(15)

where [45,51]

Pηend ,ν1
ι (η) =

ι

∑
k=1

(−1)ι−k(Γ(ι + k + 1)) c
0D

ν1
ηend(η

k)

ηk
end(Γ(k + 1))2Γ(ι− k + 1)

,

with c
0D

ν1
ηend(η

k) =

{
0, k ∈ N0 and k < dν1e;

Γ(k+1)
Γ(k−ν1+1)ηk−ν1 , k ∈ N0 and k ≥ dν1e.

Also, we get

∂ν2Y
∂ην2

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ) c

0D
ν2
ηend(P

ηend
ι (η))

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ)Pηend ,ν2

ι (η),

(16)

∂ν3 ∆Y
∂ην3

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend ,2
ς (ξ)Pηend ,ν3

ι (η). (17)
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At selected quadrature nodes, we get

YN,M(ξ
ξend
N,n , η

ηend
M,m) =

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ

ξend
N,n )P

ηend
ι (η

ηend
M,m),

(∂Y
∂η

)ξ=ξ
ξend
N,n

η
ηend
M,m

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ

ξend
N,n )P

ηend ,2
ι (η

ηend
M,m),

(∂2Y
∂ξ2

)ξ=ξ
ξend
N,n

η
ηend
M,m

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend ,2
ς (ξ

ξend
N,n )P

ηend
ι (η

ηend
M,m),

(∂ν1Y
∂ην1

)ξ=ξ
ξend
N,n

η
ηend
M,m

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ

ξend
N,n )P

ηend ,ν1
ι (η

ηend
M,m),

(∂ν2Y
∂ην2

)ξ=ξ
ξend
N,n

η
ηend
M,m

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ

ξend
N,n )P

ηend ,ν2
ι (η

ηend
M,m),

(∂ν3 ∆Y
∂ην3

)ξ=ξ
ξend
N,n

η
ηend
M,m

=
N
∑
ς=0

M
∑
ι=0

πς,ιPξend ,2
ς (ξ

ξend
N,n )P

ηend ,ν3
ι (η

ηend
M,m),

(18)

where m = 1, · · · ,M− 1, n = 1, · · · ,N− 1, and ξ
ξend
N,n tηend

M,m are Gauss-Lobatto and Gauss-
Radau shifted Legendre collocation nodes, respectively.

Besides, the provided conditions can be written as

N
∑
l=0

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ)Pηend ,1

ι (0) = ω0(ξ),

N
∑
l=0

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ)Pηend

ι (0) = ω1(ξ),

N
∑
l=0

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (0)Pηend

ι (η) = ω2(η),

N
∑
l=0

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξend)P

ηend
ι (η) = ω3(η).

(19)

The Equation (10) is closest to zero at the (N− 1)× (M− 1) nodes.

ΩN,M
n,m = ΞN,M

n,m , (20)

where

ΩN,M
n,m =$1

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ

ξend
N,n )P

ηend ,ν1
ι (η

ηend
M,m) + $2

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ

ξend
N,n )P

ηend ,2
ι (η

ηend
M,m)+

$3

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ

ξend
N,n )P

ηend ,ν2
ι (η

ηend
M,m) + $4

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ

ξend
N,n )P

ηend
ι (η

ηend
M,m)

and

ΞN,M
n,m =$5

N
∑
ς=0

M
∑
ι=0

πς,ιPξend ,2
ς (ξ

ξend
N,n )P

ηend
ι (η

ηend
M,m) + $6

N
∑
ς=0

M
∑
ι=0

πς,ιPξend ,2
ς (ξ

ξend
N,n )P

ηend ,ν3
ι (η

ηend
M,m)+

Υ
(

ξ
ξend
N,n , η

ηend
M,m

)
.
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Additionally

N
∑
l=0

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ

ξend
N,n )P

ηend ,1
ι (0) = ω0(ξ

ξend
N,n ), k = 1, · · · ,N− 1,

N
∑
l=0

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (ξ

ξend
N,n )P

ηend
ι (0) = ω1(ξ

ξend
N,n ), k = 1, · · · ,N− 1,

N
∑
l=0

N
∑
ς=0

M
∑
ι=0

πς,ιPξend
ς (0)Pηend

ι (η
ηend
M,m) = ω2(η

ηend
M,m), l = 0, · · · ,M,

∑
l,ς=0,...,N
ι=0,...,M,

πς,ιPξend
ς (ξend)P

ηend
ι (η

ηend
M,m)) = ω3(η

ηend
M,m), l = 0, · · · ,M.

(21)

This results in a system of algebraic equations that is simple to solve.

4. Some Numerical Examples

We illustrate the proposed spectral approach by solving two examples.

Example 1. We consider the multi-term time fractional viscoelastic non-Newtonian fluid model [53]

∂ν1Y
∂ην1

+
∂Y
∂η

+
∂ν2Y
∂ην2

+Y = ∆Y+
∂ν3 ∆Y
∂ην3

+ Υ(ξ, η), (ξ, η) ∈ [0, 1]× [0, 1], (22)

The included conditions are specified in a way that Y(ξ, η) =
(
η3 + 1

)
sin(πξ) where

Υ(ξ, η) = sin(πξ)
(

π2
(

η3 + 1
)
+ (η + 3)η2 + 6η3

(
η−ν1

Γ(4− ν1
+

η−ν2

Γ(4− ν2)
+

π2η−ν3

Γ(4− ν3)

)
+ 1
)

.

Relying on L∞-errors, the results obtained with the proposed technique are compared
with those in [53], and are summarized in Table 1. We verify that the new procedure
yields better numerical results. The tables show that the numerical results and exact
solution are well-aligned, proving the efficacy of our numerical approach and supporting
the theoretical analysis. We plot a few graphs to show the dynamic properties of the
generalized non-Newtonian fluid and to observe the effects of various physical parameters
on the velocity field.

Table 1. The L∞-errors of Example 1 for various values of (ν1, ν2, ν3).

Finite difference method [53]

h (1.5, 0.7, 0.6) (1.6, 0.7, 0.8) (1.6, 0.5, 0.3)
1
40 9.9671× 10−3 1.5408× 10−2 7.8520× 10−3

1
80 4.5553× 10−3 7.0946× 10−3 3.7583× 10−3

1
160 2.1071× 10−3 3.2759× 10−3 1.8190× 10−3

1
320 9.8700× 10−4 1.5191× 10−3 8.8841× 10−4

1
640 4.6799× 10−4 7.0814× 10−4 4.3707× 10−4

New method

(N,M) (1.5, 0.7, 0.6) (1.6, 0.7, 0.8) (1.6, 0.5, 0.3)

(6, 6) 2.06323× 10−2 2.08022× 10−2 2.01163× 10−2

(10, 10) 1.56512× 10−5 1.57477× 10−5 1.5443× 10−5

(14, 14) 3.01187× 10−9 3.02924× 10−9 2.99857× 10−9

(18, 18) 2.04059× 10−13 2.01617× 10−13 2.03171× 10−13

(22, 22) 4.38933× 10−14 5.90639× 10−14 1.58207× 10−14
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Figures 1 and 2 depict the numerical solution and absolute error of Example 1, re-
spectively. The similarity between the numerical and the exact solutions is illustrated in
Figure 3. Also, Figure 3 depicts the relationship between time and velocity, and the increase
in flow velocity. Figures 4 and 5 reveal the ξ- and η-curves associated with the absolute
errors, respectively. In addition, the convergence error decay is shown in Figure 6.

Figure 1. The solution YN,M of Example 1, with ν1 = 1.5, ν2 = 0.7, ν3 = 0.6, N = M = 22.

Figure 2. The absolute error E(ξ, η) of Example 1, with ν1 = 1.5, ν2 = 0.7, ν3 = 0.6, N = M = 22.

Figure 3. The numerical and the exact solutions, YN,M and Y, along the ξ-direction of Example 1,
with ν1 = 1.5, ν2 = 0.7, ν3 = 0.6, N = M = 22.
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Figure 4. The absolute error E(0, η) of Example 1, with ν1 = 1.5, ν2 = 0.7, ν3 = 0.6, N = M = 22.

Figure 5. The absolute error E(ξ, 0) of Example 1, with ν1 = 1.5, ν2 = 0.7, ν3 = 0.6, N = M = 22.

Figure 6. Convergence error of Example 1, expressed in log scale.

Example 2. We consider the multi-term time fractional diffusion equation [47]

∂ν1Y
∂ην1

+
∂Y
∂η

= ∆Y+
∂ν3 ∆Y
∂ην3

+ Υ(ξ, η), (ξ, η) ∈ [0, 1]× [0, 1], (23)

The included conditions are specified in a way that Y(ξ, η) = eξη3 where

Υ(ξ, η) = η2eξ

(
6η

(
η−ν1

Γ(4− ν1)
− η−ν2

Γ(4− ν2)

)
− η + 3

)
.

The results with the proposed technique are compared with those in [47] and listed
in Table 2 in terms of L∞-error. We verify that the accuracy of the solutions with the new
technique is superior to that with the alternative method.
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Table 2. The L∞-error of Example 2 for various values of (ν1, ν2)

Finite difference method [47]

h (1.1, 0.6) (1.6, 0.3) (1.8, 0.3)
1
20 2.2385× 10−2 3.2559× 10−2 3.8225× 10−2

1
40 1.1489× 10−2 1.6140× 10−2 1.8773× 10−2

1
80 5.8498× 10−3 7.9949× 10−3 9.2139× 10−3

1
160 2.9630× 10−3 3.9631× 10−3 4.5272× 10−3

1
320 1.4955× 10−3 1.9670× 10−3 2.2278× 10−3

New method

(N,M) (1.1, 0.6) (1.6, 0.3) (1.8, 0.3)

(4,4) 2.1782× 10−3 2.16526× 10−3 2.16149× 10−3

(8,8) 4.24672× 10−8 4.2443× 10−8 4.24348× 10−8

(12,12) 1.47438× 10−13 1.45661× 10−13 1.45661× 10−13

(14,14) 5.32907× 10−15 4.88498× 10−14 2.22045× 10−14

Figures 7 and 8 depict the numerical solution and the absolute errors of Example 2,
respectively. The similarity between the numerical and exact solutions is illustrated in
Figure 9. Also, Figure 9 depicts the relationship between time and velocity, and the increase
in flow velocity. Figures 10 and 11 reveal the ξ- and η-curves associated with absolute
errors, respectively. In addition, the decay of the convergence error is shown in Figure 12.

Figure 7. The solution YN,M of Example 2, with ν1 = 1.1, ν2 = 0.6, N = M = 14.

Figure 8. The absolute error E(ξ, η) of Example 2, with ν1 = 1.1, ν2 = 0.6, N = M = 14.
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Figure 9. The approximate and exact solutions, YN,M and Y, of Example 2, with ν1 = 1.1, ν2 = 0.6,
N = M = 14.

Figure 10. The absolute error E(0, η) of Example 2, with ν1 = 1.1, ν2 = 0.6, N = M = 14.

Figure 11. The absolute error E(ξ, 0) of Example 2, with ν1 = 1.1, ν2 = 0.6, N = M = 14.
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Figure 12. Convergence error of Example 2, expressed in log scale.

5. Conclusions

We proposed an accurate technique for solving two-dimensional multi-term time
fractional viscoelastic non-Newtonian fluid model. To exemplify the technique’s implemen-
tation and effectiveness, a theoretical analysis was provided, along with a set of numerical
tests. Based on the results obtained though the examples, we can deduce that our method is
extremely precise and dependable. More fractional order concerns can be incorporated into
the existing discussion. The results are completely compatible with the expected values of
the technique, evidencing exponential convergence.
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Abbreviations and Symbols

Y Velocity field (meter/second)
ε Relaxation time (second)
β Retardation time (second)
µ Dynamic viscosity (Pascal-second)
ρ Constant density of the fluid
Pm(t) Legendre polynomials
ω(t) Weight function of Legendre polynomials
hm Orthogonality constant of Legendre polynomials
vN,j Christoffel numbers of the Legendre-quadrature formula
hξend ,k Orthogonality constant of shifted Legendre polynomials
ξ, η Space (meter) and time (second)
Pξend

i (x) Shifted Legendre polynomials
FNNFM Fractional non-Newtonian fluid model
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