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Abstract: The rapid proliferation of smart devices in Internet of Things (IoT) networks has amplified
the security challenges associated with device communications. To address these challenges in
5G-enabled IoT networks, this paper proposes a multi-level blockchain security architecture that
simplifies implementation while bolstering network security. The architecture leverages an adaptive
clustering approach based on Evolutionary Adaptive Swarm Intelligent Sparrow Search (EASISS) for
efficient organization of heterogeneous IoT networks. Cluster heads (CH) are selected to manage
local authentication and permissions, reducing overhead and latency by minimizing communication
distances between CHs and IoT devices. To implement network changes such as node addition,
relocation, and deletion, the Network Efficient Whale Optimization (NEWO) algorithm is employed.
A localized private blockchain structure facilitates communication between CHs and base stations,
providing an authentication mechanism that enhances security and trustworthiness. Simulation
results demonstrate the effectiveness of the proposed clustering algorithm compared to existing
methodologies. Overall, the lightweight blockchain approach presented in this study strikes a
superior balance between network latency and throughput when compared to conventional global
blockchain systems. Further analysis of system under test (SUT) behavior was accomplished by
running many benchmark rounds at varying transaction sending speeds. Maximum, median, and
lowest transaction delays and throughput were measured by generating 1000 transactions for each
benchmark. Transactions per second (TPS) rates varied between 20 and 500. Maximum delay rose
when throughput reached 100 TPS, while minimum latency maintained a value below 1 s.

Keywords: blockchain; Internet of Things (IoT); Evolutionary Adaptive Swarm Intelligent Sparrow
Search (EASISS); Network Efficient Whale Optimization (NEWO); data security; clustering techniques

MSC: 90C27; 68T07

1. Introduction

The Internet of Things (IoT) architecture can be employed to install pervasive, in-
terconnected devices utilizing cloud platforms in a centralized network. The predicted
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heterogeneity of IoT network devices is yet constrained by factors including scalability,
scarce resources, throughput, centralized control, overhead, and latency [1]. The devices
are controlled and managed by the server using a centralized network architecture. Cen-
tralized systems, however, have several shortcomings [2]. When several smart devices are
connected to a network, it is not uncommon for a great deal of data to be produced. A large
amount of network bandwidth is required, as well as excellent effectiveness and memory,
for a cloud software network operator. Additionally, there is always a chance that the
failure of the critical components of the centralized network would result in a catastrophic
(or total) failure of the system [3]. A third party is frequently needed to perform addi-
tional manipulation on the data that the central cloud storage has acquired. The privacy
of the end user could be jeopardized as a result of data leaks. Coordination of external
computer resources presents an additional difficulty in demonstrating IoT performance
and security in centralized systems [4]. Because of this, the majority of centralized systems
in use today are unable to provide organizations with a guarantee of confidentiality and
security of data [5]. Most IoT devices can only transmit over limited distances due to
their low-power wireless receivers and transmitters [6]. The Multihop Cellular Network
(MCN) idea, which enables a large reduction in signal coverage, can be used to benefit IoT
networks [7]. Creating a large-scale network with diverse nodes is more challenging since
typical blockchain implementations require high-performance nodes [8]. The dispersed
nature of IoT networks and the sheer volume of connected things mean that some kind of
autonomous defense mechanism is also required [9].

The primary challenges in the new IoT era powered by 5G include an ever-increasing
variety of devices that are connected, the heterogeneous nature of gadgets and automakers,
interconnection, an enormous amount of gathered data and network traffic, the need
for a great deal of bandwidth, communication latency, and trust. In most cases, their
technical worth has been acknowledged. Unfortunately, at the moment, they simply
provide the ability to store transactional data. To address difficulties with complexity and
expand the approach for securing IoT connections, this research analyzes a multi-level
structure according to a special clustering method appropriate for the blockchain system.
To accommodate blockchain integration in IoT systems, a modified clustering technique
was developed by factoring in network performance measurements in predetermined
cost functions [10,11]. This means that hacked nodes cannot insert invalid blocks onto
the public ledger without being discovered. Hence, the multi-level blockchain prevents
compromised entities from accessing it. Hence, the validity of data stored on a blockchain
cannot be disputed [12]. Furthermore, crucial is the fact that the new multi-level architecture
makes it possible to update the existing primary cloud server. This allows for widespread
rollouts to become a reality. In addition, smart contracts guarantee that only authorized
users have access to network resources by implementing a lightweight authorization and
authentication method that operates locally inside each cluster [13].

Several systems for maintaining security and privacy have been created using tools
like public key infrastructure, blockchains, smart cards, and passwords. Although some of
these protocols are too sophisticated to be used with IoT devices, many of them have severe
privacy and security flaws. This study suggests numerous contributions to overcome
these problems.

• First, we present a novel method for direct, non-centralized authentication of commu-
nicating entities using biometrics and elliptic curve cryptography. By doing this, any
possible single-point of failure problems are resolved;

• In order to prevent user cooperation and privileged insider assaults, we also design
an authorization framework employing security tokens for access and membership
validation as well as admittance rights groups;

• Additionally, we do formal security analysis utilizing the well-known BAN logic,
which verifies the existence of a session key between interacting entities. To show that
the suggested system is secure under all of the threat model assumptions, informal
security analysis is also carried out;
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• To show how effective the suggested protocol is, we conducted a comparative perfor-
mance study. The results reveal that it has the fewest computing and communication
difficulties when compared to other protocols.

The rest of the paper is organized as follows: Section 2 describes the literature review;
Section 3 provides the proposed methodology; Section 4 details the result and discussion;
and Section 5 illustrates the conclusion.

2. Literature Review

The study [14] suggests a different strategy for building trust in supply chains that
contain a variety of IoT components. By employing simulations, we assess the proposed
model and demonstrate its applicability. The goal of the research [15] was to investigate
the use of blockchain technology to protect a loT-enabled WBMS’s communication and
data against harmful cyberattacks [16]. Experimental experiments provide proof of concept
for the proposed blockchain-based IoT network for WBMSs. The cloud storage option for
sensors is taken into consideration in the paper [17]. A unique group signature system that
has minimal computational and communication costs is created to first establish anonymous
authentication and then provide secure and effective data storage and sharing. Then, based
on the suggested group signature scheme, a unique blockchain-based cloud storage protocol
for sensors in the IIoT is built. This protocol makes use of smart contracts and proxy re-
encryption to enable safe data transfer with minimal computational overhead [18]. The
intent of this research [19] was to suggest Edge Share, a blockchain-based data-sharing
structure for edge data-sharing offerings across heterogeneous network contexts. This is
achieved by implementing a two-level overlay network architecture and an edge computing
concept, which can substantially alleviate scheme stress and decrease transmission delay
to improve information effectiveness. The suggested framework [20] has been carefully
evaluated against several security criteria in comparison to conventional mechanisms.
With the use of a multi-level authorization hub and a hierarchical attribute structure, the
paper [21] suggests a novel attribute-based encryption method. By spreading different
user attributes to distinct authorization centers, the technique enables flexible and fine-
grained access control. It was then integrated with the Fabric blockchain technology to
address the issue of high decryption costs for Internet of Things consumers [22]. To reduce
consumers’ decryption overhead, smart contracts on blockchain use high-complexity partial
decryption algorithms. These methods use a blockchain-based dynamic secret-sharing
mechanism. The power blockchain sharing approach, which can additionally share power
trading books, is used to create a dependable trading center. The power data consensus
technique and dynamically linked memory are intended to enable secure power data
transport matching [23]. Secure SVM, a privacy-preserving SVM training scheme over
blockchain-based encrypted IoT data, was used in this study [24]. Blockchain technology
creates a secure and dependable data-sharing platform for numerous data sources, in
which IoT data is encrypted and then stored on a distributed ledger [25]. The study [26]
offers a unique Decentralized Blockchain-based Security (DeBlock-Sec) solution to address
the security challenge in resource-constrained IoT environments. The limitation of the
proposed model is the decentralized nature of blockchain can make it difficult to manage
and update security protocols across a large number of devices. Finally, the integration of
blockchain with existing IoT networks and protocols may require significant changes to the
underlying infrastructure, which can be costly and time-consuming.
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Motivation of the Research

In order to improve message relay between devices, many are turning to 5G networks
as the demand for higher quality of service (QoS) and security in IoT networks develops.
However, there are difficulties specific to this adoption. High-capacity 5G networks also en-
able extensive private data exchanges between 5G-IoT devices. In the event that malevolent
actors compromised this data, serious consequences could result.

Furthermore, devices typically need to authenticate themselves during handovers
in order to stop assaults due to the ultra-densification of base stations in 5G networks.
Conventional security mechanisms, however, with their high processing, communication,
and storage needs, are not appropriate for this context due to the resource-constrained
nature of IoT devices.

In 5G-IoT networks, device heterogeneity poses additional difficulties because dif-
ferent device architectures for communication and security may exist. More effective key
exchange and authentication techniques are required in order to guarantee the highest lev-
els of security and privacy protection while preserving the best QoS. Overall, it is important
but challenging to strike a balance between security, privacy, and QoS in 5G-IoT networks.

3. Proposed Methodology

The proposed network architecture is meant to make use of the cellular systems’
capabilities and performance while providing an efficient and reliable security feature
for IoT networks. To encrypt the multi-level structure, Evolutionary Adaptive Swarm
Intelligent Sparrow Search (EASISS) is used. This research offers a framework to make it
easier for IoT networked devices (objects and nodes) to be authenticated and authorized in
a lightweight manner using blockchain technology. The entire cellular-enabled IoT network
is divided into several levels by the suggested multi-level network paradigm. IoT nodes
and diverse clusters make up Level 1. Sink nodes and controlling elements like cluster
heads are included in level 2. Cellular network base stations are located at Level 3. The
decentralized blockchain mechanism can be implemented at Level 3 by the BSs with the
necessary servers and CPUs. The total system model is depicted in Figure 1.

The introduction of blockchain technology may result in more work and scalability
problems. Figure 2 depicts the multi-level network concept that may be used to cut down
on redundancy, speed up responses, better organize data, keep conversations private, and
accommodate future growth.

Several modules and nodes with varying computational and resource needs are found
on the first level. For the IoT system’s regional authorization program, the cluster heads
offer authentication and authorization functions for regionally embedded systems. In a
blockchain setting, CH nodes may safely connect because of a thin consensus. On this level,
the permission-based local HLF blockchain is implemented. Cellular network BSs make
up the top level. At this level, reliable asymmetric cryptography method deployment is
possible. The use of the global system and cutting-edge security measures at the highest
levels ensures privacy and security (Level 3).
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Figure 1. IoT network multi-level model.

Figure 2. The network concept has three levels: an infrastructure level with a local authorization
service, a local blockchain, and a public chain.
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3.1. Implementation of the Framework
3.1.1. Network Self-Clustering

The foundation of metaheuristic algorithms is the intimate relationship between com-
putational techniques and optimization. These techniques’ main benefit is their freedom
from local optimum spots. As a result, these methods search everywhere in the search
space. Additionally, the metaheuristic algorithms’ entire distribution of individual control
(network nodes and participants). Localized communication is how these people interact
with one another. The system responds strongly, and the application is quick to adapt to
environmental changes. The IoT network’s clustering strategy is seen in Figure 3.

Figure 3. Scheme for cellular IoT network clustering.

Therefore, Evolutionary Adaptive Swarm Intelligent Sparrow Search (EASISS) is
presented herein for the clustering of heterogeneous IoT networks. In this study, NEWO
is used to improve the clustering of the proposed IoT network since it shows extremely
strong performance in this regard. By reducing the average distance that data must travel
between IoT devices and the selected cluster heads, the clustering method helps keep IoT
systems as efficient as possible. By grouping, just a fraction of the nodes will need to make
far-reaching connections to the Base Station (BS). As a result, the system’s overall energy
usage drops while the network’s reach expands. By streamlining the deployment process,
the clustering-based method improves the effectiveness of blockchain applications. The CH
nodes are in charge of organizing the whole network into functionally independent clusters.
To exchange information, other nodes in the cluster have to talk to the CH nodes. Clustering
is the goal, and the idea is to get there by using evolutionary computing techniques to run
on the network itself. This is done to simulate the disparate components that make up the
IoT infrastructure. There is no hard-and-fast rule for how many clusters there should be
or how many nodes there should be in each cluster. Moreover, the suggested clustering
improves the adaptability of the IoT network’s node placement. Taking into account the
fact that nodes aren’t evenly dispersed within clusters is a major factor.
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3.1.2. CH Selection with Evolutionary Adaptive Swarm Intelligent Sparrow
Search (EASISS)

Satisfying energy restrictions is the most important aspect of the IoT network architec-
ture. To extend network operation, communications, and transmission links can be made
shorter, and power consumption can be decreased. By arranging nodes into autonomous
clusters, shorter communication linkages can be achieved. Due to the necessity of each clus-
ter member exchanging information with the associated CH, such an approach makes data
aggregation and forwarding easier. EASISS is used in our suggested paradigm to represent
vector data. The placements of the sparrow are determined at random inside the limits and
are shown in a linear system in the form of Equation (1). Rand [0, 1], a randomly generated
distribution number, makes up the beginning vector. For the optimization problem, each
row represents a fitness function solution.

f (x) =


f (SP1,1, SP1,2 · · · SP1,d)
f ([SP2,1 SP2,2 · · · SP2,d])

...
...

...
...

f ([SPn,1 SPn,2 · · · SPn(k),d

]
)




fobj1
fobj2

...
fobjn

 (1)

The mutation operator uses the Mutation Rate (MR) to help choose the best vector TaV
from the population. The new progeny is displayed in Equation (2). The likelihood that
SP(g+1) would produce two unique vectors is random, and it is also modified according to
three random values. The vectors ∈ [0, 1] differences in the mutation operation r1, r2, and r3
may be the conscious cause of the resultant’s unfavorable outcome. Because of this, the
method has to generate the difference in the vector’s components in a manner that satisfies
the range. Every single sparrow goes through a population-wide evolution of every single
process until the optimal solution is identified.

SPg+1 = SPr1 + MR ∗ (SPr2 − SPr3) (2)

Equation (3) calculates the Euclidean distance between the best-chosen sparrow and
each sparrow.

dist =

√
∑N

i=1

(
SPi.j − SPbesti,j

)2
(3)

Similar to Equation (4) and undergoes recombination to create a new generation of
children is known as DV TaV a trial vector. In this case, a preset Crossover Probability
Rate (CPR) is employed with binomial cross-over. If (r ≤ CPR BestDV), the donor vector
is chosen; if not, the target vector is.

SPi,j,g+1 =

{
BestDV j i f (r ≤ CPR)
BestTaV j i f (r > CPR)

}
(4)

When AV < ST indicates that there are no predators, producers move into a wider
search mode, as shown in Equation (5). When the AV ≥ ST predator is present, which is
rare, sparrows must defend themselves by fleeing to safer areas. Only infrequent scavengers
follow producers significantly.

SP(t+1)
i,j =

{
SPt

i,j.exp
(
−1

a.Imax

)
i f AV < ST

SPTVt
i,j + Q.L i f AV ≥ ST

(5)

For a fixed number of iterations, the location of the scavenger may be found in
Equation (6), where I max β mean is the variable step controlling the parameter’s average
value and variation is 1. Algorithm 1 is EASISS. The equation combines the current position
of the particle with the difference between the global best and personal best positions,
scaled by β. The goal is to update the particle’s position towards the global best position,
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while taking into account its own personal best position. This helps the particle swarm
algorithm to explore the search space efficiently and converge to a good solution.

SP(t+1)
i,j = SPt

GBest + β·
[
SPt

i,j − SPt
GBest

](t+1)
(6)

Algorithm 1: EASISS

Create nodes at random in 2D space,
Initialize population G at random
Evaluate each (node) sparrow’s objective function
While (not utilizing the most iteration)

Use every node i in a cluster k
Do with i = 1 to N nodes

Choose three nodes at random from the population
Use the Euclidean distance to calculate the distance between nodes
Observe the mutant sparrow population
Produce a new population
Perform the recombination process
If (r < CPR) then

Do a selection operation
Else

Optimal fitness should replace the sparrow population G.
For each sparrow, reevaluate the objective function.
Update the population’s SPbest position and chose as CH

End
t = t + 1

End Do
Stop while
Return Best solution

3.1.3. Network Changes Optimization Using Network Efficient Whale
Optimization (NEWO)

The network modifications, such as node creation, movement into, and removal from
the IoT network, are carried out using the meta-heuristic algorithm NEWO. NEWO is
mathematically designed to encircle prey, assault with a bubble net, and seek prey, which
is quite similar to the Whale Optimization Algorithm in terms of feeding behavior. The
following steps are taken to adopt NEWO, as well as initializing the whale’s population:

X =


X1
X2
· · ·
X3

 =


x1,1 · · · x1,d
x2,1 · · · x2,d

... · · ·
...

xn,1 · · · xn,d

 (7)

where n is the number of whales and d is the dimension. Calculating and assessing the
whale population’s fitness value. There will be at least two fitness values for each whale to
consider depending on the issue. This evaluation is formulated as follows for problems
with two objectives, such as F1 and F2:

FX =


F1(X1) F2(X1)
F1(X2) F2(X2)

...
...

F1(Xn) F2(Xn)

 (8)

The search agent’s initial spawn location is chosen at random, and when it does,
the nearby node’s information is cloned to that node’s position. Calculating each search
agent’s fitness value and selecting the best for reference are the following steps. Afterward,
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NEWO’s parameters are modified so that further search agents are generated based on
the position of the best agent. A fitness function is used to determine which cluster head
should be used. This function is essential to the exploring mechanism of NEWO (search for
prey). The characteristics of the node, such as its energy level (Er) and the density of nodes
nearby are the function’s determining factors.

f (CHi) = p1[N(CHi)] + p2∑(CHE) (9)

In Equation (9), the variables p1 and p2 are chosen at random between 0 and 1, and
the variable (CHi) is a list of all the nodes that are close to the CH. CHi and CHE are the
remaining energies of the neighboring nodes. In this case, a node needs to have a lot of
neighbors nearby in addition to enough remaining energy to become the CH; hence, the
higher the fitness value, the better the solution. The base station transmits the cluster heads’
IDs throughout the network after determining the best arrangement of cluster heads and
the nodes they belong to. Each of these cluster heads transforms into a command center
for its area, in charge of gathering and transmitting information. Algorithm 2 provides the
pseudocode for the proposed approach.

Algorithm 2: NEWO

while (r < rmax)
while (t < tmax)

For every search agent’s CHi
Clone the CHi node closest to it
Calculate fitness
Compute the coefficient vectors
Select the whale’s location
Adjust the X∗ best position if X is greater than X∗

For all search agents, update the fitness function.
End for

End while
CH = nearest node to the X∗ position
End while

4. Result and Discussion

An IoT network simulation was carried out to test the effectiveness of the proposed
clustering techniques. In a 2-D network, there are 100 randomly chosen nodes. Since
MATLAB 2018a provided a trustworthy environment for clustering algorithms and made
it simple to simulate techniques, it was chosen so that the final results could be compared.

4.1. Clustering Results

To test the efficiency of the suggested clustering approach, it was compared to four
other algorithms already reported in the literature: the cascading model [27], Low Energy
Adaptive Clustering Hierarchy (LEACH) [28], Gateway Clustering Energy-Efficient Cen-
troid (GCEEC) [29], and Black Hole and Ant Colony Optimization (BH-ACA) [30]. The
same simulated network architecture was used to assess each protocol. The number of
clusters and CHs produced by each method after its optimization varied. The simulation
outcomes show that the proposed clustering model is effective and that the algorithm for
minimizing distances and overall network energy is also effective. By reducing network
load, decreasing distance, and increasing network coverage, as shown in Figures 4–6, the
suggested EASISS-NEWO outperforms the existing algorithms.
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Figure 4. Comparison of average nodes per cluster of the proposed model with cascading model [27],
LEACH [28], GCEEC [29], and BH-ACA [30].

Figure 5. Comparison of average distance of the proposed model with cascading model [27],
LEACH [28], GCEEC [29], and BH-ACA [30].

Figure 6. Comparison of average coverage per node of the proposed model with cascading model [27],
LEACH [28], GCEEC [29], and BH-ACA [30].
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As the blockchain applications’ BS server, a workstation was used to build the Level-3
simulation model. Ethereum and Hyperledger private networks’ throughput and latency
characteristics might be easily assessed in this environment. All of the networks had the
same physical infrastructure and were given the same virtual workload. For the experiment,
it was planned to use a distributed ecosystem that would incorporate the aforementioned
two blockchain networks. The basis for the simulation models was a workstation with an
Intel Core i7-3770 processor running at 3.4 GHz and 16 GB of RAM. For simplicity, just one
mining node was used to start the Ethereum network.

4.2. Performance Evaluation

A blockchain application’s principal goal is to keep track of the many transactions that
its users have submitted. A block is generated, and the transaction outcome is stored on the
blockchain ledger as a result of the submitted transactions’ subsequent processing through
the verification and ordering procedures. The latency and throughput of the system were
measured to evaluate the effectiveness of the proposed model. To demonstrate the value
of the proposed framework, the results were compared to the parameters established
in the literature. Hyperledger Caliper was used throughout the study to allow for the
administrator’s unique blockchain setup. Both node and network latency are significantly
influenced by block size. The system’s latency is determined by how long it takes to gain
consensus when a node begins to notice fresh block validations. Several transactions,
including Open, Transfer, and Query, were used to analyze the system. Results were
reported for Ethereum and Hyperledger Fabric (level 2 suggested blockchain). Table 1
shows the performance of Hyperledger and Ethereum.

Table 1. Performance of Hyperledger and Ethereum.

Name Send Rate (TPS) Max Latency (s) Min Latency (s) Avg Latency (s) Throughput (TPS)

Blockchain E H E H E H E H E H
Transfer 10.7 10 7.13 0.38 2.07 0.06 4.63 0.19 6.7 10

Open 22.7 20.2 7.05 0.38 2.12 0.04 4.58 0.18 10 20.1
Query 10.2 10 0.02 0.07 0.01 0.01 0.01 0.01 10.2 10

E—Ethereum; H—Hyperledger Fabric.

By using a multi-level architecture, the average latency is reduced. Only some
of the nodes (i.e., CHs) in this architecture contribute to the validation of new blocks.
The outcomes of the Ethereum implementation are also shown in Table 1. As a world-
wide blockchain technology, it is clear that the proposed lightweight HLF blockchain
outperforms Ethereum.

When choosing a suitable blockchain platform for IoT applications, latency and
throughput are crucial performance parameters, along with security and privacy. The
latency goals can only be met if the blockchain network’s distribution of resources is opti-
mized for a given input load. Further analysis of System under Test (SUT) behavior was
accomplished by running many benchmark rounds at varying transaction sending speeds.
Maximum, median, and lowest transaction delays and throughput were measured by gen-
erating 1000 transactions for each benchmark. Transactions per second (TPS) rates varied
between 20 and 500. In Figure 7, we can see the highest, median, and lowest transaction
latencies that occurred throughout our experiment’s many runs. Maximum delay rose
when throughput reached 100 TPS, while minimum latency maintained a value below
1 s. The transaction throughput results for different transaction sending rates are shown
in Figure 8.
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Figure 7. Latency vs. transaction sending rate.

Figure 8. Throughput vs. transaction sending rate.

The throughput was consistent at roughly 100%, even though the sending rate peaked
at 110 transactions per second. When the sending rate was raised to 110 TPS, the maximum
acceptable sending rate for the SUT, a drastic decrease in throughput was noticed. For the
sake of this experiment, every blockchain transaction was produced by a separate client.
The HLF has a new three-step design called execute-order-validate, where each stage is
dependent on the results of previous stages. As the real throughput is very close to 100%, a
100 TPS transmission rate is doable. Yet, there is only a marginal reduction in throughput
when sending at 100 and 200 TPS. We calculated that this means our infrastructure can
handle sending at a pace of roughly 110 TPS. Hence, our proposed architecture might allow
for the real-time provisioning of a wide variety of 5G-enabled IoT applications with little
additional delay. The maximum delay approaches 15 s as the number of input transactions
rises. Because of limitations imposed by the containers’ allocation to peer nodes, this is
the scenario. Since the peer nodes are not initially subjected to heavy loads, the minimum
latency almost always remains constant. The block size, channel count, ordering service,
users, and endorsing nodes are just a few examples of how blockchain configuration
can affect latency. It is evident that, in each case, every transaction is completed, i.e., no
transaction loss takes place.
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5. Conclusions

This research proposes a distributed security model for IoT devices communicating
through cellular networks with multiple hops, using a blockchain-based approach with a
multi-level architecture. The IoT network is divided into clusters using the self-clustering
EC method, designed with the EASISS-NEWO technique to increase network lifespan
and security and reduce processing burden, network load, and latency. The proposed
solution addresses issues related to IoT security, such as framework privacy, authentication,
heterogeneity, flexibility, and scalability. Four existing methods were compared with the
suggested clustering method through simulation studies, and the proposed technique
outperformed the alternatives in terms of network load, coverage, and distance. The
proposed multi-level system was evaluated, and the results indicated the lightweight
blockchain was preferable over Ethereum’s global network. Future studies will focus on
building a realistic, scalable testbed to investigate, assess, and compare the performance of
IoT devices in a real-world environment. Blockchain technology is known to be energy-
intensive, which can be a significant issue for IoT systems that rely on battery-powered
devices. Future research could explore ways to optimize blockchain solutions for energy
efficiency, such as by using lightweight consensus algorithms or off-chain processing.
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