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Abstract: In this paper, an iterative method was considered for solving the absolute value equation
(AVE). We suggest a two-step method in which the well-known Gauss quadrature rule is the corrector
step and the generalized Newton method is taken as the predictor step. The convergence of the
proposed method is established under some acceptable conditions. Numerical examples prove the
consistency and capability of this new method.
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1. Introduction

Consider the AVE of the form:

Ax− |x| = b, (1)

where A ∈ R(n×n), x, b ∈ Rn, and |x| represents a vector in Rn whose components are
|xl |(l = 1, 2, · · · , n). AVE (1) is a particular case of

Ax + B|x| = b (2)

and was introduced by Rohn [1]. AVE (1) arises in linear and quadratic programming,
network equilibrium problems, complementarity problems, and economies with institu-
tional restrictions on prices. Recently, several iterative methods were investigated to find
the approximate solution of (1). For instance, Khan et al. [2] proposed a new technique
based on Simpson’s rule for solving the AVE. Feng et al. [3,4] considered certain two-step
iterative techniques to solve the AVE. Shi et al. [5] proposed a two-step Newton-type
method for solving the AVE, and the linear convergence was discussed. Noor et al. [6,7]
studied the solution of the AVE using minimization techniques, and the convergence of
these techniques was proven. The Gauss quadrature method is a powerful technique to
evaluate the integrals. In [8], it was used to solve the system of nonlinear equations. For
other interesting methods for solving the AVE, the interested readers may refer to [9–18]
for details.

The notations are defined in the following. For x ∈ Rn, ‖ x ‖ denotes the two-norm(
xTx

) 1
2 . Let sign(x) be a vector with entries 0,±1, based on the entries of x that are zero,

positive, or negative. Assume that diag(sign(x)) is a diagonal matrix. A generalized
Jacobian σ|x| of |x| is given by

D(x) = σ|x| = diag(sign(x)). (3)
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For A ∈ Rn×n, svd(A) will represent the n singular values of A.
In the present paper, the Gauss quadrature method with the generalized Newton

method is considered to solve (1). Under the condition that ‖ A−1 ‖< 1
7 , we establish the

proposed method’s convergence. A few numerical examples are given to demonstrate the
performance of the proposed method.

2. Gauss Quadrature Method

Consider
g(x) = Ax− |x| − b. (4)

A generalized Jacobian of g is given by

g′(x) = σg(x) = A− D(x), (5)

where D(x) = diag(sign(x)) as defined in (3). Let ζ be a solution of (1). The two-point
quadrature rule is

∫ ζ

xk
g′(t)dt =

ζ − xk

2

[
g′
(

ζ + xk

2
+

(
1√
3

)(
ζ − xk

2

))
+ g′

(
ζ + xk

2
+

(
− 1√

3

)(
ζ − xk

2

))]
. (6)

Now, by the fundamental theorem of calculus, we have

∫ ζ

xk
g′(t)dt = g(ζ)− g

(
xk
)

. (7)

As ζ is a solution of (1), that is g(ζ) = 0, therefore, (7) can be written as∫ ζ

xk
g′(t)dt = −g

(
xk
)

. (8)

From (6) and (8), we obtain

ζ − xk

2

[
g′
(

ζ + xk

2
+

(
1√
3

)(
ζ − xk

2

))
+ g′

(
ζ + xk

2
+

(
− 1√

3

)(
ζ − xk

2

))]
= −g

(
xk
)

. (9)

Thus,

ζ = xk − 2

[
g′
(

ζ + xk

2
+

(
1√
3

)(
ζ − xk

2

))
+ g′

(
ζ + xk

2
+

(
− 1√

3

)(
ζ − xk

2

))]−1

g
(

xk
)

. (10)

From the above, the Gauss quadrature method (GQM) can be written as follows
(Algorithm 1):

Algorithm 1: Gauss Quadrature Method (GQM)

1: Select x0 ∈ Rn.

2: For k, calculate ηk =
(

A− D
(

xk
))−1

b.
3: Using Step 2, calculate

xk+1 = xk − 2
[

g′
(

ηk+xk

2 +
(

1√
3

)(
ηk−xk

2

))
+ g′

(
ηk+xk

2 +
(
− 1√

3

)(
ηk−xk

2

))]−1
g
(

xk
)

.

4: If ||xk+1 − xk|| < Tol, then stop. If not, move on to Step 2.

3. Analysis of Convergence

In this section, the convergence of the suggested technique is investigated. The
predictor step:

ηk =
(

A− D
(

xk
))−1

b (11)
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is well defined; see Lemma 2 [14]. To prove that

g′
(

ηk + xk

2
+

(
1√
3

)(
ηk − xk

2

))
+ g′

(
ηk + xk

2
+

(
− 1√

3

)(
ηk − xk

2

))
(12)

is nonsingular, first we assume that

τk =
ηk + xk

2
+

(
1√
3

)(
ηk − xk

2

)
, (13)

and

Θk =
ηk + xk

2
+

(
− 1√

3

)(
ηk − xk

2

)
. (14)

Then,

g′
(

ηk + xk

2
+

(
1√
3

)(
ηk − xk

2

))
+ g′

(
ηk + xk

2
+

(
− 1√

3

)(
ηk − xk

2

))

=2A− D

(
ηk + xk

2
+

(
1√
3

)(
ηk − xk

2

))
− D

(
ηk + xk

2
+

(
− 1√

3

)(
ηk − xk

2

))
=2A− D

(
τk
)
− D

(
Θk
)

,

where D
(

τk
)

and D
(

Θk
)

are diagonal matrices with entries 0 or ±1.

Lemma 1. If svd(A) exceeds 1, then
(

2A− D
(

τk
)
− D

(
Θk
))−1

exists for any diagonal matrix
D defined in (3).

Proof. If 2A− D
(

τk
)
− D

(
Θk
)

is singular, then
(

2A− D
(

τk
)
− D

(
Θk
))

u = 0 for some
u 6= 0. As the singular values of A are greater than one, therefore, using Lemma 1 [14],
we have

uTu < uT AT Au =
1
4

uT
((

D
(

τk
)
+ D

(
Θk
))(

D
(

τk
)
+ D

(
Θk
)))

u

=
1
4

uT
(

D
(

τk
)

D
(

τk
)
+ 2D

(
τk
)

D
(

Θk
)
+ D

(
Θk
)

D
(

Θk
))

u

≤ 1
4

4uTu = uTu,

which is a contradiction; hence, 2A− D
(

τk
)
− D

(
Θk
)

is nonsingular, and the sequence in
Algorithm 1 is well defined.

Lemma 2. If svd(A) > 1, then the sequence of GQMs is bounded and well defined. Hence, an
accumulation point x̃ exists such that(

g′
(

τk
)
+ g′

(
Θk
))

x̃ =
(

g′
(

τk
)
+ g′

(
Θk
))

x̃− 2g(x̃), (15)

and (
A− D̃x̃

)
x̃ = b. (16)

Proof. The proof is in accordance with [14]. It is hence omitted.

Theorem 1. If ‖
(

g′
(

τk
)
+ g′

(
Θk
))−1

‖ < 1
6 , then the GQM converges to a solution ζ of (1).
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Proof. Consider

xk+1 − ζ = xk − ζ − 2
(

g′
(

τk
)
+ g′

(
Θk
))−1

g
(

xk
)

, (17)

or (
g′
(

τk
)
+ g′

(
Θk
))(

xk+1 − ζ
)
=
(

g′
(

τk
)
+ g′

(
Θk
))(

xk − ζ
)
− 2g

(
xk
)

. (18)

As ζ is the solution of (1), therefore,

g(ζ) = Aζ − |ζ| − b = 0. (19)

From (18)) and (19), we have(
g′
(

τk
)
+ g′

(
Θk
))(

xk+1 − ζ
)
=
(

g′
(

τk
)
+ g′

(
Θk
))(

xk − ζ
)
− 2g

(
xk
)
+ 2g(ζ)

=
(

g′
(

τk
)
+ g′

(
Θk
))(

xk − ζ
)
− 2
(

g
(

xk
)
− g(ζ)

)
=
(

g′
(

τk
)
+ g′

(
Θk
))(

xk − ζ
)
− 2
(

A
(

xk
)
−
∣∣∣xk
∣∣∣− Aζ + |ζ|

)
=
(

g′
(

τk
)
+ g′

(
Θk
)
− 2A

)(
xk − ζ

)
+ 2
(∣∣∣xk

∣∣∣− |ζ|)
= 2

(∣∣∣xk
∣∣∣− |ζ|)− (g′

(
τk
)
+ g′

(
Θk
))(

xk − ζ
)

.

It follows that

xk+1 − ζ =
(

g′
(

τk
)
+ g′

(
Θk
))−1[

2
(∣∣∣xk

∣∣∣− |ζ|)− (g′
(

τk
)
+ g′

(
Θk
))(

xk − ζ
)]

. (20)

Using Lemma 5 in [14], we know ‖
∣∣∣xk
∣∣∣− |ζ| ‖≤ 2 ‖ xk − ζ ‖. Thus,

‖xk+1 − ζ‖ =‖
(

g′
(

τk
)
+ g′

(
Θk
))−1[

2
(∣∣∣xk

∣∣∣− |ζ|)− (g′
(

τk
)
+ g′

(
Θk
))(

xk − ζ
)]
‖

≤‖
(

g′
(

τk
)
+ g′

(
Θk
))−1

‖
[
4‖xk − ζ‖+ ‖ g′

(
τk
)
+ g′

(
Θk
)
‖ · ‖ xk − ζ ‖

]
. (21)

Since D
(

τk
)

and D
(

Θk
)

are diagonal matrices, hence

‖ g′
(

τk
)
+ g′

(
Θk
)
‖≤ 2. (22)

Combining (21) and (22), we have

‖ xk+1 − ζ ‖≤ 6 ‖
(

g′
(

τk
)
+ g′

(
Θk
))−1

‖ · ‖ xk − ζ ‖ . (23)

From the assumption that ‖
(

g′
(

τk
)
+ g′

(
Θk
))−1

‖< 1/6, we obtain

‖ xk+1 − ζ ‖<‖ xk − ζ ‖ . (24)

Hence, the sequence {xk} converges linearly to ζ.

Theorem 2. Suppose that D
(

τk
)

, D
(

Θk
)

are non-zeros and ‖ A−1 ‖< 1
7 . Then, the solution

of (1) is unique for any b. Furthermore, the GQM is well defined and converges to the unique
solution of (1) for any initial starting point x0 ∈ Rn.
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Proof. The unique solvability directly follows from ‖ A−1 ‖< 1
7 ; see [13]. Since A−1 exists,

therefore, by Lemma 2.3.2 (p. 45) [16], we have

‖
(

g′
(

τk
)
+ g′

(
Θk
))−1

‖ =‖
(

2A− D
(

τk
)
− D

(
Θk
))−1

‖

≤
‖ (2A)−1 ‖ · ‖ D

(
τk
)
+ D

(
Θk
)
‖

(1− ‖ (2A)−1 ‖ · ‖ D
(
τk
)
+ D

(
Θk
)
‖

≤ ‖ A−1 ‖
1− ‖ A−1 ‖

<
1
6

.

Hence, the proof is complete.

4. Numerical Results

In this section, we compare the GQM with other approaches that are already in use.
We took the initial starting point from the references cited in each example. K, CPU and
RES represent the number of iterations, the time in seconds, and the norm of the residual,
respectively. We used MATLAB (R2018a), with an Intel(R) Core (TM)-i5-3327, 1.00 GHz,
CPU @0.90GHz, and 4 GB RAM, for the computations.

Example 1 ([11]). Consider the AVE in (1) with

A = tridiag(−1.5, 4,−0.5) ∈ Rn×n, x ∈ Rn and b = (1, 2, · · · , n)T . (25)

The comparison of the GQM with the MSOR-like method [11], the GNM [14], and the
residual method (RIM) [15] is given in Table 1.

Table 1. Numerical comparison of the GQM with the RIM and MSOR-like method.

Method n 1000 2000 3000 4000 5000 6000

K 24 25 25 25 25 25
RIM CPU 7.084206 54.430295 150.798374 321.604186 581.212038 912.840059

RES 7.6844× 10−7 4.9891 × 10−7 6.3532 × 10−7 7.6121 × 10−7 8.8041 × 10−7 9.9454 × 10−7

K 30 31 32 32 33 33
MSOR-Like CPU 0.0067390 0.0095621 0.0215634 0.0541456 0.0570134 0.0791257

RES 5.5241 × 10−7 7.0154 × 10−7 5.8684 × 10−7 9.0198 × 10−7 5.6562 × 10−7 7.4395 × 10−7

K 5 5 5 5 5 5
GNM CPU 0.0059651 0.007333 0.0115038 0.0330345 0.0551818 0.0783684

RES 3.1777 × 10−10 7.8326 × 10−9 2.6922 × 10−10 3.7473 × 10−9 8.3891 × 10−9 5.8502 × 10−8

K 2 2 2 2 2 2
GQM CPU 0.001816 0.003410 0.018771 0.0326425 0.031539 0.069252

RES 6.1366 × 10−12 1.7588 × 10−11 3.1143 × 10−11 2.8152 × 10−11 3.04866 × 10−11 3.1723 × 10−11

From the last row of Table 1, it can be seen that the GQM converges to the solution
of (1) very quickly. The residuals show that the GQM is more accurate than the MSOR [14]
and RIM [15].

Example 2 ([3]). Consider

A = round(p× (eye(p, p)− 0.02× (2× rand(p, p)− 1))). (26)

Select a random µ ∈ Rp and b = Aµ− |µ|.

Now, we compare the GQM with the TSI [4] and INM [3] in Table 2.
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Table 2. Comparison of the GQM with the TSI and INM.

Method p 200 400 600 800 1000

K 3 3 3 4 4
TSI RES 7.6320× 10−12 9.0622 × 10−12 1.9329 × 10−11 4.0817 × 10−11 7.1917 × 10−11

CPU 0.031619 0.120520 0.32591 0.83649 1.00485

K 3 3 3 4 4
INM RES 2.1320 × 10−12 6.6512 × 10−12 3.0321 × 10−11 2.0629 × 10−11 8.0150 × 10−11

CPU 0.012851 0.098124 0.156810 0.638421 0.982314

K 2 2 2 2 2
GQM RES 1.1623 × 10−12 4.4280 × 10−12 1.0412 × 10−11 1.9101 × 10−11 2.8061 × 10−11

CPU 0.012762 0.031733 0.118001 0.204804 0.273755

From Table 2, we see that our suggested method converges in two iterations to the
approximate solution of (1) with high accuracy. The other two methods are also two-step
methods and performed a little worse for this problem.

Example 3 ([10]). Let

A = tridiag(−1, 8,−1) ∈ Rn×n, b = Au− |u| f or u = (−1, 1,−1, · · · , )T ∈ Rn, (27)

with the same initial vector as given in [10].

We compared our proposed method with the modified iteration method (MIM) [9]
and the generalized iteration methods (GIMs) [10].

The last row of Table 3 reveals that the GQM converges to the solution of (1) in two
iterations. Moreover, it is obvious from the residual that the GQM is more accurate than
the MIM and GIM.

Table 3. Comparison of the GQM with the MIM and GIM.

Methods n 1000 2000 3000 4000 5000

K 7 8 8 8 8
MIM RES 6.7056× 10−9 7.30285 × 10−10 7.6382 × 10−10 9.57640 × 10−10 8.52425 × 10−10

CPU 0.215240 0.912429 0.916788 1.503518 4.514201

K 6 6 6 6 6
GIM RES 3.6218 × 10−8 5.1286 × 10−8 6.2720 × 10−8 7.2409 × 10−8 8.0154 × 10−8

CPU 0.238352 0.541264 0.961534 1.453189 2.109724

K 2 2 2 2 2
GQM RES 3.1871 × 10−14 4.5462 × 10−14 5.7779 × 10−14 6.53641 × 10−14 8 7.26571 × 10−14

CPU 0.204974 0.321184 0.462869 0.819503 1.721235

Example 4. Consider the Euler–Bernoulli equation of the form:

d4x
ds4 − |x| = es, (28)

with boundary conditions:

x(0) = 0, x(1) = 0, x′(1) = 0, x′′(0) = 0. (29)

We used the finite difference method to discretize the Euler–Bernoulli equation. The
comparison of the GQM with the Maple solution is given in Figure 1.
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Figure 1. Comparison of the GQM with the Maple solution for h = 0.02 (step size).

From Figure 1, we see that the curves overlap one another, which shows the efficiency
and implementation of the GQM for solving (1).

Example 5 ([6]). Consider the following AVE with

amm = 4p, am,m+1 = am+1,m = p, amn = 0.5, m = 1, 2, · · · , p. (30)

Choose the constant vector b such that ζ = (1, 1, · · · , 1)T is the actual solution of (1). We took the
same initial starting vector as given in [6].

The comparison of the GQM with the MMSGP [1] and the MM [6] is given in Table 4.

Table 4. Comparison for Example 5.

MMSGP MM GQM
p K CPU RES K CPU RES K CPU RES

2 24 0.005129 5.6800× 10−7 2 0.029965 1.2079 × 10−12 1 0.005161 0
4 37 0.008701 9.7485 × 10−7 4 0.027864 5.5011 × 10−8 1 0.007681 5.0242 × 10−15

8 45 0.009217 5.5254 × 10−7 6 0.045387 6.9779 × 10−8 1 0.005028 3.4076 × 10−14

16 66 0.012458 5.8865 × 10−7 7 0.356930 2.0736 × 10−8 1 0.005253 7.2461 × 10−14

32 55 0.031597 8.2514 × 10−7 8 0.033277 4.9218 × 10−8 1 0.004498 2.0885 × 10−13

64 86 0.085621 7.6463 × 10−7 9 0.185753 9.0520 × 10−9 1 0.007191 6.6775 × 10−13

128 90 0.521056 6.3326 × 10−7 9 0.452394 1.7912 × 10−8 1 0.262364 3.2435 × 10−12

From Table 4, we observe that the GQM is more effective for solving (1). Moreover,
when n increases, our proposed method is very consistent, while the other two methods
require more iterations for large systems.

5. Conclusions

In this paper, we considered a two-step method for solving the AVE, and the well-
known generalized Newton method was taken as the predictor step and the Gauss quadra-
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ture rule as the corrector step. The convergence was proven under certain suitable condi-
tions. This method was shown to be effective for solving AVE (1) compared to the other
similar methods. This idea can be extended to solve generalized absolute value equations.
It is also interesting to study the three-point Gauss quadrature rule as the corrector step for
solving the AVE.
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