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Abstract: This article is concerned with the adaptive-event-triggered filtering problem as it relates to
a class of nonlinear discrete-time systems characterized by interval Type-2 fuzzy models. The system
under investigation is susceptible to Markovian switching and deception attacks. It is proposed to
implement an improved event-triggering mechanism to reduce the unnecessary signal transmissions
on the communication channel and formulate the extended dissipativity specification to quantify the
transient dynamics of filtering errors. By resorting to the linear matrix inequality approach and using
the information on upper and lower membership functions, stochastic analysis establishes sufficient
conditions for the existence of the desired filter, ensuring the mean-squared stability and extended
dissipativity of the augmented filtering system. Further, an optimization-based algorithm (PSO) is
proposed for computing filter gains at an optimal level of performance. The developed scheme was
finally tested through experimental numerical illustrations based on a single-link robot arm and a
lower limbs system.

Keywords: networked IT2 fuzzy systems; Markov jump process; adaptive-event-triggered scheme;
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1. Introduction, Notations, and Outline

Throughout this section, we outline the literature review, the notations, and the
study objectives.

1.1. Bibliographic Review

Dynamical systems are frequently subject to random changes because of component
failures, changes in subsystem interconnections, or environmental changes. These processes
motivate researchers to examine and characterize Markovian jump systems (MJSs). A
Markovian jump system is a stochastic hybrid system that has finite modes of operation,
where jumps between modes are controlled by a Markov process. Several recent research
studies have focused on MJSs, resulting in significant publications about fault tolerance,
target tracking, manufacturing, networked control, and multi-agent systems [1–6]. Despite
many successes in this research, most practical systems are highly nonlinear, so linear
MJSs impose marked limitations in real-world applications. In addition to overcoming this
drawback, the T-S fuzzy models have recently been applied to deal with nonlinear complex
systems due to their effective approximation of smoothly nonlinear models [7–11]. In
general, the T-S fuzzy system encompasses Type-1 and Type-2 fuzzy systems. Type-1 models
typically have crisp membership functions, while Type-2 models are used to deal with
parameter uncertainties by incorporating upper and lower membership functions [12–15].
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On the other hand, networked control systems (NCSs) are a type of control system in
which many components of the system are connected via shared communication networks,
such as actuators, controllers, and sensors [16,17]. Under resource-constrained scenarios,
such as information interactions between agents with limited communication resources,
it is difficult for physical systems to obtain energy supplies in a dynamic environment.
Hence, in designing a control strategy, it is important to consider economy and cost, and
the above-mentioned features will inevitably be subject to some constraints. Two types
of techniques are generally applied to address this issue. The first one is the intermittent
control proposed in [18], wherein the control resource is designed to conserve energy in
conjunction with the communication connection condition. The second approach is the
event-triggered control, in which the gain or resource is selected when there is a relatively
large error state between the sensor and the actuator. This technique is also considered
an adequate method of addressing the energy constraints in communications networks.
In recent years, the ETS has received considerable attention with numerous achievements
that relate to ET H∞ control, ET fault detection, ET sliding-mode controller design, ET
consensus control, and ET state estimation systems, as summarized in [19–27] and the
references therein. Since communication networks are open and network resources are
limited, studies on cyber security issues based on communication-saving regulations for
NCSs are extremely important. In particular, deception attacks pose a significant threat to
the normal operation of NCSs since they are continually introducing errors into the correct
data [28–30]. It is generally adopted to evade detection mechanisms for which the error
vectors are small or even offensive in nature, thus trying to destroy the working state of the
system simply by accumulating errors. Due to the wide range of applications for parameter
estimation, target tracking, as well as system monitoring, the filtering problem has attracted
substantial research attention in the past few decades. Furthermore, there is no doubt that the
Kalman filtering method is widely used in many filter design strategies for signal processing,
control, and optimization [31–33]. In many practical cases, however, the Kalman filter does
not always fulfil the requirement that the external noise is caused by white processes
with known statistical properties. For input signals with non-statistical characteristics, the
performance criteria can be used to compensate for the disadvantage of Kalman filtering.
The filtering issue aims at developing filters that satisfy prescribed performance levels
concerning the output error and disturbance input. It is noteworthy that several efficient
filtering strategies have been proposed up to this point, including the H∞ filtering [19,34–36],
passive/dissipative filtering [37–39], and peak-to-peak filtering [40,41]. In this paper, we
were first motivated by the extended dissipativity performance, which has been introduced
to deal with the (Q, R, S)-dissipative and L2 − L∞ filtering problem in a unified framework.
Further, the quoted papers examined the extended dissipative performance, which can be
converted into four different performances using different parameters [10,29,42].

As an attractive approach, the event-triggered method has been recently used to
cope with the filtering problem for different classes of systems, and substantial research
attention with some outstanding results can be found in [36,43,44]. To mention a few, a
singular neural network with time-varying delays and Markovian jump parameters was
investigated in [23] to deal with the event-triggered dissipative filtering problem. An event-
triggered communication mechanism was employed by the authors of [24], for the design
of piecewise fuzzy diagnostic observers for discrete-time TS fuzzy systems. As has been
shown in previous studies, it has been found that the above-mentioned traditional event-
triggered mechanisms can reduce communication resources and improve transmission
effectiveness. However, these mechanisms are designed with constant thresholds that
are not capable of adjusting themselves based on actual transmission conditions. This
leads to the proposal of adaptive-event-triggered mechanisms (AETMs), in which the
triggering threshold is dynamically adjusted during the operation of the system. There
was an investigation in [28] of the design of H∞ filters for discrete-time networked systems
with an adaptive-event-triggered mechanism and hybrid cyber-attacks. In [45], a new
dynamic-event-triggered protocol was developed to address the problem of filtering for
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affine systems presented by the Takagi–Sugeno fuzzy model. In [20], an observer-based
finite-time H∞ controller was designed to accommodate discrete-time-varying systems
with adaptive-event-triggered mechanisms. Reference [35] addressed the problem of
adaptive-event-triggered H∞ filtering for discrete-time-delayed neural networks with
missing measurements that occur randomly. It can be noted that the adaptive law proposed
in [46], which has a lower bound, might result in conservative conclusions. Additionally,
the AETMs proposed by [47,48] each suffer from a singular problem and may degenerate
into traditional periodic-time-triggered mechanisms, which may limit their application
in practice. As a result of the above considerations, the motivation appears to be the
development of a new AETM that is capable of improving the existing ones. Moreover,
our involvement with IT-2 fuzzy systems was motivated by the fact that, unlike Type-1
TS fuzzy systems, they do not share the same membership functions with fuzzy filters or
controllers. By doing so, we can overcome the network delay problem affecting the fuzzy
filter’s membership functions when using the parallel distribution compensation (PDC)
approach with the Type-1 T-S fuzzy systems.

1.2. Objective and Outline

We were inspired by the discussion above to pursue this study, which examines the
event-triggered filter problem for a class of uncertain nonlinear systems that incorporate
Markov jump switching:

(i) As an alternative to existing filtering schemes developed for Type-1 fuzzy systems [34,38,49],
this study proposes a novel filter design for Markovian jump interval Type-2 fuzzy
systems that simultaneously consider an event-triggered communication scheme and
a deception attack.

(ii) This work introduces a novel adaptive-event-triggered communication scheme that im-
proves the use of network resources as opposed to [50–52], which assumed the triggering
parameters are constant. This mechanism was shown to alleviate network bandwidth and
reduce system conservatism effectively by comparing it with other strategies [35,48,53,54].

(iii) As described in [30,55], an improved matrix decoupling approach, which can be
implemented by selecting some constants, provides greater flexibility when designing
filters. This study, in contrast to previous studies, used a meta-heuristic technique
based on PSO to identify the parameters accurately.

We illustrate our scheme with experimental numerical results on a single-link robot
arm and an isokinetic rehabilitation system and verify the effectiveness of the proposed
scheme by conducting a feasibility study. The paper is organized as follows. Section 2
introduces preliminary results in which the model and assumptions are presented, as
well as the problem under study is identified. In Section 3, the main conclusions of the
article are presented and derived. An optimization algorithm is presented in Section 4
for determining filter gains and for obtaining optimal performance levels. To illustrate
the potential applications of the proposed scheme, as well as to validate its effectiveness,
Section 5 presents the computational framework for this work and experimental numerical
illustrations of the proposed methodology on a single-link robot arm and an isokinetic
rehabilitation system. In Section 6, we discuss some of the findings and limitations of our
proposal, as well as suggestions for further investigation.

1.3. Notations

Table 1 presents the abbreviations, acronyms, and notations used in this article.
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Table 1. Abbreviations, acronyms, and notations used in the present document.

Symbol Definition

R set of real numbers
n dimension of the Euclidean space

X ∈ Rn×m n×m real matrix
X > 0 real symmetric positive definite matrix X
‖X‖ norm of the matrix X
X> transpose of the matrix X

sym(X) X + X>

∗ term that is induced by symmetry of a matrix
λmax() the maximal eigenvalue of a matrix

E mathematical expectation
πpq = P(rk+1 = q|r̄k = p) transition probability from states p to q

r number of if–then rules
r̄k discrete-time Markov process

LMI linear matrix inequalities
MJS Markovian jump systems
NCS networked control systems
ET event-triggered
T-S Takagi–Sugeno
IT-2 interval Type-2

2. System Description and Problem Formulation
2.1. Markovian Jump T-S-Fuzzy-Model-Based NCS

Consider a class of nonlinear discrete-time Markovian jump systems, which can be
expressed by the following T-S fuzzy model on a complete probability space (Ω,F ,P).

Ri : If θ1(x(k)) is M1
i and If θ2(x(k)) is M2

i · · · If θs(x(k)) is Ms
i , Then

x(k + 1) = Ai(r̄k)x(k) + Bwi(r̄k)w(k)

y(k) = C2i(r̄k)x(k)

z(k) = C1i(r̄k)x(k) + D1i(r̄k)w(k)

(1)

where θ(k) = [θ1(x(k)), θ2(x(k)), · · · , θs(x(k))] are measurable premise variables of the
system; M ι

i , ι = 1, 2, · · · , s are Type-2 fuzzy sets; i ∈ S , {1, 2, . . . , r} is the number of
rules. Vectors x(k) ∈ Rn, y(k) ∈ Rny , w(k) ∈ Rm, and z(k) ∈ Rq define, respectively, the
state, the output, the disturbance input, and the measured output. Matrices Ai(r̄k), Bwi(r̄k),
C1i(r̄k) D1i(r̄k), and C2i(r̄k) are known with appropriate dimensions. According to the i-th
rule, the firing strength consists of the interval sets described as

Mi =
[
µ

i
(x(k)) µ̄i(x(k))

]
, (2)

where

µ
i
(x(k)) =

s

∏
ι=1

ωM ι
i (θ(k))

≥ 0, µ̄i(x(k)) =
s

∏
ι=1

ω̄M ι
i (θ(k))

≥ 0

µ̄i(x(k)) ≥ µ
i
(x(k)) ≥ 0, ω̄M ι

i (θ(k))
≥ ωM ι

i (θ(k))
≥ 0 (3)
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As a result, the global fuzzy model can be inferred in the following manner:

x(k + 1) =
r

∑
i=1

µi(x(k))
(

Ai(r̄k)x(k) + Bwi(r̄k)w(k)
)

y(k) =
r

∑
i=1

µi(x(k))
(

C2i(r̄k)x(k)
)

z(k) =
r

∑
i=1

µi(x(k))
(

C1i(r̄k)x(k) + D1i(r̄k)w(k)
) (4)

The normalized membership function µi(x(k)) satisfies
r
∑

i=1
µi(x(k)) = 1 and is de-

fined as

µi(x(k)) =
αi(x(k))µ

i
(x(k)) + ᾱi(x(k))µ̄i(x(k))

r
∑

i=1
αi(x(k))µ

i
(x(k)) + ᾱi(x(k))µ̄i(x(k))

,

The weighting coefficients αi(x(k)) and ᾱi(x(k) satisfy

0 ≤ αi(x(k)), ᾱi(x(k)) ≤ 1, αi(x(k)) + ᾱi(x(k)) = 1 (5)

and are related to the uncertain parameters of the model. These nonlinear functions may
not be known, but exist and satisfy (5). Stochastic process {r̄k, k ≥ 0} is a Markov chain

taking values in a finite set N = {1, · · · , N} with transition probability Π =
[
πpq

]
defined

as πpq = Pr(r̄(k + 1) = q|r̄k = p) satisfying πpq ≥ 0 and ∑N
q=1 πpq = 1 for all p, q ∈ N.

2.2. Event-Triggered Schemes

This paper assumed the measurement outputs are sent over communication channels
and an event-triggered mechanism is implemented to conserve network resources and
determine whether the latest sampled data packet can be transmitted to the filter system
(see Figure 1). Event-triggered schemes are generally based on an event generator defined
as a logic function that determines whether the sampled data should be transmitted or not.
Accordingly, the event generator function is defined as follows:

U(k, ey(k)) = e>y (k)Θey(k)− σ(k)y>(k)Θy(k) (6)

where ey(k) = y(k)− y(ki) is the output error, y(ki) is the previously transmitted data at
time ki, and σ(k) is the event-triggered threshold. The current data transmitted depend on
the following constraint:

ki+1 = inf{k ∈ N|k > ki, U(k, ey(k)) > 0} (7)

where 0 ≤ k0 ≤ k1 ≤ · · · ki ≤ · · · are the sequence of ET instances. σ(k) in (6) can be
adaptively adjusted based on the following adaptive law defined by Θ > 0 such that

∆σ(k) = σ(k + 1)− σ(k) = −ε0σ2(k)e>y (k)Θey(k) (8)

where ε0 is a positive constant. When ε0 = 0 and 0 < σ(k) < 1, it is clear that σ(k) becomes
a constant.
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Figure 1. The framework of filtering system under deception attacks.

An important feature of networked control systems is network delay, which is caused
by the limited bit rate of communication channels, the waiting period during which the
packets are sent, or the propagation and processing of signals. As a result, τ(k) ∈ [0, τM)
was included in this paper, where τM is a positive integer. Based on the behavior of ZOH,
ȳ(k) holds the value of yki

in the interval [ki + τki
, ki+1 + τki+1

). Thus, we have

ȳ(k) = yki
, k ∈ [ki + τki

, ki+1 + τki+1
) (9)

There are then two cases that need to be discussed:

Case 1
If ki + τM + 1 > ki+1 + τki+1

− 1, we define τ(k) = k− ki, k ∈ [ki + τki
, ki+1 + τki+1

).
It is obvious that τki

≤ τ(k) ≤ (ki+1 − ki) + τki+1
− 1 ≤ 1 + τM.

Case 2
If ki + 1+ τM < ki+1 + τki+1

, we define the intervals [ki + τki
, ki + 1+ τM), [ki +

τM + j, ki + τM + j + 1), (j = 1, 2, · · · ). Due to τki
≤ τM, there exists a positive

integer j∗ such that

ki + τM + j∗ < ki+1 + τki+1
< ki + τM + j∗ + 1

Hence, y(ki) and y(ki + j) with j = 1, 2, · · · , j∗ − 1 satisfy (7), and the time interval
[ki + τki

, ki+1 + τki+1
) can be divided as

[ki + τki
, ki+1 + τki+1

) =
j∗⋃

j=0

Ij (10)

where I0 = [ki + τki
, ki + τM + 1), Ij = [ki + τM + j, ki + τM + j + 1) and Ij∗ =

[ki + τM + j∗, ki+1 + τki+1
). Define

τ(k) =


k− ki, k ∈ I0

k− ki − j, k ∈ Ij

k− ki − j∗, k ∈ Ij∗

Obviously, we obtain
τki
≤ τ(k) ≤ 1 + τM, k ∈ I0

τki
≤ τM ≤ τ(k) ≤ 1 + τM, k ∈ Ij

τki
≤ τM ≤ τ(k) ≤ 1 + τM, k ∈ Ij∗
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Therefore, we have τm ≤ τki
≤ τ(k) ≤ τM + 1, k ∈ [ki + τki

, ki+1 + τki+1
). In the first

case, we define ey(k) = 0; in the second case, ey(k) is defined as

ey(k) =


0, k ∈ I0

y(ki)− y(ki + j), k ∈ Ij

y(ki)− y(ki + j∗), k ∈ Ij∗

Following the above discussion, the following relationship holds using (9):

ȳ(k) = yki
= y(k− τ(k)) + ey(k), k ∈ [ki + τki

, ki+1 + τki+1
) (11)

Remark 1. It is important to point out that, to mitigate the communication burden and enhance
the utilization of network resources, the adaptive-event-triggered mechanism is widely used in the
analysis and design of networked systems [26,27,30]. Based on the above-mentioned literature, we
adopted the adaptive-event-triggered mechanism (8) to investigate the filtering problem of Markov
IT-2 fuzzy systems subject to cyber-attack.

In addition, according to (8), the event-triggered interval is greater than zero [56], which indicates
that the proposed event-triggered transmission mechanism does not incorporate Zeno’s behavior.

2.3. Deception Attacks

Furthermore, this paper discusses networked T-S fuzzy systems with deception attacks.
The open networked environment leads to the possibility of data being modified through
deception attacks in a random manner, where a stochastic process is adopted to describe
this scenario.

During deception attacks, transmitted data may take the following form:

yζ(k) = ȳ(k) + ζ(k)(−ȳ(k)) + a(ȳ(k)) (12)

Here, ζ(k) represents the Bernoulli random variable that meets the following conditions:

Pr{ζ(k) = 1} = ζ̄, Pr{ζ(k) = 0} = 1− ζ̄

a(ȳ(k)) represents the embedded signal launched by the attacker. It was assumed that
a(ȳ(k)) is a sufficiently smooth continuous nonlinear function satisfying the sector condition:

‖a(ȳ(k))‖ ≤ ‖Gy(k)‖ (13)

where G is a known constant matrix.

2.4. Fuzzy Filter

To estimate the signal zk in Model (4), the following fuzzy filter is defined:

Rj : If ϑ1(x̂(k)) isN 1
j and If ϑ2(x̂(k)) isN 2

j · · · If ϑv(x̂(k)) isN v
j , Then{

x̂(k + 1) = Âj(r̄k)x̂(k) + B̂j(r̄k)yζ(k)
ẑ(k) = Ĉj(r̄k)x̂(k)

where x̂(k) is the filter state, ẑ(k) is the filter output, ϑ(k) = [ϑ1(x̂(k)), ϑ2(x̂(k)), . . . , ϑv(x̂(k))]
are the premise variables, andN ς

j , ς = 1, 2, · · · , v stands for the Type-2 fuzzy sets of the

filter; Âj(r̄k) , B̂j(r̄k) and Ĉj(r̄k) are unknown matrices that should be designed.

Nj =
[
νj(x̂(k)) ν̄j(x̂(k))

]
, (14)
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where

νj(x̂(k)) =
v

∏
ς=1

ωN ς
j (ϑ(k))

≥ 0, ν̄j(x̂(k)) =
v

∏
ς=1

ω̄N ς
j (ϑ(k))

≥ 0

νj(x̂(k)) ≥ ν̄j(x̂(k)) ≥ 0, ω̄N ς
j (ϑ(k))

≥ ωN ς
j (ϑ(k))

≥ 0 (15)

The global fuzzy filter is defined as follows:
x̂(k + 1) =

r

∑
j=1

νj(x̂(k))(Âj(r̄k)x̂(k) + B̂j(r̄k)yζ(k))

ẑ(k) =
r

∑
j=1

νj(x̂(k))(Ĉj(r̄k)x̂(k))
(16)

νj(x̂(k)) =
β

j
(x̂(k))νj(x̂(k)) + β̄ j(x̂(k))ν̄j(x̂(k))

r

∑
l=1

(β
l
(x̂(k))νl(x̂(k)) + β̄l(x̂(k))ν̄l(x̂(k)))

, νj(x̂(k)) ≥ 0,
r

∑
j=1

νj(x̂(k)) = 1 (17)

The two nonlinear functions β
j
(x̂(k)) and β̄ j(x̂(k)) satisfy

0 ≤ β
j
(x̂(k)), β̄ j(x̂(k)) ≤ 1, β

j
(x̂(k)) + β̄ j(x̂(k)) = 1 (18)

For simplicity, in the sequel, µi(x(k)) and νj(x̂(k)) are denoted as µi and ν̂j, respec-
tively.

Let ê(k) = z(k)− ẑ(k). Taking (4) and (16) together, we can represent the filtering
error system as follows:

x̃(k + 1) =
r

∑
i=1

r

∑
j=1

µi ν̂j

(
Ãp

ij x̃(k) + (1− ζ̄)Ãp
dij x̃(k− τ(k)) + (1− ζ̄)B̃p

ejey(k)

+ζ̄B̃p
eja(ȳ(k)) + B̃p

1iw(k) + (ζ(k)− ζ̄)B̃gg(x̃(k))
)

ê(k) =
r

∑
i=1

r

∑
j=1

µi ν̂j

(
C̃p

ij x̃(k) + D̃p
i w(k)

) (19)

where x̃(k) =
[
x>(k), x̂>(k)

]> Ãp
ij =

[
Ap

i 0
0 Âp

j

]
, Ãp

dij =

[
0 0

B̂p
j Cp

2i 0

]
, B̃p

ej =

[
0

B̂p
j

]
,

B̃p
1i =

[
Bp

1i
0

]
, B̃g =

[
0
I

]
, C̃p

ij =
[
Cp

1i −Ĉp
j

]
, D̃p

i = Dp
1i, g(x̃(k)) = B̂p

j (a(ȳ(k))− Cp
2ix(k−

τ(k))− ey(k)).

2.5. Problem Formulation

Based on the above description, the objective of this article is to design the parameters
of Filter (16) such that System (19) is asymptotically mean-squared stable with extended
dissipative performance, i.e.:

1. System (19) is mean-squared stable;
2. Under zero initial conditions, the following criterion holds for w(k) 6= 0:

E
{ K f

∑
k=0

J(k)
}
≥ sup

0≤k≤K f

E
{

ê>(k)Ω4ê(k)
}

(20)
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where J(k) = ê>(k)Ω1ê(k) + 2ê>(k)Ω2w(k) + w>(k)Ω3w(k), and matrices Ω1, Ω2,
Ω3 and Ω4 satisfy the following assumption:

Assumption 1 ([57]). For known real matrices Ω1 = Ω>1 ≤ 0, Ω2, Ω3 = Ω>3 ≥ 0, and
Ω4 = Ω>4 = (Ω+

4 )
>Ω+

4 ≥ 0, it was assumed that:

(i) ‖ Dp
i ‖‖ Ω4 ‖= 0;

(ii) (‖ Ω1 ‖ + ‖ Ω2 ‖) ‖ Ω4 ‖= 0.

Remark 2. From (20), the extended dissipativity criterion includes H∞, strict dissipativity, l2− l∞,
or passivity performances as special cases according to the different values of the matrices:

- If Ω1 = −I, Ω2 = 0, Ω3 = γ2 I, and Ω4 = 0, Inequality (20) reduces to an H∞ performance
requirement.

- If Ω3 = R− γI (γ > 0) and Ω4 = 0, Inequality (20) corresponds to a strict dissipativity.
- If Ω1 = 0, Ω2 = 0, Ω3 = γ2 I, and Ω4 = I, Inequality (20) reduces to an l2 − l∞

performance.
- If ê(k) and w(k) have the same dimension and Ω1 = 0, Ω2 = I, Ω3 = γI, and Ω4 = 0, the

passivity will be obtained.

Next, we present some preliminaries that are crucial for the derivation of our major
conclusions.

Definition 1 ([58]). The filtering error system (19) is said to be stochastically mean-squared stable
if the following condition holds:

E
{ ∞

∑
k=0
‖x̃(k)‖2|(x̃(k0), r̄0)

}
< ∞

for any initial condition (x̃(k0), r̄0).

Lemma 1 ([59]). For given positive integers τm and τM, a positive matrix Z, symmetric matrices,
Y11 and Y22, and matrices Y12, T1, and T2, such thatY11 Y12 T1

∗ Y22 T2
∗ ∗ Z

 ≥ 0 (21)

the following inequality holds:

−
k−τm−1

∑
s=k−τM

η>(s)Zη(s) ≤ ψ>(k)
(

τr(Y11 +
1
3

Y22) + sym
{

T1e12 + T2e123

})
ψ(k)

where τr = τM − τm ≥ 1, η(k) = x(k + 1) − x(k), and ψ(k) = [x>(k − τm) x>(k − τM)
1

τr+1 ∑k−τm−1
s=k−τM

x>(s)]>, e12 = [I − I 0], and e123 = [I I − 2I].

3. Main Results
3.1. Extended Dissipative Analysis

This section concerns the derivation of sufficient conditions in such a way that the filtering
error system (19) is stochastically mean-squared stable with extended dissipativity performance.

Theorem 1. Consider the Markovian jump IT-2 fuzzy system (4) and Filter (16). For given
matrices Θ > 0, Ω1, Ω2, Ω3, and Ω4 satisfying Assumption 1 and positive scalars $s, if matrices
Pp, Qv, v = 1, 2, 3, Zs, X1s, Y1s, Z1s, T1s, T2s, T3s, F p

s , and s = 1, 2 and scalars τ > 0 and σ0 > 1
exist such that the following conditions hold:
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X11 X12 T11
∗ X22 T12
∗ ∗ Z1

 > 0

Y11 Y12 T21
∗ Y22 T22
∗ ∗ Z2

 > 0

Z11 Z12 T13
∗ Z22 T23
∗ ∗ Z2

 > 0 (22)

[
−Pp (C̃p

ij)
>(Ω+

4 )
>

∗ −I

]
< 0 (23)

Φ̃
p
ii < 0

Φ̃
p
ij + $1Φ̃

p
ji < 0

Φ̃
p
ij + $2Φ̃

p
ji < 0, 1 ≤ i < j ≤ r

(24)

then, System (19) is stochastically mean-squared stable and extended dissipative. The remaining
matrices are defined as

Φ̃
p
ij =

Ψ̃
p
ij + Ψ̂p (B̃p

ij)
> − (C̃p

ij)
>Ω2 (C̃p

ij)
>√−Ω1

∗ −sym{(D̃p
i )
>Ω2} −Ω3 (D̃p

i )
>√−Ω1

∗ ∗ −I



Ψ̃
p
ij =



Ψ̃
p
11ij 0 (1− ζ̄)F p

1 Ãp
dij 0 0 0 0 Ψ̃

p
18ij (1− ζ̄)F p

1 B̃p
ej ζ̄F p

1 B̃p
ej

∗ −Q1 0 0 0 0 0 0 0 0
∗ ∗ Ψ̃

p
33 0 0 0 0 (1− ζ̄)(F p

2 Ãp
dij)
> (Cp

2i)
>Θ 0

∗ ∗ ∗ −Q2 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ̃

p
88 (1− ζ̄)F p

2 B̃p
ej ζ̄F p

1 B̃p
ej

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (1− σ0) 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τI


B̃p

ij =
[
(F p

1 B̃p
1i)
> 0 0 0 0 0 0 (F p

2 B̃p
1i)
> 0 0

]
C̃p

ij =
[
C̃p

ij 0 0 0 0 0 0 0 0 0 0
]
, X p =

N

∑
q=1

πpqPq

Ψ̃
p
11ij = sym(F p

1 (Ãp
ij − I)) + (X p − Pp) + Q1 + Q2 + (τr + 1)Q3

Ψ̃
p
33 = −Q3 + (Cp

2i)
>ΘCp

2i + (Cp
2i)
>G>GCp

2i, Ψ̃
p
18ij = −F p

1 + X p + (F p
2 (Ãp

ij − I))>

Ψ̃
p
88 = − sym(F p

2 ) + X p + τmZ1 + τrZ2

Ψ̃p = Π>1

(
τm(X11 +

1
3

X22) + sym
{

T11e12 + T12e123

})
Π1

+ Π>2

(
dr(Y11 +

1
3

Y22) + sym
{

T21e12 + T22e123

})
Π2

+ Π>3

(
dr(Z11 +

1
3

Z22) + sym
{

T31e12 + T32e123

})
Π3

Π1 = col
{

e1 e2 e5

}
, Π2 = col

{
e3 e4 e6

}
, Π3 = col

{
e2 e3 e7

}
ei =

[
0, · · · , 0︸ ︷︷ ︸

l−1

Iλ(l) 0, · · · , 0︸ ︷︷ ︸
11−l

]
∈ Rλ(l)×(16n+ny+m), l = 1, 2, · · · , 11

λ(l) =


2n l = 1, 2, · · · 8
ny l = 9, 10
m l = 11
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Proof. The stochastic stability is demonstrated for the filtering error system (19) with
w(k) = 0 by considering a Lyapunov functional defined as V(k) = V1(k) +V2(k) +V3(k) +
V4(k):

V1(k) = x̃>(k)P(r̄k)x̃(k) (25)

V2(k) =
k−1

∑
s=k−τm

x̃>(s)Q1 x̃(s) +
k−1

∑
s=k−τM

x̃>(s)Q2 x̃(s) +
−τm

∑
θ=−τM

k−1

∑
s=k+θ

x̃>(s)Q3 x̃(s) (26)

V3(k) =
−1

∑
θ=−τm

k−1

∑
s=k+θ

η>(s)Z1η(s) +
−τm−1

∑
θ=−τM

k−1

∑
s=k+θ

η>(s)Z2η(s) (27)

V4(k) =
1

2ε0
(

1
σ(k)

− σ0)
2 (28)

where η(k) = x̃(k + 1)− x̃(k).
Let ∆V(k) be the forward difference of V(k). Along the trajectories of System (19), we

can demonstrate the following:

E{∆V1(k)} = E
{

V1(k + 1)− V1(k)|x̃(k), r̄k = p
}

= E
{

x̃>(k + 1)X p x̃(k + 1)
}
− x̃>(k)Pp x̃(k)

= E
{

η>(k)X pη(k)
}
+ x̃>(k)(X p − Pp)x̃(k) + 2x̃>(k)X pη(k)

(29)

E{∆V2(k)} ≤ ξ>(k)
(

e>1
(
Q1 + Q2 + (τr + 1)Q3

)
e1 − e>2 Q1e2 − e>4 Q2e4 − e>3 Q3e3

)
ξ(k) (30)

E{∆V3(k)} = η>(k)
(

τmZ1 + τrZ2

)
η(k)−

k−1

∑
s=k−τm

η>(s)Z1η(s)

−
k−τ(k)−1

∑
s=k−τM

η>(s)Z2η(s)−
k−τm−1

∑
s=k−τ(k)

η>(s)Z2η(s)

(31)

E{∆V4(k)} = −
1
ε0
(

1
σ(k)

− σ0)
∆σ(k)
σ2(k)

= (
1

σ(k)
− σ0)e>y (k)Θey(k) (32)

By Lemma 1, we can derive

−
k−1

∑
s=k−τm

η>(s)Z1η(s) ≤ ξ>(k)Π>1
(

τm(X11 +
1
3

X22) + sym
{

T11e12 + T12e123

})
Π1ξ(k) (33)

−
k−τ(k)−1

∑
s=k−τM

η>(s)Z2η(s) ≤ ξ>(k)Π>2
(

dr(Y11 +
1
3

Y22) + sym
{

T21e12 + T22e123

})
Π2ξ(k) (34)

−
k−τm−1

∑
s=k−τ(k)

η>(s)Z2η(s) ≤ ξ>(k)Π>3
(

dr(Z11 +
1
3

Z22) + sym
{

T31e12 + T32e123

})
Π3ξ(k) (35)

where

ξ(k) = col
{

x̃(k), x̃(k− τm), x̃(k− τ(k)), x̃(k− τM),
1

τm + 1

k−1

∑
s=k−τm

x̃(s),

1
τM − τ(k) + 1

k−τ(k)−1

∑
s=k−τM

x̃(s),
1

τ(k)− τm + 1

k−τm−1

∑
s=k−τ(k)

x̃(s), η(k), ey(k), a(ȳ(k))
}

.

From (19), the following null equation holds:
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E
{

ξ>(k)Fp
r

∑
i=1

r

∑
j=1

µi ν̂j

(
(Ãp

ij − I)x̃(k) + (1− ζ̄)Ãp
dij x̃(k− τ(k)) + (1− ζ̄)B̃p

ejey(k) + ζ̄B̃p
eja(k)

+ (ζ(k)− ζ̄)B̃gg(x̃(k))
))}

=

E
{

ξ>(k)Fp
r

∑
i=1

r

∑
j=1

µi ν̂j

[
(Ãp

ij − I) 0 (1− ζ̄)Ãp
dij 0 0 0 0 −I (1− ζ̄)B̃p

ej ζ̄B̃p
ej

]
ξ(k)

}
= 0

(36)

where Fp =
[
(F p

1 )
> 0 0 0 0 0 0 (F p

2 )
> 0 0

]>.
In view of (6) and considering (32), it can be established that

(
1

σ(k)
− σ0)e>y (k)Θey(k) ≤ y>(ki)Θy(ki)− σ0e>y (k)Θey(k)

≤
[

x̃(k− τ(k))
ey(k)

]>[
(Cp

2i)
>ΘCp

2i (Cp
2i)
>Θ

∗ (1− σ0)Θ

][
x̃(k− τ(k))

ey(k)

] (37)

Moreover, from (13), we have

− τa>(ȳ(k))a(ȳ(k)) + τy>(k)G>Gy(k)

=

[
x̃(k− d(k))

a(ȳ(k))

]>[
τ(C̃p

2i)
>G>GC̃p

2i 0
∗ −τI

][
x̃(k− d(k))

a(ȳ(k))

]
≥ 0

(38)

Combining (29)–(37), one obtains

E{∆V(k)} ≤
r

∑
i=1

r

∑
j=1

µi ν̂j

(
ξ>(k)Λ̃p

ijξ(k)
)

(39)

where Λ̃
p
ij = Ψp

ij + Ψ̂p.
Assume that the membership functions are subjected to the following asynchronous

constraints as described in [36]:

ν̂j = ρj(k)µj

|µj − ν̂j| ≤ δj
(40)

where ρj , δj (j ∈ S) are some positive constants. In light of the asynchronous constraints
(40), it is evident that

0 < ρ1 ≤ 1−
δj

µ
j

≤ 1−
δj

µj
≤ ρj(k) ≤ 1 +

δj

µj
≤ 1 +

δj

µ
j

≤ ρ2 (41)

where ρ1 and ρ2 are the lower and upper values of ρj(k). Thus, it is easy to obtain

$1 =
ρ1

ρ2 ≤
min ρi(k)
max ρj(k)

≤ ρi(k)
ρj(k)

≤ max ρi(k)
min ρj(k)

≤ ρ2

ρ1 = $2 (42)

As a result of the relation (40), this yields

r

∑
i=1

r

∑
j=1

µi ν̂jΛ̃
p
ij =

r

∑
i=1

r

∑
j=1

ρj(k)µiµjΛ̃
p
ij =

r

∑
i=1

ρi(k)µ2
i Λ̃

p
ii +

r

∑
i=1

r

∑
j>i

ρj(k)µiµj

{
Λ̃

p
ij +

ρi(k)
ρj(k)

Λ̃
p
ji

}
(43)
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Furthermore, assuming the relationship (43) is valid, there exists ε1 > 0 and ε2 > 0
satisfying ε1 + ε2 = 1 such that

ρi(k)
ρj(k)

= ε1$1 + ε2$2 (44)

Thus, it can be obtained from the previous equation that

Λ̃
p
ij +

ρi(k)
ρj(k)

Λ̃
p
ji =

2

∑
l=1

εl(Λ̃
p
ij + $lΛ̃

p
ji) (45)

Moreover, according to (24), (43), and (45), it can be deduced that Λ̃
p
ij < 0 and

∑r
i=1 ∑r

j=1 µi ν̂jΛ̃
p
ij < 0. Accordingly, (39) provides the following:

E{∆V(k)} ≤ λξ>(k)ξ(k) (46)

where λ < 0 is the largest eigenvalue of Λ̃
p
ij. Thus, from (46) results

E
{ ∞

∑
0

x̃>(k)x̃(k)
}
≤ E

{ ∞

∑
0

ξ>(k)ξ(k)
}
≤ 1

λ
E
{ ∞

∑
0

∆V(k)
}
≤ − 1

λ
V(0) < ∞. (47)

According to Definition 1, System (19) is stochastically mean-squared stable.
Now, the following index is suggested to examine the extended dissipativity of (19):

J = E
{ k f

∑
k=0

J(k)
}

(48)

where J(k) = ê>(k)Ω1ê(k) + 2ê>(k)Ω2w(k) + w>(k)Ω3w(k).
According to a similar procedure outlined above, by denoting ψ0(k) = col

{
ξ(k), w(k)

}
,

one can conclude that

E{∆V(k)} − J(k) = E{∆V(k)} −ψ>0 (k)
{
([C̃p

ij D̃p
i ])
>Ω1[C̃

p
ij D̃p

i ] + e>1 (C̃
p
ij)
>Ω2e11

+ e>11(sym{(D̃p
i )
>Ω2}+ Ω3)e11ψ0(k)

}
≤

r

∑
i=1

r

∑
j=1

µi ν̂jψ0
>(k)

([Λ̃
p
ij (B̃p

ij)
> − (C̃p

ij)
>Ω2

∗ −sym{(D̃p
i )
>Ω2} −Ω3

]

− ([C̃p
ij D̃p

i ])
>Ω1[C̃

p
ij D̃p

i ]
)

ψ0(k)

(49)

In light of the above proof, it can be concluded that

r

∑
i=1

r

∑
j=1

µi ν̂jΦ̃
p
ij < 0 (50)

By applying the Schur complement property to Φ̃
p
ij < 0, it is obvious to derive

from (49) that

E{∆V(k)} − J(k) < 0 (51)

Under Assumption 1, we validated that the condition (20) holds:
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(i) When Ω4 = 0, by summating (51) from 0 to k f , the following condition holds under
zero initial conditions:

E{
k f

∑
k=0

J(k)} > E{V(k f + 1)−V(0)} = E{V(k f + 1)} > 0 (52)

According to Assumption 1 with Ω4 = 0, Condition (20) holds.
(ii) When Ω4 6= 0, it follows from Assumption 1 that: D̃p

i = 0, Ω1 = 0, Ω2 = 0, and
Ω3 > 0. In this case, the following condition holds:

E{
k f−1

∑
k=0

J(k)} > E{V(k f )} > E{x̃>(k f )P
p x̃(k f )} > 0 (53)

From (23), we have

(C̃p
ij)
>Ω4C̃p

ij < Pp (54)

In the case of k = k f , we obtain

E{
k f−1

∑
k=0

J(k)} > E{x̃>(k f )P
p x̃(k f )} > E{ê(k f )

>Ω4ê(k f )} (55)

Due to Ω1 = 0, Ω2 = 0, and Ω3 > 0, we obtain

E
{ k f

∑
k=0

J(k)
}
> sup

0≤k≤k f

E
{

ê(k)>Ω4ê(k)
}

(56)

Hence, we can conclude, according to (20), that the filtering error system (19) is
extended dissipative.

3.2. Filter Design

Theorem 2. System (19) is stochastically stable and extended dissipative for given matrices Θ > 0,
Ω1, Ω2, Ω3, and Ω4 satisfying Assumption 1, positive scalars $s, and tuning parameters as,
bs, s = 1, 2, if the matrices Pp, Qv, v = 1, 2, 3, Zs, X1s, Y1s, Z1s, T1s, T2s, T3s, F p

1s, F p
2s, U p, Âp

j ,

B̂p
j , and Ĉp

j and positive scalar σ0 > 1 exist such that (22), (23), and the following conditions
are satisfied: 

Υ̃
p
ii < 0

Υ̃
p
ij + $1Υ̃

p
ji < 0

Υ̃
p
ij + $2Υ̃

p
ji < 0, 1 ≤ i < j ≤ r, p ∈ N

(57)

where
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Υ̃
p
ij =

Γ̃
p

ij + Ψ̂p (B̃p
ij)
> − (C̃p

ij)
>Ω2 (C̃p

ij)
>√−Ω1

∗ −sym{(D̃p
i )
>Ω2} −Ω3 (D̃p

i )
>√−Ω1

∗ ∗ −I



Γ̃
p

ij =



Γ̃
p

11ij 0 (1− ζ̄)Ap
d1ij 0 0 0 0 Γ̃

p
18ij (1− ζ̄)Bp

e1j ζ̄Bp
e1j

∗ −Q1 0 0 0 0 0 0 0 0
∗ ∗ Ψ̃

p
33ij 0 0 0 0 ζ̄(Ap

d2ij)
> (Cp

2i)
>Θ 0

∗ ∗ ∗ −Q2 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ̃

p
88 (1− ζ̄)Bp

e2j (1− ζ̄)Bp
e2j

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ (1− σ0)I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −τI


Γ̃

p
11ij = sym(Ap

1ij) + (X p − Pp) + Q1 + Q2 + (τr + 1)Q3

Γ̃
p

18ij = −F p
1 + X p + (Ap

2ij)
>

F p
s =

[
F p

1s asU p

F p
2s bsU p

]
Ap

sij =

[
F p

1s Ap
i asÂ

p
j

F p
2s Ap

i bsÂ
p
j

]
Ap

dsj =

[
asB̂

p
j Cp

2i 0
bsB̂

p
j Cp

2i 0

]
, Bp

esj =

[
asB̂

p
j

bsB̂
p
j

]

(58)

Furthermore, the filter gains are given by

Âp
j = (U p)−1Âp

j , B̂p
j = (U p)−1B̂p

j , Ĉp
j = Ĉp

j (59)

Proof. According to Theorem 2, a feasible solution must satisfy the condition Ψ̃
p
88 < 0.

Thus, it is easy to verify that − sym(F p
2 ) < 0 and sym((U p)) < 0. It follows that U p is

nonsingular. Moreover, using the fact that

Ap
sj = F p

s Ap
sj, A

p
dsj = F p

s Ap
dsj, B

p
esj = F p

s Bp
esj , s = 1, 2

it can be verified that (57) is equivalent to (24). Hence, according to Theorem 1, System (19)
is stochastically mean-squared stable and extended dissipative.

4. Optimization-Based Filter Design Algorithm

An important aspect of the filter design lies in the choice of the parameters as and
bs , s = 1, 2. Additionally, the coupling terms asÂ

p
j , bsÂ

p
j , asB̂

p
j , and bsB̂

p
j in Γ̃

p
ij can be

reduced to linear ones if these parameters are determined a priori. Therefore, finding
suitable as and bs is a natural approach to obtaining the optimized gains Âp

j and B̂p
j . To

achieve this, we constructed one of the following optimization problems according to the
performance to be taken into account:

(i) Dissipative/passivity performances:

min γ

subject to (22), (23)− (57);
(60)

(ii) H∞/l2 − l∞ performances:

min γ2

subject to (22), (23)− (57).
(61)
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Through the particle swarm optimization algorithm (PSO) [60], we give the following
solving method for the above optimization problems (60) or (61). In the PSO algorithm, the
parameters are chosen arbitrarily by specifying the number of particles, and the decision
values corresponding to the parameters that need to be evaluated using the position vector
for the lth particle, as described below:

X l =
[
al

1 al
2 bl

1 bl
2
]T

where l denotes the swarm size (count of particles). Each iteration k of the algorithm
updates the velocity for every particle in the swarm, and the positions are determined by
using the following equations:X(l)

k+1 = v(l)
k + c1r1

(
X(l)

pk − X(l)
k

)
+ c2r2

(
X(l)

gk − X(l)
k

)
v(l)

k+1 = X(l)
k + v(l)

k+1

(62)

In these equations, X(l)
k represents the current candidate solution encoded according to

the position of the lth particle during iteration k and X(l)
k+1 represents the updated particle

position. X(l)
k ∈ [XL, XU ] with XL and XU denote the lower and upper bounds of X. v(l)

k+1

and v(l)
k are the respective velocities of the new and old particles. X(l)

pk denotes the best

position, which the lth particle attained in the past. X(l)
gk denotes the best position between

the neighbors of every particle and is also referred to as the “gbest”. Parameters r1 and r2
correspond to two random numbers in the range (0, 1). Parameters c1 and c2 refer to the
coefficients of acceleration, which determine how far a particle will reach during a single
generation. Below is a detailed Algorithm 1 of the proposed approach:

Algorithm 1 Determining the minimum performances and filter gains.

1: (Step 1): This step specifies the PSO population size np, the particle dimension d, and
the maximum number of iterations it.

2: (Step 2): Initialize the particle’s position and velocity.
3: (Step 3): Determine the parameters of X(l) and calculate the fitness value corresponding

to these parameters according to the equations (62).
4: (Step 4): Compare each particle’s fitness value with the best (minimized) value during

its historical search, along with its position, which is stored as X(l)
pk . Furthermore, the

“gbest” particle position corresponding to the minimized fitness value in the population
is saved as X(l)

gk .
5: (Step 5): As a result of (62), update the position of each particle, as well as its velocity.
6: (Step 6): If the number of iterations reaches the maximum number of iterations it, then

proceed to Step 7. Otherwise, go to Step 3.
7: (Step 7): X(l)

pk is defined as the optimal solution desired, and the optimal parameters
are calculated.

5. Numerical Applications

This section of the paper details the computational framework used in the proposed
method and illustrates its usefulness and advantages by employing the nonlinear single-
link robot arm and lower limbs systems.

5.1. Computational Framework and Algorithm

Computational experiments were conducted using the Matlab programming language
and a computer with the following characteristics: (i) (OS) Windows 10 Enterprise for 64 bits;
(ii) (RAM) 8 gigabytes; (iii) (processor) Intel(R) Core(TM) i7-4790T CPU @ 2.70 gigahertz.



Mathematics 2023, 11, 2064 17 of 27

After a rigorous process of designing the filter, the detailed procedure is summarized
in Algorithm 1 for determining the minimum performances and filter gains. This algorithm
was applied using the Yalmip software in conjunction with the mosek optimization toolbox.

5.2. Single-Link Robot Arm System

Consider the single-link robot arm system described in [34] and stated asx1(k + 1) = x2(k)

x2(k + 1) = −m(r̄(k))glTe

J(r̄(k))
sin(x1(k)) + (1− D(r̄(t))Te

J(r̄(t))
)x2(k) +

Te

J(r̄(t))
u(k)

(63)

with x1(k), x2(k), m(r̄(k)), J(r̄(k)), D(r̄(k)), and l being, respectively, the angle position,
angle velocity, masses, moment of inertia, damping, and length of the robot arm, respec-
tively. As in [34], the system can be converted into a Markov switching fuzzy system in the
form of (4) with Ts = 0.1s, and the related transition-probability matrix is defined as:

Π =

 0.5 0.25 0.25
2/14 9/14 3/14
0.35 0.15 0.5

.

The considered model is described by the following system matrices:

A1
1 =

[
1 0.1
−0.49 0.7

]
, A2

1 =

[
1 0.1
−0.43 0.66

]
, A3

1 =

[
1 0.1
−0.55 0.68

]
,

A1
2 =

[
1 0.1
−0.42 0.7

]
, A2

2 =

[
1 0.1

−0.25v0.66

]
, A3

2 =

[
1 0.1
−0.29 0.68

]
Bp

wi =

[
0

0.1

]
, Cp

2i =
[
1 0

]
, Cp

1i =
[
0 1

]
, Dp

1i = 0, p = 1, 2, 3.

(64)

The membership functions are defined as follows:

h1(x1(k)) =


sin(x1(k))− β0x1(k)

(1− β0)x1(k)
, x1(k) 6= 0

1 x1(k) = 0

h2(x1(k)) =


x1(k)− sin(x1(k))
(1− β0)x1(k)

, x1(k) 6= 0

0 x1(k) = 0

with β0 = 10−2/π.
Next, we give the MFs of the filter. Define a nonlinear function as l(x̂1(k)) =

x̂2
1(k). For x̂1(k) ∈ [π − 0.01, π + 0.01], we have l(x̂1(k)) ∈ [lmin(x̂1(k)), lmax(x̂1(k))]

with lmin(x̂1(k)) = 0 and lmax(x̂1(k)) = (π − 0.01)2. The MFs of the filter are given

as ν1(x̂1(k) =
l(x̂1(k))− l̆min(x̂1(k))

l̆max(x̂1(k))− l̆min(x̂1(k))
and ν2(x̂1(k) =

l̆max(x̂1(k))− l(x̂1(k))
l̆max(x̂1(k))− l̆min(x̂1(k))

with

l̆min(x̂1(k)) = lmin(x̂1(k))− 0.1 and l̆max(x̂1(k)) = π2 + 0.1.
For τm = 1, τM = 5, Θ = 3, ζ̄ = 0.8, $1 = 0.15, $2 = 1/0.15, a(k) = tanh(0.6y(k)),

and G = 0.6, Algorithm 1 is performed to design filters satisfying the extended dissipative
performance from four aspects, namely H∞ , l2 − l∞, passive, and dissipative performances.
For the given cases, Table 2 lists the minimum allowable values for as, bs, (s = 1, 2), and γ.
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Table 2. Minimal values for different performances.

Performance Ω1 Ω2 Ω3 Ω4 a∗1 a∗2 b∗1 b∗2 γ∗

H∞ −1 0 γ2 0 14.3165 −8.4295 14.5129 −9.4800 0.7327

passivity 0 1 γ 0 10.0000 −8.0000 14.5663 −10.0000 0.1201

dissipativity −1 1 γ 0 10.6384 −8.0000 12.7780 −10.0000 0.1238

Then, we were concerned with different cases to conclude our discussion:

Case I: passivity filtering:

Â1
1 Â1

2 B̂1
1 B̂1

2
Â2

1 Â2
2 B̂2

1 B̂2
2

Â3
1 Â3

2 B̂3
1 B̂3

2

 =



0.76238 0.1182 0.77373 0.12784 0.24699 0.25917
−0.85348 0.31808 −0.70568 0.31865 0.076161 0.20964
ine0.62687 0.078345 0.68218 0.059552 0.33982 0.42384
−1.4991 0.26763 −1.3146 0.20334 0.40852 1.2533

ine0.68872 0.085852 0.70391 0.10369 0.28929 0.39769
−1.2972 0.2118 −0.92588 0.17481 0.078596 0.83558


Ĉ1

1 Ĉ1
2

Ĉ2
1 Ĉ2

2
Ĉ3

1 Ĉ3
2

 =

 −0.38676 0.10875 −0.38987 0.10831
ine− 0.57935 0.11218 −0.58156 0.11422
ine− 0.47562 0.087605 −0.49095 0.084071


(65)

Case II: dissipativity filtering:

Â1
1 Â1

2 B̂1
1 B̂1

2
Â2

1 Â2
2 B̂2

1 B̂2
2

Â3
1 Â3

2 B̂3
1 B̂3

2

 =



0.75035 0.10162 0.76625 0.115 0.26128 0.27117
−0.67407 0.53154 −0.51703 0.53359 0.076572 0.19088
ine0.56972 0.052941 0.63612 0.027462 0.34737 0.47697
−1.3854 0.46117 −1.216 0.38875 0.45019 1.3471

ine0.60712 0.041119 0.61428 0.053424 0.30315 0.52321
−1.4628 0.3626 −1.1198 0.28418 0.19734 1.4148


Ĉ1

1 Ĉ1
2

Ĉ2
1 Ĉ2

2
Ĉ3

1 Ĉ3
2

 =

 −0.32311 0.15403 −0.32593 0.15345
ine− 0.61589 0.16114 −0.61878 0.16324
ine− 0.4861 0.088156 −0.50649 0.085026


(66)

Case III: H∞ filtering:

Â1
1 Â1

2 B̂1
1 B̂1

2
Â2

1 Â2
2 B̂2

1 B̂2
2

Â3
1 Â3

2 B̂3
1 B̂3

2

 =



0.8641 0.074582 0.88691 0.092459 0.15007 0.15425
−0.44428 0.7861 −0.30547 0.78572 −0.038087 −0.02165
ine0.64921 −0.017533 0.83116 0.06009 0.2362 0.31973
−0.45812 0.74357 −0.091925 0.70545 0.017246 0.1741
ine0.33701 −0.15945 0.24163 −0.10596 0.1781 1.7443
−1.0908 0.47433 −1.3547 0.57936 −0.42549 2.786


Ĉ1

1 Ĉ1
2

Ĉ2
1 Ĉ2

2
Ĉ3

1 Ĉ3
2

 =

 0.00036846 0.63323 0.014015 0.63422
ine− 0.070462 0.57629 5.1593.10−6 0.47536
ine− 0.16548 0.51958 0.042926 0.52235


(67)

Case IV: H∞ filtering in [34]: In this case, we used the filter proposed in [34] with a con-
stant threshold σ = 0.5.

For the first three cases, the gains were calculated by employing the minimal values
recorded in Table 2.
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5.2.1. Results and Graphical Plots

Given the initial conditions x(0) = x̂(0) =
[
0 0

]T , the numerical simulations were
performed for w(k) = 8sin2(k)e−0.3k. For different cases, the simulation results are depicted
in Figures 2–5, where the switching signal r̄(k) and Bernoulli distribution are, respectively,
depicted in Figure 6a,b.
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Figure 2. z(k) and its estimation ẑ(k) (a) and the release instants and release interval (b), for Case I.
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Figure 3. z(k) and its estimation ẑ(k) (a) and the release instants and release interval (b), for Case II.
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Figure 4. z(k) and its estimation ẑ(k) (a) and the release instants and release interval (b), for Case III.
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Figure 5. z(k) and its estimation z f (k) (a) and the release instants and release interval (b), for Case IV.
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Figure 6. A possible sequence of the system mode (a) and the states of measurements (b).

5.2.2. Comparative Explanations

Figures 2a–5a display the output z(k) and its estimation ẑ(k). Figures 2b–5b show the
event-triggered release instants and the intervals. According to the time-triggered schemes,
the percentages of transmitted data for different cases are shown in Table 3. Moreover,
the table provides an overview of the comparison using a quantitative analysis, where the
deviations of the state error ê(k) are investigated by computing the integral squared error
(ISE) and the integral absolute error (IAE) for different filters. In light of our results, we can
substantiate that our method effectively mitigates the waste of computational resources
and communication channels, with the smallest total deviation of ê(k). To evaluate the
merit of the proposed approach, the adaptive ET scheme proposed by [48] was applied
to the system, as shown in Figure 7b. Using the AET mechanism described in [48], the
adaptive variable showed clearly a negative value, which is inaccurate.
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Figure 7. Adaptive variable using the proposed method (a) and the AET mechanism in [48] (b).
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Table 3. Data transmission rate, ISE, and IAE for different cases.

Filter Gains (65) (66) (67) [34]

Data transmission rate 14.172 13.573 12.575 18.563

ISE 1.5152 1.4895 0.94308 8.7833

IAE 2.9001 2.8546 2.4904 5.8065

5.3. A Lower Limbs Rehabilitation System

As shown in Figure 8, this example uses an isokinetic rehabilitation system for the
lower limbs, which can assist the handicapped in Hail is described by the following
differential nonlinear equation [61]:

Γm = Jm θ̈ + fmθ − km
θ̇

|θ̇|
θ̇2 − Fl − a cos(θ)− b sin(θ) (68)

Γm, Jm, and fm, respectively, represent the controlled variables that determine the torque,
inertia, and viscous friction. Moreover, the variables θ̈, θ̇, and θ correspond to the an-
gular position, velocity, and acceleration of the mobile part. The torque delivered by
the patient is described by F times l; the potential energy of the system is described by
a cos(θ); the centrifugal force coefficient is described by b sin(θ), while the centrifugal
force coefficient needs to be added or subtracted according to the velocity sign. Define
x(t) = [x1(t), x2(t)] = [θ̇, θ], u(t) = Γm, and w(t) = F. A discrete-time model of Sys-
tem (68) can be obtained by applying Euler’s discretization:x1(k + 1) = (1 + Tsg(km, x1(k)))x1(k) + Ts f (x2(k))x2(k) +

Ts

Jm
u(k) +

Tsl
Jm

w(k)

x2(k + 1) = x2(k) + Ts(k)
(69)

with g(km, x1(k)) =
km|x1(k)| − fm

Jm
and f (x2(k)) =

a cos(x2(k))− b sin(x2(k))
Jmx2(k)

.

Figure 8. Lower limbs rehabilitation system.

A list of the parameters of the system can be found in Table 4. As a further considera-
tion, it was assumed that parameter Jm has two different modes, listed in the table. Given
the uncertainty associated with the parameter km, it is evident that the IT-2 fuzzy system
should be adopted to model a nonlinear system (68). Assume that x1(k) ∈ [−2π, 2π]
and x2(k) ∈ [π/180, 2π/3]; we can obtain gmax = −3.0651 and gmin = 11.806, and
g(x1(k)) ∈ [ḡmax, ḡmin] = [−4, 12].

By adopting the sector nonlinearity method, the membership functions of the corre-
sponding IT-2 fuzzy model are defined as

µ1(x1(k)) = m1(x1(k))h1(x2(k)), µ2(x1(k)) = m2(x1(k))h2(x2(k)),

µ3(x1(k)) = m1(x1(k))h1(x2(k)), µ4(x1(k)) = m2(x1(k))h2(x2(k))
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with mi(x1(k)) = mi(x1(k)) sin2(x1(k)) + m̄i(x1(k)) cos2(x1(k)), m1(x1(k)) =
ḡmax − g(80, x1(k))

ḡmax − ḡmin
, m̄1(x1(k)) =

gmax − g(70, x1(k))
ḡmax − ḡmin

, m2(x1(k)) = 1 − m̄1(x1(k)),

m̄2(x1(k)) = 1−m1(x1(k)), h1(x2(k)) =
187.35− f (x2(k))

187.75
, and h2(x2(k)) = 1− h1(x2(k)).

Thus, the dynamical model of (68) can be described by the Markov switching fuzzy
system in the form of (4) with Ts = 0.025 s, and the transition probability rate matrix and
the system matrices are defined as:

A1
1 =

[
−0.2557 −6.1348
0.0250 1.0000

]
, A1

2 =

[
−0.2561 −1.3733
0.0250 1.0000

]
, A1

3 =

[
0.0706 −6.0071
0.0250 1.0000

]
,

A1
4 =

[
0.0706 −1.4156
0.0250 1.0000

]
, A2

1 =

[
−0.2488 −6.0116
0.0250 1.0000

]
, A2

2 =

[
−0.2487 −1.4191
0.0250 1.00001

]
,

A2
3 =

[
0.0649 −5.8815
0.0250 1.0000

]
, A2

4 =

[
0.0644 −1.4777
0.0250 1.0000

]
, B1

i =

[
0.00037

0

]
, B2

i =

[
0.000355

0

]
,

Π =

[
0.7 0.3
0.2 0.8

]
(70)

For τm = 2, τM = 6, Θ = 5, ζ̄ = 0.85, $1 = 0.15, and $2 = 1/0.15, Algorithm 1
was performed, and the optimal values of the l2 − l∞ performance were obtained as:
a∗1 = 2.0581, a∗2 = 2.5176, b∗1 − 0.1309 b∗2 = −0.1744, and γ∗ = 7.223−4. The filter matrices
are designed as[

Â1
1 Â1

2 Â1
3 Â1

4
Â2

1 Â2
2 Â2

3 Â2
4

]
=

0.073469 −3.4221 0.083413 −0.6332 0.20643 −3.2698 0.21936 −0.73011
0.01021 0.926 0.0076208 0.97167 0.011397 0.92152 0.012629 0.97586

ine− 0.060213 −2.8422 −0.092627 −0.75619 0.17697 −2.6329 0.19582 −0.79572
0.013459 0.93971 0.010413 0.96712 0.014624 0.93769 0.018435 0.97071


[

B̂1
1 B̂1

2 B̂1
3 B̂1

4
B̂2

1 B̂2
2 B̂2

3 B̂2
4

]
=

−9.5398 9.3138 −8.6087 6.7673
−0.0038308 0.32511 −0.042507 0.38779
ine− 7.5654 6.6368 −6.6323 5.2521

0.041711 0.28217 0.019727 0.29285


[

Ĉ1
1 Ĉ1

2 Ĉ1
3 Ĉ1

4
Ĉ2

1 Ĉ2
2 Ĉ2

3 Ĉ2
4

]
=[

0.029365 0.015436 0.029365 0.015436 0.029365 0.015436 0.029365 0.015436
ine0.044923 0.026018 0.044923 0.026018 0.044923 0.026018 0.044923 0.026018

]

(71)

According to the above parameters, the simulation results are presented in Figures 9–11,
where Figure 11b illustrates, respectively, the random variables r̄(k) and ζ(k). As an
intuitive method for evaluating the communication performance of the designed filter,
Figures 9a–11a record the trajectories of the system’s and filter’s outputs, the triggering
instants and intervals of each system state component, as well as the dynamic threshold
parameters for the different trigger mechanisms suggested in [35,48,53,54]. As can be seen
in these figures, the implemented filter for different ETMs can guarantee the convergence
of the system’s states despite uncertainties, external disturbances, and cyber-attacks. Based
on Table 5, it appears that the application of the AETM in this article may further optimize
communication resources and reduce bandwidth usage because the number of data packets
transmitted with an acceptable IAE was significantly less than the number of data packets
transmitted using the ETMs in [35,48,53,54,62].
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Table 4. Markov mode parameters of the system.

Parameter Physical Meaning Value Mode 1 Mode 2 Unit

a Gravitational coefficient 110 - - (N)
b Gravitational coefficient 31 - - (N)
l Arm’s length 0.5 - - (m)
fm Viscous friction 103.6 - - (N(rad/s)−1)
km Coriolis coefficient [70, 80] - - (Nm(rad/s)−1)
Jm inertia - 33.8 35.2 (kg m−2)
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Figure 9. Simulation results based on the proposed AETM (a) and simulation results based on the
AETM in [35] (b).
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Figure 10. Simulation results based on the AETM in [48] (a) and simulation results based on the
AETM in [53] (b).
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Figure 11. Simulation results based on the AETM in [54] (a) and a possible sequence of the system
mode and the states of measurements (b).
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Table 5. Number and rate of transmitted data packets and IAE for different event-triggered mechanisms.

Event-Triggered Mechanism Packets Transmitted Data Transmission Rate (%) IAE (%)

Proposed 12 2.99 1.69
[35] 20 4.98 1.74
[48] 14 3.49 1.67
[53] 19 4.74 1.81
[54] 26 6.48 1.67

5.4. Comparative Explanations

The dynamic- and adaptive-event-triggered filtering problem for nonlinear networks
has recently been the subject of numerous studies in the literature, so several methods are
comparable to what we presented here. There are, however, some differences from our
approaches as follows:

• To handle nonlinear network systems, a H∞ linear filter was designed in [26] using
Type-1 fuzzy models, which may lead to conservative results. As an alternative, we
took a more general approach based on a Markovian jump Type-2 fuzzy model to
design an IT2 fuzzy filter with extended dissipativity performance.

• Different from [49,62], the filter design method described in [26] was based on an
improved matrix decoupling approach that uses appropriate selected scalars. The
selection of these parameters can be achieved either by a numerical analysis or by
using meta-heuristic techniques, such as the PSO method addressed in this study.

6. Conclusions, Limitations, and Future Work

Some conclusions, possibilities for future developments, and limitations of the filtering
strategy are presented in this section.

6.1. Concluding Remarks

For a class of nonlinear discrete-time systems described by Markov jumping IT-2 fuzzy
models, a novel adaptive-event-triggered extended dissipativity-based filtering problem
was developed. This study successfully addressed the hypothesis of perturbations and
the random occurrence of cyber-attacks. As a means of reducing the unnecessary use
of limited communication resources, a new event-triggered scheme with an adaptive
triggering scheme was used to determine whether or not the current measurements needed
to be transmitted. Furthermore, delay-dependent conditions were developed for the
filter design in order to ensure that the error system would be stochastically stable with
extended dissipativity performance. Using the upper and lower membership functions,
less conservative results were obtained. Furthermore, an optimization-based algorithm
(PSO) was used for the determination of the filter gains and to achieve the best-possible
performance. Finally, this paper concluded with two examples that illustrated how effective
the method proposed here can be.

6.2. Limitations

Despite the power and performance of the synthesized technique, the latter imposes
that the Markov chain transition probability is known as a delicate task in practice. Equally
important, the synchronization between modes of the filter and model is a task that may be
difficult to achieve in practice.

6.3. Future Work

Further research that may be focused on in the context of the present study is related
to the state estimation of singular systems based on the dynamic-event-triggered communi-
cation protocol [56,63]. Moreover, the determination of partial and time-varying transition
probabilities in our framework is an open problem to be addressed in the future.
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