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Abstract: Machine learning-based intrusion detection systems are an effective way to cope with
the increasing security threats faced by industrial control systems. Considering that it is hard and
expensive to obtain attack data, it is more reasonable to develop a model trained with only normal
data. However, both high-dimensional data and the presence of outliers in the training set result in
efficiency degradation. In this research, we present a hybrid intrusion detection method to overcome
these two problems. First, we created an improved autoencoder that incorporates the deep support
vector data description (Deep SVDD) loss into the training of the autoencoder. Under the combination
of Deep SVDD loss and reconstruction loss, the novel autoencoder learns a more compact latent
representation from high-dimensional data. The density-based spatial clustering of applications with
noise algorithm is then used to remove potential outliers in the training data. Finally, a Bayesian
Gaussian mixture model is used to identify anomalies. It learns the distribution of the filtered training
data and uses the probabilities to classify normal and anomalous samples. We conducted a series of
experiments on two intrusion detection datasets to assess performance. The proposed model performs
better than other baseline methods when dealing with high-dimensional and contaminated data.

Keywords: industrial control systems; network security; intrusion detection; anomaly detection;
autoencoder

MSC: 68M25; 68T07

1. Introduction

An industrial control system (ICS) is a general term that encompasses several types
of control systems [1], such as supervisory control and data acquisition systems, and
distributed control systems. Typically, these systems are employed in industries such
as power plants, water, and wastewater facilities. With advancements in information
technology, ICSs have been connected to the internet for increased efficiency. However, this
has exposed ICSs to numerous security threats [2]. Attacks on ICSs can disrupt their normal
operations, resulting in financial losses and potentially affecting the daily lives of humans.
In recent years, several attacks against ICSs have been reported [3–5]. Therefore, it is crucial
and urgent to develop security solutions to safeguard ICSs, and intrusion detection systems
(IDSs) play a significant role in this regard [2].

Based on the detection technique used, the IDS can be divided into a misuse-based
detection method or anomaly-based detection method [2,6]. A misuse-based detection
method compares established attack patterns to new events to evaluate if the new events
are attacks or not. This approach has a greater detection rate, but it is incapable of detecting
unknown threats. The anomaly-based technique detects anomalies by constructing a
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normal profile from ICS data. Anomalies are defined as events that deviate from the profile.
Anomaly-based detection methods can be divided into three categories [6]: statistics-based,
knowledge-based, and machine learning-based. In this paper, we focus on IDS based on
machine learning techniques.

To address the detection of anomalies using labeled datasets, some supervised machine
learning techniques have been developed [7,8], such as random forest and decision tree.
However, gathering attack data to create a labeled dataset is difficult and expensive [9]. As
a result, training the detection model with only normal data makes sense. One frequently
employed approach is the one-class support vector machine (OCSVM) [10,11]. However,
these methods are affected by the curse of dimensionality, which could reduce the detection
rate. Before training the detection model, some researchers suggested using the autoencoder
(AE) to reduce the dimension first [9,12]. By rebuilding the input as much as possible, the
AE learns a compressed latent representation. Furthermore, AE could detect anomalies by
using the reconstruction error, which has a higher value for anomalous samples [13].

In addition to the issue of high-dimensional data, the presence of outliers in the
training set also has a negative impact on performance. When outliers are included, models
such as OCSVM [14] or AE [15] may also learn the distribution of outliers, which degrades
performance. Motivated by the work of the deep support vector data description (Deep
SVDD) neural network [16], which transforms data into a hypersphere where outliers
are outside, an improved autoencoder (IAE) [17] was proposed. By incorporating the
Deep SVDD loss during the training phase of AE, the IAE learns a compact representation.
However, utilizing the distance calculated in the latent space makes it challenging to
identify some outliers that may not be entirely excluded from the hypersphere. The Deep
SVDD neural network can apply to the samples directly. But this approach suffers from the
problem of hypersphere collapse [16].

In this paper, we propose a hybrid anomaly detection method to address the problems
of high-dimensional data and the existence of outliers in the training set. In general, the
novel model introduces two steps before anomaly detection: feature extraction and outlier
removal. Motivated by the work [9,18], which uses the AE to extract features first, we
apply the IAE to obtain latent representations. To further decrease the effect of outliers
within the training set, we employ the density-based spatial clustering of applications with
noise (DBSCAN) algorithm to remove some potential outliers. Finally, the distribution of
the filtered dataset is modeled using a Bayesian Gaussian mixture model (BGMM). The
following is a summary of the contributions:

• With the aim of extracting useful features from high-dimensional data, IAE is used
to produce more compact latent representations. In detail, the Deep SVDD loss is
combined with the reconstruction loss during the training of the IAE. The new latent
representation improves the effectiveness of the anomaly detection model.

• With the improved latent representation, we first utilize DBSCAN to remove the
potential outliers within the training set in order to decrease its impact on detection
performance. BGMM is trained using the filtered training set, which uses probability to
identify abnormalities. The outlier removal step benefits for the BGMM and improves
detection performance.

• To show the effectiveness of the suggested methodology, we run a series of experi-
ments on two intrusion detection datasets. Our method demonstrates more promising
detection performance than some other baselines in terms of effectiveness and robust-
ness. Additionally, an ablation study proves the improvement provided by both steps
mentioned above.
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The remainder of the paper is organized as follows. In Section 2, we review related
works involving anomaly detection. We provide a full introduction to the proposed
methods in Section 3. Then, the effectiveness of the suggested approach is discussed
in Section 4. Finally, the relevant conclusions are presented in Section 5, together with
directions for future research.

2. Related Work

In recent years, ICS security issues have received a lot of attention. Attacks against
ICSs, such as Stuxnet [19] and BlackEnergy3 [20], can cause devastating consequences when
compared to traditional information systems. IDS plays an important role in providing
security. In particular, with the development of machine learning and deep learning, many
research studies [8] have been proposed. Supervised machine learning methods can be
used to classify the normal data and attacks when there are labeled datasets. However,
gathering attack data is challenging [9], in contrast, collecting normal data is simple. This
paper primarily reviews anomaly detection methods that use normal data only for training.
In an anomaly-based intrusion detection method, the model is trained using normal data
in order to learn a normal profile. Samples will be classified as abnormal if they differ from
the established profile.

As a one-classification method, OCSVM is frequently used in the field of anomaly
detection. It finds a hyperplane that separates normal data from the origin with a maximum
margin. In [10], an improved OCSVM was developed. Modbus traffic packets were used
to train the OCSVM model to generate a normal communication pattern, and a particle
swarm optimization method was used to optimize the parameters of OCSVM. Ensemble
learning and OCSVM were combined to create the intrusion detection technique named IT-
OCSVM [11]. The authors combined the predictions of several OCSVM models using mean
majority voting. The performance of detection using the suggested method is promising.
However, OCSVM suffers from the issue of high-dimensional data [16].

Many deep learning-based anomaly detection works have been proposed [21–23].
One way to apply deep learning is by using it as a feature extraction module [9,24]. AE
is a special kind of deep learning model that works to reconstruct the input as accurately
as possible. To extract discriminative features for IDS, a stacked sparse AE is used [25].
Experiments have shown that it is effective in feature extraction, and it alleviates the
performance degradation caused by high-dimensional data [9,12]. The reconstruction error
can also be utilized as the anomaly score to detect anomalies directly. By utilizing the
stacked denoising AE [26], malicious packets within ICSs can be detected.

These approaches, however, work under the presumption that the training set contains
only normal data. However, it is hard to maintain in a practice environment. The anomaly
detection model may also learn the anomalous samples well when the training dataset is
contaminated by outlier samples. The performance of anomaly detection can be affected as
a result, as shown in [17]. For example, in AE-based methods, the reconstruction error of
anomalous samples may decrease to a level similar to that of normal data as the number
of training epochs increases [15]. The Deep SVDD neural network [16] aims to learn a
mapping that transforms normal data into a hypersphere while minimizing the volume
of the hypersphere. Anomalies are identified as samples that are located outside of this
hypersphere. However, the Deep SVDD neural network suffers from the problem of
hypersphere collapse [16]. By adding a constraint supervised by the Deep SVDD loss for
the latent space, Zhen Chen et al. [17] proposed IAE, which aims to position the anomalous
samples outside the hypersphere in the latent space. As for the anomaly score, it uses
the distance between the center and each sample in the latent space. Distance may not
be a useful metric to distinguish between normal and anomalous data as some outliers
might be inside the hypersphere. However, this method is effective for learning latent
representations. In general, these two methods try to create a novel loss function for the
neural network while considering the existence of outliers.
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To reduce the effect of anomalous samples in the training dataset, ref. [15] proposed
the use of an adversarial AE. They introduced an outlier labeling procedure during training
using OCSVM. The identified outlier would not affect the training of normal samples.
However, the adoption of the OCSVM may cause an increase in training time.

Based on the studies mentioned above, there are two views on dealing with high-
dimensional and contaminated datasets. The first is the powerful capability of deep learning
for feature extraction, which facilitates anomaly detection through representation learning.
The other is an operation to minimize the influence of outliers in the training set. Our
proposed method takes into account both of these factors.

3. Method

In this section, we present the proposed IDS model. We begin by introducing the entire
detection framework. The IAE is then presented. In the end, a robust anomaly detection
approach is developed using the latent representations derived from the IAE.

3.1. Overview

Before delving into the details of each part, we provide an overview of the proposed
method, which is depicted in Figure 1. In general, there are two phases, training and testing,
as shown in the figure.

IAE

DBSCAN

BGMM

ICS Traffic

Feature
Extraction

Outlier
Removal

Distribution
Learning

Input Data

Steps Methods Distribution

(a) Training process.

IAE

BGMM

ICS Traffic

Anomaly
Score

Methods

(b) Testing process.
Figure 1. The overview of our proposed method.

There are three steps during the training phase. Given the ICS traffic features, we
developed an IAE, which derives the compressed representations of original features. The
combination of reconstruction loss and Deep SVDD loss is used to train the IAE. We used
DBSCAN to remove the potential outlier points because their presence would negatively
affect the performance of the anomaly detection model. Finally, a BGMM was trained to
learn the data distribution using the filtered training set.

We applied the learned model to identify the anomalies in the testing set after training.
Unlike the training process, the BGMM inspects the latent representation of the testing
dataset directly during testing. The BGMM generates higher anomaly scores for anomalous
samples compared to normal data. Each component of the proposed methodology for
anomaly detection is thoroughly described in the subsequent subsections.
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3.2. Improved Autoencoder

Compared with the traditional AE, the IAE incorporates the Deep SVDD as part of the
loss function to learn a compact data representation with minimized volume. The AE and
Deep SVDD are described further below, and the IAE is introduced at the end.

3.2.1. Autoencoder

The AE is a special type of neural network. The input data go through several hidden
layers in the AE. It aims at reconstructing the input as much as possible. It has been applied
in the field of feature extraction widely [27].

In detail, AE can be divided into two parts: the encoder and the decoder. Considering
a set of input data X = {x1, x2, · · · , xN}, where N is the number of samples in the
dataset, the encoder learns a map function φ for each sample xi and outputs compressed
latent representation zi. The decoder then attempts to reconstruct the input data from the
compressed latent representation, zi, and outputs the reconstructed data, x̂i. The training
process of the AE aims to find the parameters that minimize the reconstruction loss. In this
study, the mean squared error is used to calculate the reconstruction loss, which is given
in (1).

Lrec = ‖x̂i − xi‖2 (1)

When employing an AE to extract features from a dataset, the decoder is abandoned
after training, only the encoder is maintained.

3.2.2. Improved Autoencoder

Support vector data description (SVDD) [28], like OCSVM, is a one-class classification
method. When carrying out tasks for anomaly detection, the SVDD seeks to find the
smallest hypersphere that encloses most of the normal samples. Lukas Ruff et al. [16]
proposed the Deep SVDD neural network, which combines the SVDD with the neural
network. The Deep SVDD introduces the SVDD as the loss function for the training of the
neural network. The trained neural network learns a mapping function, and within the
output space of the mapping function, most normal samples are enclosed by a hypersphere.

Let Φ(·; W) be the transform function of the neural network, with W denoting the set
of hidden layer weights. The Φ(xi; W) is the output of the neural network for sample xi.
The loss function of the Deep SVDD neural network is defined in (2).

Lds = R2 +
1

νN

N

∑
i=1

max {0, ‖Φ(xi; W)− c‖2 − R2} (2)

The first term refers to the volume of the hypersphere with radius R. The second
term is a penalty for points whose distance from the center c is greater than R. The
hyperparameter ν controls the trade-off between the volume of the hypersphere and the
number of points outside it. Deep SVDD neural networks aim to map normal samples into
a hypersphere with minimal volume based on the loss function. When using Deep SVDD
for anomaly detection, the distances to the center c can be calculated as anomaly scores.

But the Deep SVDD neural network suffers from the problem of hypersphere
collapse [16]. When this happens, the output of the neural network for every input is
constant, and the hypersphere radius R collapses to zero. However, we can use it as a
regularizer to constrain the latent space of AE [17]. In this way, the encoder produces
compact latent representations with minimized volume. Combining the two loss functions,
the architecture of IAE is displayed in Figure 2. As seen in the figure, the Deep SVDD loss
is applied to the output of the encoder only. Considering the map function φ of the encoder,
we can rewrite the joint loss function

L = Lrec + λLds = ‖x̂i − xi‖2 + λ{R2 +
1

νN

N

∑
i=1

max {0, ‖φ(xi; W)− c‖2 − R2}} (3)
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where λ is the weight controlling the relationship between reconstruction loss and Deep
SVDD loss. It is worth noting that W represents the layer weights within the encoder.
Next, we describe the training algorithm in more detail, as shown in Algorithm 1. We
start with k warm-up epochs during the training phase, where the AE is trained solely on
the reconstruction loss. This allows the encoder to generate a stable latent representation.
After that, the center value, c, is calculated as the mean value of the encoder output for
all training data. The IAE is then trained with both Deep SVDD loss and reconstruction
loss simultaneously. During training, we update the parameters of the neural network and
update R. After calculating the distances S between the encoder output and the center c, we
calculate the new R using the distance S, following the approach in the original paper [16].

Latent
Representation

Decoder

Encoder

X

!𝑋

Reconstruction
Loss

DeepSVDD
Loss+

Loss

Figure 2. The framework of IAE.

Algorithm 1: Training process of IAE.
Data: Training data xi. Initialized parameters θ of IAE. The number of warm

epochs k, hyperparameter λ, hyperparameter ν, and the number of
iterations t.

Result: The Parameters θ.
// Training the IAE using reconstruction loss only

1 for i = 1, 2, . . . , k do
2 Compute the reconstruction loss by (1)
3 Update the parameters θ in the IAE by the backpropagation algorithm
4 end
5 Compute the center c by the mean of the output of the encoder for all training

samples
// Training the IAE using joint loss

6 t← 0;
7 while not converge, do
8 t← t + 1;
9 Compute the joint loss by (3)

10 Update the parameters θ in the IAE by the backpropagation algorithm.
11 Compute the distance S of all samples in the training set.
12 Update the R by distance S and hyperparameter ν.
13 end

The latent representations are obtained once the IAE has been trained. We created an
anomaly detection method based on the latent representation in the next subsection.
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3.3. Anomaly Detection Based on DBSCAN and BGMM

In the previous section, we used the IAE to learn a compact representation of data. The
distance within the latent space can be used to detect anomalies [17], but its performance is
not satisfactory. Considering the presence of outlier points in the training set, we adopt
a hybrid method for anomaly detection. First, we remove the outliers from the training
set using DBSCAN. Next, we use a BGMM model to fit the remaining training data. In the
following subsections, we provide a detailed explanation of our method.

3.3.1. Density-Based Spatial Clustering of Applications with Noise

DBSCAN is a clustering method [29,30]. Its intuition is to find the high-density regions
in the sample space. The radius, ε, and the number of neighbors, minPts, are two important
pre-defined parameters. Within the radius, if the neighbors of one observation are higher
than the minPts (including the observation itself), the regions can be classified as high-
density regions. In the meantime, some points within the low-density regions would be
considered outliers.

In detail, with the DBSCAN algorithm, samples in the dataset can be classified into
three types of points: core points, border points, and outlier points. Core points are those
with minPts neighbors within a radius of ε. The neighbors of core points belong to the
same cluster of core points, and they are density-reachable. The points within the cluster
that are not core points are called border points. Outlier or noise points are those that are
not density-reachable by any core points. An example can be seen in Figure 3a, where there
are eight points in a simple example, and two clusters can be concluded. In the meantime,
two noise points are recognized. To illustrate the DBSCAN algorithm further, we create
a synthetic dataset with three clusters. The clustering results are displayed in Figure 3b.
Some points with a larger distance from other points have been classified as noise.

𝜀

Noise
point

𝑚𝑖𝑛𝑃𝑡𝑠 = 2

(a)

Noise
Cluster - 1

Cluster - 2
Cluster - 3

(b)
Figure 3. Illustration of the DBSCAN algorithm. (a) Example of DBSCAN with minPts = 2; (b)
clustering results by DBSCAN on the synthetic dataset.

Presuming that the normal ICS data locate in higher density regions than outliers,
we can employ DBSCAN to filter the outlier points first. With the latent representations
Z = {z1, z2, . . . , zN}, we can use the DBSCAN algorithm to label these observations as
normal or noise. We denote the label results using Y = {y1, y2, . . . , yN}, where yi ∈ {0, 1}.
The points are given "label 1" if they are outlier points and "0" if they are core or boundary
points. We compute the neighbors of each point and identify core points using the pre-
defined parameters minPts and ε. The neighbors of core points and core points themselves
are then connected to form clusters. Finally, a point is considered noise if it does not
neighbor any core points.

The two parameters in the algorithm significantly affect the clustering results. As
a rule of thumb, the minPts can be set as 2 ∗ d [29], where d is the dimension of input
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data. However, in our study, we conducted experiments on a dataset consisting of tens of
thousands of samples. It is reasonable to set it at a higher value. In this study, the minPts are
set at a certain percentage of the number of training sets. Then, using the k-distance graph,
where k = minPts, we select the value of epsilon [30]. We calculate the k-nearest neighbor
distance for each observation and then sort the distances from lowest to highest. After that,
we compute the “elbow” point in the k-distance graph using the Kneedle algorithm [31],
and we utilize this value as ε.

3.3.2. Bayesian Gaussian Mixture Model

We first filter the training set using the label results Y, keeping the observations zi
with yi = 0. After that, the BGMM is used to learn the distribution for the cleaned training
dataset. Gaussian mixture model (GMM) is a probabilistic model that is commonly used
for clustering. In this study, we use it to model the normal data and detect anomalous
samples with probability density. We lay out the foundations of GMM first.

GMM attempts to fit its probability density using a linear combination of K Gaussian
distributions (also known as components) with the observation z extracted from the IAE.
Its equation can be written as

p(z) =
K

∑
k=1

πkN (z|µk, Λ−1
k ) (4)

where theN (z|µk, Λ−1
k ) represents the k-th components with the parameter µk, Λk. The µk

and Λk are the mean and precision matrices, respectively, and parameter πk is the mixing
coefficient, which satisfies ∑k πk = 1 and 0 ≤ πk ≤ 1. Let v denote the K-dimensional latent
variable corresponding to z. The latent variable v is a binary random variable satisfying
vk ∈ {0, 1} and ∑k vk = 1. Taking the mixing coefficients into account, the distribution of v
can be written as

p(v) =
K

∏
k=1

π
vk
k (5)

Let the filtered dataset be denoted by Z = {z1, z2, · · · , zN} where N is the number of
samples in the filtered dataset, and let all latent variables be denoted by V ; considering the
parameters and latent variables, the conditional distribution of observations is given by

p(Z|V , µ, Λ) =
N

∏
n=1

K

∏
k=1
N (zn|µk, Λ−1

k )vnk (6)

In the maximization likelihood framework, we can use the expectation–maximization
(EM) algorithm to estimate the parameters. However, there are some limitations to using
the EM algorithm to estimate the parameters of the GMM. One issue is that it suffers
from the presence of singularities [32]. In this study, we adapt the Bayesian version of
GMM and use variational inference to estimate the parameters of the GMM. This approach
treats all of the parameters as random variables and assigns prior distributions to them,
using conjugate prior distributions to simplify calculations. The Dirichlet distribution and
Gaussian–Wishart prior are introduced for π, µk, and Λk, respectively, as shown in

p(π) = Dir(π|α0) (7)

and

p(µ, Λ) = p(µ|Λ)p(Λ) =
K

∏
k=1
N (µk|m0, (β0Λk)

−1)W(Λk|a0, b0) (8)

where W is the Wishart distribution, and {α0, m0, β0, a0, b0} are the parameters of the
prior distribution. In the Dirichlet distribution, we use the same parameter, α0, for each
component. The goal of variational inference for BGMM is to find an approximation of the
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posterior distribution p(V , π, µ, Λ|Z). To simplify, we denote Θ as {π, µ, Λ}. We refer to
the [32]; the log marginal likelihood can be decomposed by

ln p(Z) = L(q) + KL(q‖p) (9)

where the functional L(q) is the lower bound of ln p(Z). Moreover, the KL(q‖p) is the
Kullback–Leibler (KL) divergence between the variational posterior distribution q(V , Θ),
and the true posterior p(V , Θ|Z). These equations are defined as

L(q) = ∑
V

∫
q(V , Θ) ln{ p(Z, V , Θ)

q(V , Θ)
}dΘ (10)

KL(q‖p) = −∑
V

∫
q(V , Θ) ln{ p(V , Θ|Z)

q(V , Θ)
}dΘ (11)

We attempt to maximize the L(q) with respect to the q(V , Θ), which is equivalent to
minimizing the KL(q‖p). When the q(V , Θ) is approximated as the true posterior distri-
bution p(V , Θ|Z), we have the maximum of the lower bound [32]. With some necessary
calculations (for detailed calculations, readers can refer to [32]), the approximate poste-
rior distribution is shown below. We list the detailed variables in the equation in the
Appendix A.

q?(V) =
N

∏
n=1

K

∏
k=1

rvnk
nk (12)

where rnk plays the role of responsibilities. Moreover, the optimization of π and (µk, Λk)
are calculated as below.

q?(π) = Dir(π|α) (13)

q?(µk, Λk) = N (µk|mk, (βkΛk)
−1)W(Λk|ak, bk) (14)

With the optimal distribution analysis above, we can estimate the parameters by
following the steps in the EM algorithm. After the parameters in the prior distribution are
initialized, we calculate the (12) in the E-step. Then in the M-step, we keep the responsibili-
ties fixed and use these values to update the distribution in (13) and (14). By updating the
parameters while cycling between the two steps until convergence, we can estimate the
parameters of BGMM.

3.3.3. Anomaly Detection

We introduce the whole training algorithm in Algorithm 2 by combining the DBSCAN
and BGMM. We first filter the noise points in the latent representation zi of the training
set. We use the Kneedle algorithm to calculate the value of ε using the given parameters
minPts. The training set is then labeled by DBSCAN, and the labeled results indicate
whether the samples are considered noise points. To train the BGMM model, we take
samples zi from the training set where their labeled results are yi = 0 by DBSCAN. With
some necessary parameters in the prior distribution initialized, we begin the E-step. The
M-step is then carried out to update the parameters. The E-step and M-step are repeated
before the convergence. Finally, we have a well-trained BGMM model.

In the testing phase, we first extract latent representations by IAE for the test samples.
Then, they are inspected by the well-trained BGMM. The anomaly score is finally calculated
using the negative log-likelihood produced by the BGMM, where the anomalous samples
have a higher value than the normal samples.
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Algorithm 2: Training process of the combination of DBSCAN and BGMM.
Data: Training features zi. The hyperparameter minPts for DBSCAN. The number

of components K, initialized parameters {α0, m0, β0, a0, b0} in BGMM.
Result: Well-trained BGMM
// Part 1: Outlier removal by DBSCAN

1 Compute neighbors of each point in Z and sort the k-nearest neighbor distance
where k = minPts.

2 Choose the value of hyperparameter ε by the Kneedle algorithm.
3 Output the label results Y for the training set by DBSCAN with minPts and ε.
4 Filter the training set and keep zi, whose yi = 0.
// Step 2:Training BGMM by a variational version of the EM

algorithm.
5 while not converge, do

// E-Step
6 Calculation the responsibilities by (12)

// M-Step
7 Update the parameters by (13) and (14)
8 end

4. Evaluation

In this section, we evaluate the performance of the proposed method. The datasets
utilized in the experiments are presented first. After that, the comparative methods that
serve as the baselines are described. Finally, we introduce the experimental setup and
analyze the performance of the proposed method.

4.1. Dataset

In this study, we conducted the experiments using two datasets: the Gas Pipeline
dataset [33] and NF-BoT-IoT-v2 dataset [34], in order to assess the performance of the
proposed method.

The first dataset, Gas Pipeline [33], was collected using a laboratory-scale gas pipeline
environment. Some attacks have been used to simulate anomalous samples. There are six
types of attacks, NMRI, CMRI, MSCI, MPCI, DoS, and Reconnaissance. In total, there are
61,156 normal samples and 35,863 anomalous samples. Each sample involves one captured
network transaction pair, including network traffic features and payload content features.
For every observation, there are 26 numeric features.

The second dataset, NF-BoT-IoT-v2 [34], was created by the Cyber Range Lab of the
Australian Center for Cyber Security using Ostinato and Node-RED tools. Apart from
normal samples, there are four attacks: DoS, DDoS, Reconnaissance, and Theft. Since there
are a large number of records, we randomly sample the records in the dataset, just as in
our previous work [35]. There are 65,150 normal samples and 78,598 anomalous samples
after sampling. Every record in the dataset is a NetFlow-based feature. Except for some
category features, we apply the log function to numeric features to decrease the effect of
large feature differences. Additionally, the category features are handled using the one-hot
encoder method. There are roughly 200 features left after preprocessing.

Every observation in both datasets is scaled using the min–max normalization into the
range of [0, 1]. We divided the dataset into a training set and a testing set with a 4:1 ratio.
In order to simulate the contaminated dataset, we remove all anomalous data from the
training set. After that, we randomly sample data from the removed anomalous data with
a specific ratio (referring to the anomaly ratio) with respect to the remaining training set.
The pure training set is then combined with the chosen anomalous samples to form a new
training set. It should be noted that we trained the model without any help from the label
during training. We used the testing set directly, as it already contained both normal and
anomalous data.
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4.2. Compared Baselines

We compare the performance of our method against seven baselines, including four tra-
ditional machine learning methods and three deep learning-based methods, as listed below.

• OCSVM. In the experiments, we used the radial basis function kernel as the kernel
function. We selected ν from {0.01, 0.1}, and γ from {1× 10−5, 1× 10−4, 1× 10−3,
1× 10−2, 1× 10−1, 1} . The best results are reported.

• Isolation forest (IForest). We set the hyperparameters, the samples, and the number of
estimators as the original paper recommended, which were 256 and 200, respectively.

• Kernel density estimation (KDE). The kernel function also uses the radial basis function
kernel. The bandwidth was set as 0.001.

• BGMM. The BGMM was used to show the influence of the feature extraction and out-
lier removal steps. Its hyperparameters were set to be the same as our proposed method.

• AE. The reconstruction error was used as the anomaly score. The network architecture
and hyperparameters of the AE are identical to those in our method, except for Deep
SVDD loss.

• Deep SVDD. As in the original paper, we trained an AE first, and the encoder was
used to train the Deep SVDD neural network. During training, the value of ν was set
to 0.1.

• IAE. IAE trains the data with reconstruction loss and Deep SVDD loss. The distance
between samples and the center in the latent space is used as the anomaly score. The
IAE uses the same settings as our method.

For comparison, we directly used the trained IAE model in our method, which means
that both the IAE and our method use the same latent representations. Therefore, we
can demonstrate that the BGMM can produce a better anomaly score than the distance
calculated from the IAE.

4.3. Experiment Settings

The suggested method in this study was implemented using the Python programming
language. The PyTorch framework was used to program the IAE and other deep learning
methods. All neural network methods employed Adam [36] as their optimizer with a
learning rate of 0.001. The batch size was set to 256, and the epochs to 200. With the aim of
a warm start, the first 20 epochs were trained with reconstruction loss only. A weight of
1× 10−5 was used for the Deep SVDD loss. The value of ν in the Deep SVDD loss function
was set to 0.1.

For hidden layer settings in the IAE, we used a five-layer hidden layer architecture.
The architecture used by the encoder and decoder is symmetrical. For the NF-BoT-IoT-v2
dataset, we set “144-80-16-80-144” in the hidden layer. Moreover, the Gas Pipeline dataset
was “20-14-8-14-20”. We used PReLU [37] as the activation function in the hidden layer.
The activation function in the output layer was a sigmoid function.

We implemented DBSCAN, BGMM, and other traditional machine learning methods
using scikit-learn [38]. In terms of the minPts in the DBSCAN, we observe that larger
values may decrease the performance because they lead to more outliers being labeled as
normal. As a result, we set the value as a fraction of the training set chosen from {1%, 5%}
and report the best results. Since BGMM could choose the optimal components by itself,
with the components that provide insufficient contributions removed [32], we fixed the
number of components to 10, and the number of training iterations to 100.

We used the area under the receiver operating characteristic curve (AUROC), which
is frequently employed in the task of anomaly detection, as the evaluation metric. To
guarantee accurate results and prevent randomness during the training phase, we repeated
each approach five times.
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4.4. Results

We examine the effectiveness of the suggested approach in the following content of
this section. We first contrast it with various baselines. Additionally, several anomaly
ratios are utilized to demonstrate their robustness in handling contaminated datasets. To
demonstrate the effects of the different components of our method, we conducted thorough
ablation research. Finally, we examined the impact of the settings for the hyperparameter.

4.4.1. Detection Performance

To begin the performance analysis, we report the results of two lower anomaly ratios,
5% and 10%. The total performance results, which include the mean value and standard
deviation of the AUROC for each approach, are shown in Table 1.

Table 1. AUROC comparisons with different baseline methods for two datasets. There are eight
methods, including our proposed method in the first column. Both mean values and the standard
deviation of the AUROC are reported.

Method Gas Pipeline NF-BoT-IoT-v2
5% 10% 5% 10%

OCSVM 86.89± 0.26 86.42± 0.06 60.02± 1.39 58.57± 0.92
KDE 87.04± 0.28 74.27± 0.30 86.40± 0.11 83.83± 0.14

IForest 88.51± 0.44 87.89± 0.50 85.53± 0.46 81.80± 0.56
BGMM 89.65± 1.33 79.75± 5.22 77.17± 5.06 72.16± 5.03

AE 83.55± 6.17 73.84± 8.51 84.91± 2.45 82.80± 4.11
Deep SVDD [16] 66.24± 5.61 64.19± 4.67 70.51± 6.69 63.20± 4.25

IAE [17] 76.90± 4.81 78.03± 2.18 77.33± 4.88 80.39± 3.69
Ours 89.89± 2.96 88.04± 0.91 92.00± 0.73 91.73± 1.06

Bold font indicates best results.

The detection performance of our method shows the greatest performance for both
datasets, as can be seen from the table above. The majority of methods show a decreasing
trend when the anomaly ratio rises from 5% to 10%. First, we analyze the results for the Gas
Pipeline dataset. The four traditional machine learning methods outperform the remaining
three deep learning baselines for this dataset. When the anomaly ratio is 5%, BGMM
produces the best results out of these four methods. Despite an increase in the anomaly
ratio to 10%, OCSVM and IForest maintain greater values. IAE performs well for both
anomaly ratios, and it shows a higher performance compared to AE when the anomaly
ratio is 10%. However, Deep SVDD performs poorly compared to other methods.

When it comes to the NF-BoT-IoT-v2 dataset, both OCSVM and BGMM perform worse
than they do in the Gas Pipeline dataset, which may be due to the curse of dimension-
ality. AE continues to perform well in terms of both anomaly ratios. The performance
of Deep SVDD is also the lowest in this dataset. In this dataset, KDE and IForest both
maintain higher values. However, compared to KDE and IForest, our method shows
greater improvement.

We conducted more experiments with more varied anomaly ratios to further demon-
strate the robustness of the proposed method. The performances for both datasets are
shown in Figure 4, with the anomaly ratio increasing from 5% to 25% with a step of 5%.

Since it can be difficult to eliminate some anomalous samples with higher anomaly
ratios, most techniques generally exhibit decreasing trends for both datasets. The IAE and
AE display different patterns in Figure 4a. IAE performs better than AE in general. How-
ever, compared to other promising baselines, such as IForest and OCSVM, our approaches
have not shown significant improvement. For the NF-BoT-IoT-v2 dataset, the experimental
results are displayed in Figure 4b. In most cases, OCSVM produces the worst results. Our
method exhibits a greater improvement than the best baseline method, KDE.

In conclusion, our proposed detection method exhibits robustness and offers promising
detection results with a contaminated dataset, compared with other baseline methods.
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(b) NF-BoT-IoT-v2
Figure 4. AUROC performance under different anomaly ratios for both datasets. There are eight
methods in both figures. We report the mean values of the methods only.

4.4.2. Ablation Study

As previously stated, we improved the approach from two aspects. One is the compact
latent data representations generated by the IAE, and the other is the outlier removal step
by DBSCAN. In this part, we perform an ablation study to demonstrate the effects of these
two parts. There are five variants, depending on whether or not IAE or DBSCAN is used,
including methods that use original features or AE to extract features. The difference
between each method can be inferred from the name. The detailed comparisons for the
two datasets are shown in Figure 5, where the x-axis is the anomaly ratio used to exhibit
the robustness for dealing with contaminated datasets.

For the Gas Pipeline dataset in Figure 5a, our approach exhibits comparable detec-
tion performance to the method employing the original features with DBSCAN. Since
the dimension of this dataset is not particularly high, employing the original features
can also produce good results. Additionally, the introduction of DBSCAN demonstrates
improvement; for instance, our methods maintain higher accuracy than the “IAE + BGMM”
method for all anomaly ratios.

In the next part, we analyze the NF-BoT-IoT-v2 dataset with higher dimensions and
more detail. Figure 5b shows a higher difference between different methods than the results
of the Gas Pipeline dataset. Starting with the simplest method, BGMM, which learns the
distribution directly, it yields the poorest outcomes compared to the other approaches.
When adding AE or IAE into the feature extraction step, both methods have an increment
of 10% over BGMM only under different anomaly ratios. These two methods have similar
results as their curves almost entirely overlap. However, since there are outliers in the
training set, both methods suffer from performance degradation.

Both methods utilizing AE and IAE show improvement when the DBSCAN module is
introduced. The effects of IAE are also starting to show. As can be seen from the figure,
our methods produce better results than those utilizing AE alone because the outliers
have been removed and IAE has more compact representations than AE. However, the
improvement is lower when the anomaly ratio is higher. It should be noted that the
methods using DBSCAN on the original features produce promising results when the
anomaly ratio is lower, indicating the importance of the outlier removal step. However,
when the anomaly ratio rises to 20% or 25%, the results of this method become worse. With
a higher anomaly ratio, it is more difficult to remove outliers from high-dimensional data.
Compared to the "DBSCAN + BGMM" method, our method has two advantages with the
introduction of IAE: it has a more representative distribution and reduces computational
costs by reducing dimensions.
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In conclusion, the IAE and DBSCAN modules both enhance the performance of
anomaly detection, especially with the higher-dimensional dataset.
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Figure 5. AUROC comparisons between our method and corresponding variants of our
proposed method.

4.4.3. Analysis of Hyperparameters

In the proposed method, we automatically set some hyperparameters, such as the
radius of DBSCAN or the number of components in BGMM. However, the minPts of
DBSCAN is determined empirically. As previously stated, this value is very important for
finding outliers. Therefore, we analyze this parameter using different anomaly ratios.

When minPts is set to a value that is too high, most samples will be merged into
one cluster. As we compute the ε using the Kneedle algorithm, its value will increase
with the increase of minPts in most cases. Some outliers may be included in clusters with
bigger minPts and ε and are incorrectly labeled as normal. We set the value of minPts as a
proportion of the number of the training dataset, ranging from 0.5% to 5% with the 0.5%
step. For simplicity, we only run tests on the NF-BoT-IoT-v2 dataset. A comparison of the
results is shown in Figure 6.

Overall, the AUROC shows a decreasing trend as the anomaly ratio or the number
of minPts increases. The AUROC remains greater than 0.80 for all alternative values of
minPts, with an anomaly ratio of no more than 15%. When the minPts parameter is set
to 0.5% or 1%, the maximum value for AUROC is obtained. However, we observed that
DBSCAN incorrectly labeled some normal samples as noise, which indeed degraded the
performance. This suggests that we can further improve the detection rate with optimized
parameters for DBSCAN, and we leave this as a direction for future work.
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Figure 6. Effect of the minPts hyperparameter on the detection performance under different anomaly
ratios for the NF-BoT-IoT-v2 dataset.

5. Conclusions and Future Work

Due to the increasing cyber security threats to ICSs, it is critical to develop efficient
security solutions. Anomaly detection-based IDS are essential tools for ensuring security.
However, the high-dimensional data and presence of outliers in the training set pose
challenges to detection accuracy. In this study, we propose a hybrid intrusion detection
model to address these issues.

The proposed method improves the effectiveness of anomaly detection in two aspects.
The IAE in the first part derives data representations from ICS traffic features. In the second
part, before training the anomaly detection model, we introduce an outlier removal step. In
more detail, we provide IAE that incorporates the Deep SVDD loss function during training.
Together, the additional loss and reconstruction loss enable the IAE to learn a more compact
latent representation. Based on the improved latent representation, the DBSCAN method
is employed to first remove the outlier from the training set. This process is important
because it reduces the influence of outliers. The BGMM eventually learns the probability
distribution for the training set. The results of the experiments conducted on two intrusion
datasets reveal that the proposed method outperforms other baseline methods in terms of
the detection rate and robustness to outliers.

There are numerous possibilities for the future direction of our work. Despite the
removal of outliers from the training set by DBSCAN, as previously mentioned, it also
incorrectly classified some normal data, negatively impacting the performance because
some normal data could not be learned. Using an advanced optimization method to
select parameters for DBSCAN would be important to reduce the number of false positives.
Additionally, by using measurements such as the reconstruction error or distance during the
training phase of the AE, we could directly remove some outliers with greater confidence. In
this way, during training, we could reduce the effect of outliers on the latent representation
of normal data. Finally, the normal data could be modeled using a more advanced model
than the BGMM.
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Appendix A

In the Expectation step, to calculate the equation of (12), some necessary variables are
listed below.

rnk =
ρnk

∑K
j=1 ρnj

(A1)

where

ln ρnk = E(ln πk) +
1
2
E(ln |Λk|)−

D
2

ln(2π)− 1
2
Eµk ,Λk ((zn − µk)

TΛk(zn − µk)) (A2)

E[ln |Λk|] =
D

∑
i=1

ψ(
bk + 1− i

2
) + D ln 2 + ln |ak| (A3)

Eµk ,Λk ((zn − µk)
TΛk(zn − µk)) = Dβ−1

k + bk(zn −mk)
Tak(zn −mk) (A4)

E(ln πk) = ψ(αk)− ψ(∑
k

αk) (A5)

In (A2), D is the dimension of input data. In (A3), the ψ(·) is the digamma func-
tion.From the responsibilities rnk, we can define some statistics,

Nk =
N

∑
n=1

rnk (A6)

z̄k =
1

Nk

N

∑
n=1

rnkzn (A7)

Sk =
1

Nk

N

∑
n=1

rnk(zn − z̄k)(zn − z̄k)
T (A8)

In the Maximization step, the parameters in the prior distribution are updated by the
following equations.

αk = α0 + Nk (A9)

βk = β0 + Nk (A10)

mk =
1
βk

(β0m0 + Nk z̄k) (A11)

a−1
k = a−1

0 + NkSk +
β0Nk

β0 + Nk
(z̄k −m0)(z̄k −m0)

T (A12)

bk = b0 + Nk (A13)
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