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Abstract: Chains of coupled van der Pol equations are considered. The main assumption that
motivates the use of special asymptotic methods is that the number of elements in the chain is
sufficiently large. This allows moving from a discrete system of equations to the use of a continuity
argument and obtaining an integro-differential boundary value problem as the initial model. In
the study of the behaviour of all its solutions in a neighbourhood of the equilibrium state, infinite-
dimensional critical cases arise in the problem of the stability of solutions. The main results include the
construction of special families of quasi-normal forms, namely non-linear boundary value problems
of either Schrödinger or Ginzburg–Landau type. Their solutions make it possible to determine the
main terms of the asymptotic expansion of both regular and irregular solutions to the original system.
The main goal is the study of chains with diffusion- and advective-type couplings, as well as fully
connected chains.
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1. Formulation of the Problem

The classical van der Pol equation

ü + au̇ + u = f (u, u̇), f (u, u̇) = u̇u2

arises in many applied problems. Here, we consider a system of N coupled van der Pol
equations

üj + au̇j + u = f (uj, u̇j) + d
N

∑
j=1

aijui, j = 1, . . . N. (1)

Systems of this type have been considered in the works of many authors (see, for
example, [1–15]). We will assume that the coupling coefficients of each j element are the
same for all j, i.e., aij = ai−j, and that the chain is circular, i.e, the j± N element coincides
with the j element.

Let xj = 2π jN−1 (j = 1, . . . N) be uniformly distributed points on some circle with
angular coordinate xj. Function uj(t) is the value of u(t, x) at x = xj.

In this paper, we will consider several of the most common types of coupling, namely
the following.

1. Diffusion chains. For such chains, we assume that

a1 = a−1 = 1, a0 = 2, aj = 0 at j = 2, . . . N − 2,

i.e., the second term on the right hand side of (1) has the form

d[u(t, xj+1)− 2u(t, xj) + u(t, xj−1)]. (2)
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Sometimes, in the case of d < 0, (2) is called anti-diffusion.
2. One-way coupled chains. They are determined by the relations

a1 = 1, a0 = −1, aj = 0 at j = 2, . . . N − 1,

that means that in (1) we have

d[u(t, xj+1)− u(t, xj−1)]. (3)

Sometimes the coupling (3) is called advective. Another variant of the advective
coupling is often used, when

a1 = 1, a−1 = 1.

In this case, we have
d[u(t, xj+1)− u(t, xj−1)].

3. Chains with two-way or semi-diffusion coupling. Here,

a1 = a−1 = 1, a0 = a2 = . . . = aN−2 = 0

and the analogue of (2) and (3) has the form

d[u(t, xj+1) + u(t, xj−1)]. (4)

4. Fully coupled chains. In this case, we assume that

d
N

∑
i=1

aijui = d
1
N

N

∑
i=1

aiu(t, xi).

The next assumption is central. We will assume that the number of N elements in (1)
is sufficiently large, which means that the parameter ε = 2πN−1 satisfies the relation

0 < ε� 1.

This condition allows us to naturally pass from the fixed variables u(t, xj) (j =
1, . . . , N) to the continuous variable x ∈ [0, 2π] of function u(t, x). Then, system (1) can be
written in a more general form as

∂2u
∂t2 + a

∂u
∂t

+ u = f
(

u,
∂u
∂t

)
+ d

+∞∫
−∞

F(s, ε)u(t, x + s)ds, (5)

with periodic boundary conditions

u(t, x + 2π) ≡ u(t, x). (6)

Note that the last term on the right-hand side of (5) can also be written as an integral

d
2π∫
0

F̃(s, ε)u(t, x + s)ds.

We will describe function F(s, ε) in more detail. For the values k = 0 and k = ±1,
we set

Fk(s) =
1

2εσ
√

π
exp

(
− (εσ)−2(s + εk)2), σ > 0

( +∞∫
−∞

Fk(s)ds = 1
)

.
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Note that for a fixed function u(t, x), for σ→ 0, we have

lim
σ→0

+∞∫
−∞

Fk(s)u(t, x + s)ds = u(t, x + εk).

Function

F(s, ε) = F1(s)− 2F0(s) + F−1(s) (7)

generalises the diffusion coupling, since it satisfies

lim
σ→0

+∞∫
−∞

F(s, ε)u(t, x + s)ds = u(t, x + ε)− 2u(t, x) + u(t, x− ε).

Note that the coupling of diffusion type (3) is the simplest difference approximation
of the diffusion operator ∂2u/∂x2.

For semi-diffusion coupling, it is natural to assume that

F(s, ε) = F1(s) + F−1(s).

The expression (3) is the simplest difference approximation of the advection (transfer)
operator ∂u/∂x. At the same time, we will also consider a coupling “similar” to (4):

u(t, x + ε)− u(t, x− ε), (8)

since it also approximates the advection operator to the same extent. In relation to the
function F(s, ε), for (3), the following expression arises:

F(s, ε) = F1(s)− F0(s),

whereas for (8)
F(s, ε) = F1(s)− F−1(s).

Note that the following relations

+∞∫
−∞

Fk(s) exp(ims)ds = cos(εm) exp(−σ2(εm)2),
( +∞∫
−∞

Fk(s)ds = 1
)

indicate the convenience of representing F(s, ε) in terms of functions of the form Fk(s).
Functions F(s, ε) of this type have been used in [16]. Similar expressions for F(s), where
F(s) = Const · exp[−σ2|s|], are also given in [17]; however, they are less convenient.

For fully coupled chains, for N � 1, the representation

d
1
N

N

∑
j=1

aiu(t, xi) = d
1

2π

2π∫
0

ϕ(s)u(t, x + s)ds (9)

arises naturally. Note that the case when

ϕ(s) ≡ 1

seems to be the most important.
In this paper, we will study the behaviour of all the solutions to (5) and (6) with

sufficiently small initial conditions (in the norm) under the constraints (7)–(9). More
precisely, we will study the asymptotics as ε→ 0, for all t ∈ (t0, ∞), x ∈ [0, 2π] of functions
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that are sufficiently small and satisfy the boundary value problems (5) and (6) with a high
degree of accuracy in ε (uniformly in t, x).

We fix the space of initial conditions

u(0, x) ∈ C[0,2π],
∂u
∂t

∣∣∣
t=0
∈ C[0,2π]

to be the phase space of the boundary value problem (5) and (6). In addition to the model
in (5) and (6), we consider another model by replacing u(t, x + s) with ∂u(t, x + s)/∂t in
the integral of the right-hand side of (5), namely

∂2u
∂t2 + a

∂u
∂t

+ u = f
(

u,
∂u
∂t

)
+ d

+∞∫
−∞

F(s, ε)
∂

∂t
u(t, x + s)ds.

We shall comment on the similarities and differences between the solutions of
such models.

When studying the local behaviour of solutions, the main focus is on the study of
the properties of boundary value problems linearised at zero with 2π-periodic boundary
conditions (6)

∂2u
∂t2 + a

∂u
∂t

+ u = d
+∞∫
−∞

F(s, ε)u(t, x + s)ds (10)

and
∂2u
∂t2 + a

∂u
∂t

+ u = d
+∞∫
−∞

F(s, ε)
∂u(t, x + s)

∂t
ds.

In turn, the behaviour of solutions to these boundary value problems is determined
by the location of the roots of the characteristic equation

λ2 + aλ + 1 = d
+∞∫
−∞

F(s, ε) exp(iks)ds, (11)

where k = 0, ± 1, ± 2, . . ..
We now formulate some statements of a general plan which are analogues of Lya-

punov’s theorems on stability in the first approximation.

Proposition 1. Let all roots of the characteristic Equation (11) have negative real parts and be
separated from zero at ε → 0. Then, the zero equilibrium of (5) and (6) is asymptotically stable,
and all solutions from some sufficiently small ε-independent neighbourhood of the zero equilibrium
state tend to zero as t→ ∞.

Proposition 2. Let the characteristic Equation (11) have a positive real part separated from zero at
ε→ 0. Then, the zero equilibrium in (5) and (6) is unstable, and no attractors of this boundary value
problem can exist in a sufficiently small ε-independent neighbourhood of the zero equilibrium state.

Thus, only such critical cases need to be considered when the characteristic Equa-
tion (11) does not have roots with positive real parts separated from zero as ε→ 0, but there
are roots whose real parts tend to zero as ε → 0. Below, we study the local behaviour of
solutions to the boundary value problem (5) and (6) in critical cases.

An important feature of these critical cases is the fact that an infinite number of roots
of the corresponding characteristic equations tend to the imaginary axis as ε→ 0. Thus, we
can say that critical cases of infinite dimension are realised. Critical cases of this type have
been considered in [18–20]. The methodology of these works will be essentially used here.
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The main result is the construction of special non-linear forms, the so-called quasi-
normal forms (QNF), namely boundary value problems of parabolic type. They do not
contain small parameters and their non-local dynamics determines the local behaviour of
solutions to the original boundary value problems.

Solutions of quasi-normal form determine the principal terms of the asymptotic
expansions of the original boundary value problems. As a rule, they are classical Ginzburg–
Landau equations or integro-differential equations. Numerical methods are well developed
for such equations. For the original boundary value problems, the use of numerical methods
is difficult, since they are singularly perturbed and the solutions contain components that
rapidly oscillate in the space or time variable. Therefore, despite the apparent complexity,
quasi-normal forms are simpler objects, ready for further study using standard methods.
In addition, the above quasi-normal forms allow one to immediately draw a conclusion,
for example, about multistability (for quasi-normal forms in which continuum parameters
are present) and about high sensitivity to parameter changes. The conclusion that many of
the presented quasi-normal forms are characterised by complex irregular dynamics follows
from the well-known results of the analysis of this type of system (see, for example, [21]).

The parameter σ in the formulas for F(s, ε) has a clear meaning. It defines a set of
chain elements that significantly affect each specific element. This effect is weaker the
farther the elements are from each other. For σ = 0, additional critical cases arise when
infinitely many roots of the characteristic equation, which correspond to harmonics with
arbitrarily large numbers, have asymptotically small real parts. To describe the dynamic
properties of the problem in this situation, the condition σ� 1 is considered. Note that the
quasi-normal form in such cases acquire an additional spatial variable, which means that
there is a tendency to complicate the oscillations.

Note that the condition that the real parts of the roots of the characteristic equation are
nonpositive implies that

a ≥ 0. (12)

Below, when considering critical cases for fixed coefficients a0 and d0, these coefficients
will vary, i.e., we will assume that

a = a0 + ε2a1, d = d0 + ε2d2. (13)

This is a quite important remark, since for a > 0, all solutions of the van der Pol
equation tend to zero as t → ∞, and, for a0 = 0 and a1 < 0, this equation has a stable
limit cycle.

The solutions studied in this paper are conditionally divided into two types: regu-
lar and irregular. Regular solutions are solutions “well dependent” on the parameter ε,
i.e., solutions for which the following asymptotic representation holds:

u(t, x + ε) = u(t, x) + ε
∂

∂x
u(t, x) +

1
2

ε2 ∂2u
∂y2 u(t, x) + . . . .

Irregular solutions have a more complex structure, which consists of a superposition
of functions smoothly (regularly) depending on the parameter ε and functions smoothly
depending on the parameter ε−1.

Note that for some types of couplings, only regular or only irregular solutions can
exist or both can exist simultaneously.

Regarding the methodology, for finite-dimensional critical cases in the problem of the
stability of solutions, as a rule, it is possible to substantiate statements about the existence
of local invariant integral manifolds whose dimension is determined by the dimension
of critical cases. The initial system on such manifolds is represented as special non-linear
systems of ordinary differential equations, which are called normal forms. Their non-local
solutions determine the local behaviour of all solutions to the original systems as t→ ∞.

In this paper, we study situations where the critical cases have infinite dimensions. It
is difficult, and sometimes even impossible, to substantiate the existence of an invariant
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manifold if it does not coincide with the entire phase space. Nevertheless, it is possible to
use the formalism of the method of normal forms, which is based on the use of the structure
of “critical” solutions of linearised equations. Such constructions were successfully used,
for example, in the works [22,23]. The fact that there is no quadratic non-linearity in the
original van der Pol equation considerably simplifies the corresponding calculations, but is
not fundamental. All constructions extend to non-linear second order equations with
quadratic and cubic non-linearities of general form.

The main assumption that opens the way to the application of special asymptotic
methods is that the number of elements N in the chain is sufficiently large. Thus, the small
parameter ε∼N−1 arises in a natural way.

The main result is the construction of the so-called quasi-normal forms and continuum
families of quasi-normal forms, which are special non-linear distributed boundary value
problems that do not contain a small parameter. The non-local structure of the solutions of
these quasi-normal forms determines the principal terms of the asymptotic expansions of
the original problem.

The paper is organised as follows. The main content deals with the study of chains
with diffusion-type couplings. Sections 2, 3 and Appendix A.1 are devoted to this. In Ap-
pendix A.2, the results are extended to equations in which, instead of the van der Pol
non-linearity, there is a conservative non-linearity describing dislocations in a solid.

In Section 4, the dynamic properties of chains with advective coupling are studied,
which is an equally interesting problem. In Section 5, we will discuss the asymptotics of
solutions in fully connected chains. We note that, on one hand, the results of the above
sections differ significantly from each other, and on the other hand, they serve as an
important addition to the existing studies.

2. Asymptotic Behaviour of Solutions in Chains with Diffusion-Type Connections

The linearised zero boundary value problem for chains (5) and (6) with diffusion-type
couplings has the form (10), (6), where F(s, ε) = F1(s) − 2F0(s) + F−1(s). Substituting
u = exp(ikx + λt) into these equations, we arrive at the characteristic equation

λ2 + aλ + 1 = −4d sin2
( z

2

)
exp(−δ2z2), (14)

where z = εk, k = 0,±1,±2, . . .. In order for this equation to have no roots with positive
real parts, it is necessary and sufficient that the following condition is satisfied

1 + 4d max
z

(
sin2 z

2
· exp(−δ2z2)

)
≥ 0. (15)

In what follows, this condition is assumed to be satisfied.

2.1. Asymptotic Behaviour of Regular Solutions

Given that
a0 > 0

for some fixed integer k, all roots of (14) have negative real parts separated from the
imaginary axis as ε → 0. Therefore, the critical case in the stability problem is realised
only for

a0 = 0.

Then, the roots λk(ε) and λ̄k(ε) are complex and

λk(ε) = i + ελ1k + o(ε2), λ1k = −
1
2

a1 +
idk2

2
.
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Equation (10) has a set of solutions

u(t, x, ε) =
∞

∑
k=−∞

ξk(τ) exp(it), (16)

and ξk(τ) = exp
[
(λ1k + o(ε2))τ

]
, where τ = ε2t is a slow temporal variable. The expres-

sion (16) can be written as u(t, x, ε) = ξ(τ, x), where the Fourier coefficients ξ(τ, x) are
equal to ξk(τ). Solutions to the non-linear boundary value problem (5) and (6) are then
sought in the form of a formal series

u(t, x, ε) = ε
(
ξ(τ, x) exp(it) + c̄c

)
+ ε3u3(t, τ, x) + . . . . (17)

The expression c̄c in (17) and below denotes the complex conjugate of the previous
term. Here, ξ(τ, x) is an unknown function and u3(t, τ, x) is 2π periodic in t and x. We
substitute (17) into (5) and collect the coefficients of the same powers of ε. Then, for u3 =
u30 + ū30, we arrive at

∂2u30

∂t2 + u30 =
[
− ia1ξ − 2i

∂ξ

∂τ
+ d

∂2ξ

∂x2 − iξ|ξ|2
]

exp(it) + iξ3 exp(3it).

This equation is solvable with respect to ξ(τ, x) in the specified class of functions if
and only if the equalities

2
∂ξ

∂τ
= −id

∂2ξ

∂x2 − a1ξ − ξ|ξ|2, ξ(τ, x + 2π) ≡ ξ(τ, x) (18)

are satisfied.
The boundary value problem (18) plays the role of a normal form. Its solutions

bounded at τ → ∞, x ∈ [0, 2π] determine, according to (17), the asymptotics of regular
solutions to the original boundary value problem (5) and (6).

At a1 < 0, the boundary value problem (18) has an infinite number of periodic
solutions ρ0 exp

[
ikx + idk2τ/2

]
. Note also the formula for y(τ, x) = |ξ(τ, x)|2 is

2π∫
0

[
∂y
∂τ

+ a1y + y2
]

dx = 0.

2.2. Asymptotic Behaviour of Irregular Solutions

We fix δ > 0 arbitrarily and define the function

γ(δ) =

[
1 + 4d sin2

(
δ

2

)
exp(−δ2σ2)

]1/2

.

Note that

γ′(δ) = 2dγ−1(δ) exp(−δ2σ2) sin
(

δ

2

)
·
[

cos
δ

2
− 2δσ2 sin

δ

2

]
.

Additionally, we assume that γ′(δ) 6= 0, i.e.,

δ 6= πn and ctg
δ

2
6= 2δσ2. (19)

We denote the value that completes the expression δε−1 to an integer by θ = θ(δ, ε) ∈
[0, 1). Consider the set of integers

Kε(δ) = {δε−1 + θ + m, m = 0,±1,±2, . . .}.
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Thus, θ(ε) is a piecewise linear function, which, for ε→ 0, runs over all values from
zero to one infinitely many times. For the values k ∈ Kε(δ), we consider the asymptotics of
the roots λ+

m(ε) and λ̄+
m(ε) of the characteristic Equation (14). We obtain

λ+
m(ε) = iγ(δ) + iε(θ + m)γ′(δ) + ε2λ+

m2(ε),

λ−m(ε) = −iγ(δ) + iε(θ + m)γ′(δ) + ε2λ−m2(ε),

where m = 0,±1,±2, . . . and λ±m2(ε) are some functions bounded as ε→ 0, whose explicit
form is not required.

The linearised boundary value problem (10), (6) has solutions

exp
(

i
(

δ

ε
+ θ + m

)
x + λ±m(ε)t

)
.

Hence, it follows that the solutions to the same boundary value problem are the set
of solutions

u =
∞

∑
k=−∞

(
ξm exp

(
i(δε−1 + θ + m)x + λ+

m(ε)t
)
+ c̄c+

+ ηm exp
(
i(δε−1 + θ + m)x + λ−m(ε)t

)
+ c̄c

)
,

where the quantities ξm and ηm are arbitrary. This expression can be rewritten in the form

u1 = U1(t, τ, x, ε) = exp
[
i(δε−1 + θ)x + i(γ(δ) + εθγ′(δ))t

]
(ξ(τ, x+) + c̄c)+

+ exp
[
i(δε−1 + θ)x− i(γ(δ) + εθγ′(δ))t

]
(η(τ, x−) + c̄c),

(20)

where τ = ε2t,
x± = x± εγ′(δ)t,

and the Fourier coefficients of the functions ξ(τ, x) and η(τ, x) satisfy the following

ξm(τ) = ξm exp
(
λ+

m2(ε)τ
)
, ηm(τ) = ηm exp

(
λ−m2(ε)τ

)
.

Note that due to condition (19), the values x± do not coincide with x. Based on the
obtained representation of solutions of the linear equation, we shall look for solutions to
the non-linear boundary value problem (5) and (6) in the form

u(t, x, ε) = εu1 + ε2u2 + ε3u3. (21)

Functions uj are 2π
(
γ(δ) + εθγ′(δ)

)−1 periodic in t and 2π periodic in x. The expres-
sion for u1 is the same as (20), with the only difference that now ξ(τ, x) and η(τ, x) are
unknown complex amplitudes.

We substitute (21) into (5) and successively collect coefficients of the same powers of ε.
In the first step, we arrive at an equation for u1, whose solution is presented in (20). In the
second step, we obtain the same equation for u2 :

∂2u2

∂t2 + u2 = d
∞∫
−∞

F(s, ε)u2(t, τ, x + s)ds.

We fix u2 to be the function

u2 = E+(t, x, ε) f+(t1, τ, x) + c̄c + E−(t, x, ε) f−(t1, τ, x) + c̄c, (22)

where
E±(t, τ, x) = exp

(
i(δε−1 + θ)x± i(γ(δ) + εθγ′(δ))t

)
, t1 = εt,
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and the expression f (t1, τ, x) is not defined at this step. It will be chosen in the next step.
The next step is central. We obtain an equation for u3 of the form

∂2u3

∂t2 + u3 − d
∞∫
−∞

F(s, ε)u3(t, τ, x + s)ds = E+(t, τ, x)B+
0 (t1, x, τ)+

+ E−(t, τ, x)B−0 (t1, x, τ) + E+(t, τ, x)B+(x+, τ) + E−(t, τ, x)B−(x−, τ) + c̄c+

+ E3B(t1, x, x+, x−, τ) + c̄c.

Here, we use the notation

B+
0 (t1, x, τ) = −2iγ(δ)

[(
∂ f+

∂t1
+

γ′(δ)

γ(δ)

∂ f+

∂x

)
+ 2ξ

(
|η|2 −M(|η|2)

)]
,

B−0 (t1, x, τ) = 2iγ(δ)
[(

∂ f−

∂t1
− γ′(δ)

γ(δ)

∂ f−

∂x

)
− 2η

(
|ξ|2 −M(|ξ|2)

)]
,

B+(x+, τ) = −iγ(δ)
∂ξ

∂τ
− iγ′′(δ)

(
− ∂2ξ

∂x2 + 2iθ
∂ξ

∂x
+ θ2ξ

)
− iγ(δ)a1ξ−

− ξ(|ξ|2 + 2M(|η|2)),

B−(x−, τ) = iγ(δ)
∂η

∂τ
+ iγ′′(δ)

(
− ∂2η

∂x2 + 2iθ
∂η

∂x
+ θ2η

)
+ iγ(δ)a1η−

− η(|η|2 + 2M(|ξ|2)).

In these formulas

M(ϕ(x)) =
1

2π

2π∫
0

ϕ(x)dx.

The expression for B(t1, x, x+, x−, τ) is not given, since it will not be used to find ξ and
η, only when deriving a formula to determine u(t, x, ε) in (21). Note that B±0 and B± have
different arguments. Therefore, to solve Equation (22) in the specified class of functions, it
is necessary to require that the equalities

B±0 ≡ B± ≡ 0

are satisfied. We consider the equalities B±0 = 0 as equations for the unknown functions
f±(t1, x). Its solutions can be written explicitly. One can verify that

f+(t1, x, τ) = −(2γ′(δ))−1ξ(τ, x+)
x−∫
0

(
|η(τ, x)|2 −M(|η(τ, x)|2)

)
dx,

f−(t1, x, τ) = (2γ′(δ))−1η(τ, x−)
x+∫
0

(
|ξ(τ, x)|2 −M(|ξ(τ, x)|2)

)
dx.

(23)

Then, from the equalities B± = 0, we obtain that ξ and η satisfy the following

2iγ(δ0)
∂ξ

∂τ
= γ′′(δ0)

[
∂2ξ

∂x2 + 2iθ
∂ξ

∂x
− θ2ξ

]
− iγ(δ0)a1ξ − iγ(δ0)ξ(|ξ|2 + 2M(|η|2)), (24)

−2iγ(δ0)
∂η

∂τ
= γ′′(δ0)

[
∂2η

∂x2 − 2iθ
∂η

∂x
− θ2η

]
+ iγ(δ0)a1η + iγ(δ0)η(|η|2 + 2M(|ξ|2)), (25)
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ξ(τ, x + 2π) ≡ ξ(τ, x), η(τ, x + 2π) ≡ η(τ, x). (26)

The main result is that the boundary value problem (24)–(26) plays the role of a normal
form for (5) and (6), when considering solutions with modes from the set Kε(δ) ∩ Kε(−δ).
In order to formulate the corresponding result more precisely, we introduce some notation.
We arbitrarily fix θ0 ∈ [0, 1). By εn = εn(δ, θ0), we denote a sequence εn → 0 (n → ∞),
where the value of θ0(εn, δ) does not change.

Theorem 1. We fix arbitrarily θ0 ∈ [0, 1). Let ξ(τ, x), η(τ, x) be a solution of the boundary
value problem (24)–(26). Then, for sufficiently small values of ε = εn(δ, θ0), the function (21) for
ξ = ξ(τ, x+), η = η(τ, x−) satisfies the boundary value problem (5) and (6) up to o(ε3

n).

We note again that, in this section, we have studied the asymptotic behaviour of
solutions whose modes belong to the set K(δ). It is natural to call the value δε−1 + θ the
base mode for such solutions.

2.3. Quasinormal Form in the Case γ′(δ) = 0

Let the condition
γ′(δ0) = 0 (27)

be satisfied for some value δ = δ0. For example, δ0 could be δ0 = 2πn0, where n0 > 0
and is an integer. The expression 2πn0ε−1 is an integer because ε = 2πN−1, which means
θ(2πn0, ε) = 0.

Under condition (27), the constructions are substantially simplified. This follows from
the fact that x+ = x− = x. In the asymptotic representation (21), we have u2 = 0, and
hence f± = 0. Here, we restrict ourselves to presenting the final boundary value problem
for the amplitudes ξ(τ, x) and η(τ, x):

2iγ(δ0)
∂ξ

∂τ
= γ′′(δ0)

[
∂2ξ

∂x2 + 2iθ
∂ξ

∂x
− θ2ξ

]
− iγ(δ0)a1ξ − iγ(δ0)ξ(|ξ|2 + 2|η|2), (28)

−2iγ(δ0)
∂η

∂τ
= γ′′(δ0)

[
∂2η

∂x2 − 2iθ
∂η

∂x
− θ2η

]
+ iγ(δ0)a1η + iγ(δ0)η(2|ξ|2 + |η|2), (29)

ξ(τ, x + 2π) ≡ ξ(τ, x), η(τ, x + 2π) ≡ η(τ, x). (30)

The final result is the assertion of Theorem 1. It should be noted that in the case of
δ0 = 2πn0 in (28)–(30), and hence in Theorem 1, the value θ is zero.

2.4. Quasinormal Form in the Case γ(δ) = 0

Let γ(δ0) = 0 be satisfied for some δ0 > 0. In this case, we conclude that

1 + 4d sin2 δ0

2
· exp(−δ2σ2) = 0. (31)

Hence, taking into account condition (15), we conclude that γ′(δ0) = 0, γ′′(δ0) < 0
and δ0 is the first positive root of the equation

4ctg
δ0

2
= σ2δ0.

Finding δ0, from (31) we find the value of the coefficient d. For coefficient a in (5), it is
convenient to take the equality a = εa1.
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In the case of (31), the situation is even more simplified. In the analogue of the
asymptotic representation (21), we have

u(t, x, ε) = ε1/2
(

ξ(t1, x) exp(i(δ0ε−1 + θ)x) + c̄c
)
+ ε3/2u3(t1, x), t1 = εt. (32)

Substituting (32) into (5), after some calculations we obtain the quasi-normal form

∂2ξ

∂t2
1
+ a1

∂ξ

∂t1
=− γ′′(δ0)

(
∂2ξ

∂x2 − iθ
∂ξ

∂x
− θ2ξ

)
− 2|ξ|2 ∂ξ

∂t1
− ξ2 ∂ξ̄

∂t1
,

ξ(τ, x + 2π) ≡ ξ(τ, x)
(33)

as the main result. Note that the linear and non-linear components in (33) differ significantly
from the above quasi-normal forms.

In Appendix A.1, we consider the question of constructing a CNF for finding the
amplitudes of multi-frequency solutions.

3. Equations with a Small Parameter σ

In this section, we assume that the parameter σ appearing in the definition of F(s, ε) is
sufficiently small:

σ = εσ1. (34)

Therefore, in the case under consideration, the function F0(s, ε) is essentially “closer”
to the δ-function.

In addition, here we study the influence of variations in the value of N on the asymp-
totic behaviour of the solutions. We fix an arbitrary integer value c, and let the number of
elements in (1) be N + c.

3.1. Asymptotic Behaviour of Solutions with One Base Mode

We set
µ =

2π

N + c
.

On the right-hand side of Equation (5), the parameter ε is replaced by µ; that is, instead
of F(s, ε), we have F(s, µ):

∂2u
∂t2 + εa1

∂u
∂t

+ u + f (u, u̇) = d
+∞∫
−∞

F(s, µ)u(t, x + s)ds. (35)

Considering that ε = 2πN−1, we obtain

µ = ε

[
1− c

2π
ε +

c2

(2π)2 ε2 + . . .
]

.

The boundary value problem (35), (6) linearised at zero has the characteristic equation

λ2 + εa1λ + 1 = −4d sin2
( z

2

)
exp(−ε2σ2

1 z2), z = µk, k = 0,±1,±2, . . . . (36)

As in the previous section, we consider the question of constructing the asymptotes of
solutions to (35), (6) based on modes from K(δ) = {δε−1 + θ +m, m = 0,±1,±2, . . . , δ > 0}.
We consider the most important case when δ is not an integer multiple of 2 pi : δ 6= 2πj.

The roots λm(ε) (m = 0,±1,±2, . . .) of the characteristic Equation (36) corresponding
to modes from K(δ) have amplitude

λm(ε) = iγ(δ) + ελm1 + ε2λm2 + . . . , γ(δ) =

(
1 + 4 sin2 δ

2

)1/2

,
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where
λm1 = id(2γ(δ))−1 sin(δ)(m + θ − δc(2π)−1),

λm2 = −1
2

a1 − iA0 − iA1(m + θ − δc(2π)−1)− iA2(m + θ − δc(2π)−1)2.

The coefficients A0, A1 and A2 satisfy

A0 = 2dσ2δ2
(

sin
δ

2

)2

· γ−1(δ),

A1 = dc sin δ · (4πγ(δ))−1,

A2 = d[(sin δ)2 − 2γ2(δ) cos δ](8γ(δ))−3.

The solution of the linearised equation for (35) corresponding to the root λm(ε) can be
written as

um(t, x, ε) = ξm(τ, x+)E+ + ηm(τ, x−)E−,

where τ = ε2t, x± = x± 2εd,

E± = exp
[
i(δε−1 + θ − cδ(2π)−1)x± i(γ(δ) + ε(2γ(δ))−1 · (θ − δc(2π)−1) sin δ)t

]
,

ξm(τ) = ξm exp
(
(λm2 + O(ε))τ

)
, ηm(τ) = ηm exp

(
(λm2 + O(ε))τ

)
,

where ξm and ηm are arbitrary complex constants. As in the previous sections, we seek
the asymptotes of the solutions to the non-linear boundary value problem (5) and (6) in
the form

u = ε1/2
(

ξ(τ, x)E+ + c̄c + η(τ, x)E− + c̄c
)
+ ε
(

f+E+ + c̄c + f−E− + c̄c
)
+

+ε3/2u3(t, τ, x) + . . . .
(37)

The functions f± = f±(t1, τ, x) are defined by the same formulas as in (23), where
t1 = εt and

γ(δ) =
(

1 + 4 sin2 δ

2

)1/2
.

We substitute (37) into (5). We collect the coefficients at ε3/2, and in order to determine
the known amplitudes ξ and η, we obtain the boundary value problem

∂ξ

∂τ
=− 1

2
a1ξ − iA0ξ − iA1

(
θ − cδ(2π)−1 − i∂

∂x

)
ξ − iA2

(
θ − cδ(2π)−1 − i∂

∂x

)2

ξ−

− 1
2

ξ
(
|ξ|2 + 2M(|η|2)

)
,

∂η

∂τ
=− 1

2
a1η + iA0η + iA1

(
θ − cδ(2π)−1 − i∂

∂x

)
η + iA2

(
θ − cδ(2π)−1 − i∂

∂x

)2

η−

− 1
2

η
(
|η|2 + 2M(|ξ|2)

)
,

ξ(τ, x + 2π) ≡ ξ(τ, x), η(τ, x + 2π) ≡ η(τ, x).

The main result is that this boundary value problem plays the role of a normal form.
For every fixed θ0 ∈ [0, 1), its non-local solutions bounded as τ → ∞, x ∈ [0, 2π], allow us
to construct asymptotes for sufficiently small functions εn = εn(θ0) that satisfy the original
boundary value problem (5) and (6) up to o(ε3/2).

Remark 1. The roles of the coefficients c and σ1 are determined by the above formulas. Under the
conditions of the next Section 3.2, these coefficients play a much more important role.
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3.2. The Case of an Infinite Set of Basic Modes

Significantly new and interesting points arise when considering the asymptotics of
solutions containing various infinite sets of basic modes. Here, we emphasise an important
class of solutions whose base modes belong to the set

K∞(δ) = {δε−1 + θ + 2πnε−1 + m, m, n = 0,±1,±2, . . .}.

The roots λmn(ε) of the characteristic equation corresponding to these modes have the
asymptotics

λmn(ε) = iγ(δ) + ελmn1 + ε2λmn2,

where

λmn1 = ib
(

m− cn + θ − δc
2π

)
, b = (γ(δ))−1 sin δ,

λmn2 = −1
2

a1 + B1

(
(m− cn)2 + 2(m− cn)

(
θ − δc

2π

)
+
(

θ − δc
2π

)2
)
+ B2(δ + 2πn)2,

B1 = −i(2γ(δ))−1
(
(γ(δ))−2 sin2 δ− cos δ

)
, B2 = −i2(γ(δ))−1σ2

1 sin2 δ

2
.

The solutions of the linear boundary value problem umn(t, x, ε) corresponding to
λmn(ε) can be written as

umn(t, x, ε) = ξmn(τ) exp
[

i(δε−1 + θ)x + imx+ + 2πiny+ + i
(

γ(δ) + εb
(

θ − δc
2π

))
t
]

,

x± = x± εbt, y± = y∓ εcbt, y = 2πε−1x.

Therefore, in order to construct the asymptotes of the solutions to the boundary value
problem, we use the expressions

u(t, x, ε) = U(t, x, ε) + O(ε2) (38)

and
U(t, x, ε) = ε1/2

(
ξ(τ, x+, y+)E+

c + c̄c + η(τ, x−, y−)E−c + c̄c
)
+

+ε
(

f+c (t1, x, y)E+
c + c̄c + f−c (t1, x, y)E−c + c̄c

)
+

+ε3/2
(

H+
1 (τ, x, y)E+

c + c̄c + H−1 (τ, x, y)E−c + c̄c
)
+

+H+
3 (τ, x, y)(E+

c )3 + c̄c + H−3 (τ, x, y)(E−c )3 + c̄c

(39)

where t1 = εt and E±c is given by

E±c = exp
[

i
(

δε−1 + θ − δc
2π

)
x± i

(
γ(δ) + εb

(
θ − δc

2π

))
t
]

.

Substituting (38) and (39) into (5), after simple calculations, we obtain equations for
H±1 and H±3 . The functions H±3 are determined from these equations, and the solvability
conditions for H±1 allow us to determine f±c and obtain equations for ξ(τ, x, y) and η(τ, x, y).
The difficulty lies in the fact that the equations for determining H±1 include functions whose
spatial arguments x+, y+ and x−, y− are different; for some of these are x+ and y+, while
for others x− and y−. In non-linearity, these arguments are present in different factors.
The purpose of the constructions being carried out is to obtain systems of boundary value
problems for determining the unknown functions ξ and η with the same arguments.
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In order to have arbitrariness in the choice of functions f±, we consider the question
of the solvability in the class of 2π-periodic functions in x and y of the equation

∂g(x, y)
∂x

− c
∂g(x, y)

∂y
= p(x, y), (40)

where p(x, y) is 2π periodic in x and y. To do this, we introduce some notation. By D, J
and J0, we denote [24] operators defined on continuously differentiable functions v(x, y) of
two variables x and y, acting according to the rules

Dv(x, y) =
∂v
∂x
− c

∂v
∂y

,

Jv(x, y) =

x∫
0

v(s, cx + y− cs)ds,

J0v(x, y) =
1

2π

2π∫
0

v(s, cx + y− cs)ds.

Under the condition
J0 p(x, y) = 0

there exists a periodic solution of Equation (40) in both variables, which is given by

g(x, y) = Jp(x, y).

Note that an arbitrary 2π-periodic function p(x, y) in x and y can be represented as

p = J0 p− (1− J0)p

and the following is satisfied
J0(p− J0 p) = 0.

Below, we shall need the following relations, which follow from these definitions:

Dv(cx + y) = 0, D(J − J0)v(x, y) = DJv(x, y) = v(x, y).

The cubic non-linearity R = (iγξE+
c + c̄c + iγηE−c + c̄c) · (ξE+

c + c̄c + ηE−c + c̄c)2 for
E±c implies the following

R = −iγ(δ)ξ(|ξ|2 + 2|η|2)− iγ(δ)η(|η|2 + 2|ξ|2).

It is convenient to represent the above expression as a sum of four terms

R1 = −iγ(δ)ξ(|ξ|2 + 2J0|η|2), R2 = −iγ(δ)ξ(2|η|2 − 2J0|η|2),
R3 = −iγ(δ)η(|η|2 + 2J0|ξ|2), R4 = −iγ(δ)η(2|ξ|2 − 2J0|ξ|2).

The functions R1 and R3 depend only on x+, y+ and x−, y−, respectively, while both
of the functions R2 and R4 depend on all arguments. We manage the arbitrariness in the
choice of f± in such a way as to “remove” the terms R2 and R4 in the equation for H±1 .
From here, we arrive at:

2iγ(δ)
∂ f+

∂t1
= 2i(sin δ)D f+ − iγ(δ)ξ

(
2|η|2 − 2J0|η|2

)
, (41)

−2iγ(δ)
∂ f−

∂t1
= 2i(sin δ)D f− − iγ(δ)η

(
2|ξ|2 − 2J0|ξ|2

)
. (42)
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In (41), we set f+(t1, x, y) = ξ(τ, x+, y+) · g(t1, x, y). Then, we obtain

2iγ(δ)
∂g+

∂t1
− 2i(sin δ) · Dg+ = −2iγ(δ)

(
|η(τ, x−, y−)|2 − J0|η(τ, x−, y−)|2

)
.

Then, for x = x− − bt1, y = y− + cbt1, we arrive at the equation for g+ = g+(x, y):

bDg+ = |η(τ, x, y)|2 − J0(|η(τ, x, y)|2).

Hence, we conclude that

g+(x, y) = b−1(J(|η(τ, x, y)|2 − J0|η(τ, x, y)|2)
)
.

Analogously, we find that f−(t1, x, y) = η(τ, x−, y−) · g(t1, x, y) and

g−(x, y) = −b−1(J(|ξ(τ, x, y)|2 − J0|ξ(τ, x, y)|2)
)
.

Let us formulate the main result. Consider the boundary value problem

∂ξ
∂τ =

(
δ− i ∂

∂y

)2

ξ + iB1

[
− D2 − 2i

(
θ − cδ

2π

)
D +

(
θ − cδ

2π

)2]
ξ+

+iB2

(
θ − cδ

2π − iD
)

ξ − 1
2 a1ξ − 1

2 ξ
(
|ξ|2 + 2J0(|η|2)

)
,

(43)

∂η
∂τ =

(
δ− i ∂

∂y

)2

η − iB1

[
− D2 − 2i

(
θ − cδ

2π

)
D +

(
θ − cδ

2π

)2]
η−

−iB2

(
θ − cδ

2π − iD
)

η − 1
2 a1η − 1

2 η
(
|η|2 + 2J0(|ξ|2)

)
,

(44)

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y) ≡ ξ(τ, x, y + 2π), (45)

η(τ, x + 2π, y) ≡ η(τ, x, y) ≡ η(τ, x, y + 2π). (46)

Recall that
D f =

∂ f
∂x
− c

∂ f
∂y

.

By εk(θ0) (k = k0, k0 + 1, . . .), we denote a sequence such that εk(θ0) → 0 for k → ∞
and θ(εk(θ0)) = θ0.

Theorem 2. Let (34) be satisfied. We fix arbitrarily δ 6= 2πk (k = 0, 1, . . .), θ0 ∈ [0, 1) and an
integer c. In addition, let µ = N + c and let

(
ξ(τ, x, y), η(τ, x, y)

)
for their derivatives with

respect to τ and let their second order derivatives with respect to x and y be bounded functions
as τ → ∞, x ∈ [0, 2π], y ∈ [0, 2π]. Moreover, let

(
ξ(τ, x, y), η(τ, x, y)

)
be a solution to the

boundary value problem (43)–(46) for θ = θ0. Then, the function U(t, x, εk), for τ = εk(θ0)t,
x± = x ± εkbt, y± = y ∓ εkcbt, and y = 2πε−1

k x satisfies the boundary value problem (5)
and (6) up to o(ε3

k).

3.3. Examples

We consider two cases. In the first of them, we assume that K∞ = {2πnε−1 +m; m, n =
0,±1,±2, . . .} and σ = εσ1, δ = ε2t, y = 2πε−1x, a = ε2a1, d = d0 + ε2d1 and 4d0 > −1.
Then, the final quasi-normal form is

∂ξ

∂τ
= − a1

2
ξ − i

d0

8
D2ξ − i

d0σ2
1

2
∂2ξ

∂y2 −
1
2

ξ|ξ|2,

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y) ≡ ξ(τ, x, y + 2π).
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The function ξ(τ, x, y) determines the asymptotes of the solutions of (5) and (6) ac-
cording to the formula

u(t, x, ε) = ε1/2(ξ(τ, x, y) exp(it) + c̄c
)
+ O(ε3/2).

It is interesting to compare this result with the situation considered in Appendix A.1.2
(see Formula (A8)).

In the second case, we assume that

d0 = −1
4

.

It is convenient to assume that the value of N is even. Otherwise, it suffices to replace
the integer c by c + 1. Then, the expression πε−1 is an integer, and hence θ = 0.

Consider the basic set of modes K∞ = {π(2n + 1)ε−1 + m; m, n = 0,±1,±2, . . .}.
Here, we assume that σ = εσ1, a = εa1, t1 = εt and d = d0 + ε2d1. As a result, we arrive at
the real quasi-normal form

∂2ξ

∂t2
1
+ a1

∂ξ

∂t1
+ d1ξ = 4−2D2ξ + σ2

1
∂2ξ

∂y2 − ξ2 ∂ξ

∂t1
,

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y) ≡ −ξ(τ, x, y + π)

where u(t, x, ε) = ε1/2ξ(τ, x, y) +O(ε3/2). The obtained result differs significantly from the
case considered in Section 2.4.

In Appendix A.2, the results obtained are applied to the problem of dislocations in
a solid.

4. Advective Coupling

Here, we consider the equation

∂2u
∂t2 + a

∂u
∂t

+ u = f
(

u,
∂u
∂t

)
+ d

∞∫
−∞

(Fε(s)− F−ε(s))u(t, x + s)ds (47)

with boundary conditions (6).
The equation linearised at zero has the form

∂2u
∂t2 + a

∂u
∂t

+ u = d
∞∫
−∞

(Fε(s)− F−ε(s))u(t, x + s)ds. (48)

We investigate the roots of the characteristic equation for (48)

λ2 + aλ + 1 = 2idg(z) sin z, (49)

where g(z) = exp
(
− σ2z2), z = εk, k = 0,±1,±2, . . .. Let the following nondegeneracy

condition be satisfied
a > 0. (50)

We consider separately two cases depending on the value of parameter δ. First,
in Section 4.1, we will focus on “average” values of this parameter, i.e., the value δ > 0
is supposed to be somehow fixed. In Section 4.2, we will consider the case of sufficiently
small values of δ.

4.1. The Case of “Average” Values of σ

For d = 0, all roots of (49) have negative real parts. We denote the smallest (if it exists)
value of the parameter d by d+0 > 0, for which there exists a value z+0 such that, for d = d+0
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and z = z+0 , Equation (49) has a purely imaginary root λ = iω (ω > 0). We denote the
largest (if it exists) value of the parameter d by d−0 < 0, for which there exists z−0 such that,
for d = d−0 and z = z−0 , Equation (49) has a purely imaginary root λ = iω (ω > 0). Let
z0 be the first positive root of equation tgz = (2σz)−1. We set g0 = max

z
g(z) sin z. Then,

g0 = g(z0) sin z0.

Lemma 1. We fix arbitrarily a0 > 0. We have:

ω = 1, d+0 =
1
2

ag−1
0 , d−0 = −1

2
ag−1

0 , z+0 = z0, z−0 = −z0.

Lemma 2. Assume that the following relations hold:

d−0 < d < d+0 .

Then, all roots of (49) have negative real parts and are separated from zero as ε→ 0.

Lemma 3. Let one of the followings relations,

d0 > d+0 or d0 < d−0 ,

hold. Then, Equation (49) has a positive real part separated from zero as ε→ 0.

The proofs of these Lemmas are simple, and thus we omit them.
From Lemmas 1–3, it follows that, for d = d±0 , in the boundary value problem (48), (6),

the critical cases are realised in the stability problem. In (47) we set

a = a0 + ε2a1, d = d+0 + ε2d1. (51)

Let us find the asymptotes as ε→ 0 of all the roots λ±m(ε) and λ
±
m(ε) (m = 0,±1,±2, . . .)

of Equations (49) whose real parts tend to zero. We first introduce some more notation. Let
Θ = Θ(ε, z) ∈ [0, 1) be the value that completes the expression |z|ε−1. By g0, we denote the
expression

g0 =
d2

dz2 (g(z) sin z)
∣∣∣∣
z=z0

.

Note that g0 < 0. Consider the set of integer values k = z0ε−1 + Θ + m (m =
0,±1,±2, . . .). Then, substituting them in (49), we have the equality z = z0 + ε(Θ + m).

Lemma 4. The assympotic equalities

λ+
m(ε) = i + ε2(L0(Θ + m)2 + L1) + O(ε4), (52)

where

L0 = (a0 + 4)−1(ia0 − 2)2d0g0,

L1 = (a0 + 4)−1(ia0 − 2)(2d0g0 − a1),

hold.

Note that formula (52) does not change when the value d+0 in (51) is replaced by d−0 .
Equation (48), for m = 0,±1,±2, . . ., has the solution

um(t, x, ε) = exp
[
i
(
z±0 ε−1 + Θ + m

)
x + (i + ε2(L0(Θ + m)2 + L1) + O(ε4))t

]
.
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At the next stage, we introduce the non-linear boundary value problem

∂ξ

∂τ
= L0

∂2ξ

∂x2 + 2iL0Θ
∂ξ

∂x
+ (L1 − L0Θ2)ξ + σξ|ξ|2, (53)

ξ(τ, x + 2π) ≡ ξ(τ, x), (54)

where σ = −(a2
0 + 4)−1(2 + ia0). Moreover, we define function U0(τ, x) by

U0(τ, x) = ξ3iA exp
(
i
(
3
(
z0ε−1 + Θ

))
x + 3it

)
− ξ

3i A exp
(
− i
(
3
(
z0ε−1 + Θ

)
x
)
− 3it

)
,

where A = −(a2
0 + 4)−1(2 + ia0). Below, by εn = εn(Θ0) we denote a sequence εn → 0, on

which A = −(a2
0 + 4)−1(2 + ia0). We formulate the main result of this section.

Theorem 3. Let conditions (51) be satisfied. We arbitrarily fix Θ0 ∈ [0, 1). Let ξ(τ, x) be a
bounded, for τ → ∞, x ∈ [0, 2π], solution to the boundary problem (53) and (54) for Θ = Θ0.
Then, the function

u0(t, x, ε) =ε(ξ(τ, x) exp(i(z0ε−1 + Θ)x + it) +

+ ξ(τ, x) exp(−i(z0ε−1 + Θ)x− it)) + ε3U0(τ, x),

for ε = εn(Θ0), satisfies the boundary value problem (47), (6) up to o(ε3
n(Θ0)).

4.2. Advective Connection for Small Values of the Parameter σ

Here, we assume that the parameter σ appearing in g(z) is sufficiently small. For some
σ1, the condition

σ = εσ1 (55)

is satisfied. In this case, we have ω = 1, d+0 = a0/2, d−0 = −a0/2. The main difference is
that for each z, the equality g(z) = 1− ε2σ2

1 z2 +O(ε4) holds. Thus, the values of z±0 are not
uniquely determined: z+0 = 2πn + π/2, z−0 = 2πn− π/2 (n = 0,±1,±2, . . .).

Let us make one simplifying assumption. Let the number of elements of the considered
chain N be a multiple of four. Then, the values of z±n ε−1 are integers for all n, and therefore
Θ(ε, z±n ) = 0.

Asymptotic formulas similar to (52) for the roots of λ+
m,n(ε), λ

+
m,n(ε), (m, n = 0,±1,±2,

. . .), whose real parts tend to zero as ε→ 0, have the form

λ+
mn(ε) = i + ε2(a2

0 + 4)−1(2 + ia0)

[
d1 − a1 − d0

(
1
2

m2 + σ2
(

2πn +
π

2

)2

2
)]

+ O(ε4).

These roots correspond to solutions of the linear boundary value problem

um,n(t, x) = exp
[

i
((

2πn +
π

2

)
ε−1 + m

)
x + (i + O(ε2))t

]
.

Therefore, we seek formal solutions of (47) in the form

u(t, x, ε) =ε
(
ξ(τ, x, y) exp(iπ(2ε)−1x + it) + ξ(τ, x, y) exp(−iπ(2ε)−1x− it)

)
+

+ ε3U(t, τ, x, y), τ = ε2t, y = nε−1x, (56)

where U(t, τ, x, y) is 2π periodic with respect to t and x and 1-periodic with respect to y.
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Substitute (56) into (47). After standard operations, we obtain an equation for
U(t, τ, x, y). From the condition of its solvability in the indicated class of functions, we
arrive at a boundary value problem for determining the amplitude ξ(τ, x, y) :

∂ξ

∂τ
=(a2

0 + 4)−1(2 + ia0)

[
− d0

(
1
2

∂2ξ

∂x2 + σ2 ∂2ξ

∂y2 + iσ2 π

2
∂ξ

∂y

)
+

+

(
d1 − a1 − d0σ2 π2

4

)
ξ − ξ|ξ|2

]
, (57)

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y) ≡ ξ(τ, x, y + 1). (58)

Thus, we justify the following result.

Theorem 4. Let (50), (51) and (55) be satisfied and ξ0(τ, x, y) be bounded as τ → ∞, x ∈
[0, 2π], y ∈ [0, 1], by the solution of the boundary value problem (57) and (58). Then, function (56)
for ξ = ξ0(τ, x, y) satisfies the boundary value problem (47), (6) up to o(ε3).

Note that Equations (53) and (57) are equations of Ginzburg–Landau type. It is known
(see, for example, [21]) that their solutions can have complex structures, including irregular.
In this respect, Equation (57) is much more complicated than (53) because it contains two
spatial variables.

5. Fully Coupled Chains of van der Pol Equations

It suffices to consider the most important example of such chains of the form

üj + ε2a1u̇j + uj − u̇u2 = d
1
N

n

∑
k+1

uk, j = 1, . . . , N.

For sufficiently large values of N, we pass to the boundary value problem

∂2u
∂t2 + ε2a1

∂u
∂t

+ u− u2 ∂u
∂t

= d
1∫

0

u(t, s)ds, (59)

u(t, x + 1) ≡ u(t, x). (60)

The behaviour of the solutions of this boundary value problem differs significantly
from the cases considered above. Here, we briefly dwell on the consideration of two cases
depending on the value of the coefficient d.

5.1. The Case of Small Values of the Coefficient d

We assume that for some fixed value d, the condition

d = εd1. (61)

For ε = 0, the linearised boundary value problem

∂2u
∂t2 + u = 0, u(t, x + 1) ≡ u(t, x)

has the same characteristic equation,

λ2 + 1 = 0, (62)

for all modes exp(2πikx), k = 0,±1,±2, . . .. Therefore, under condition (61), we consider
the critical case of an infinite set of pairs of purely imaginary roots with resonances 1 : 1 : . . ..
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We seek solutions of the boundary value problem (59) and (60) based on solutions of (62)
in the form

u(t, x, ε) = U(t, x, ε) + O(ε4), (63)

U(t, x, ε) = ε
(
ξ(τ, x) exp(it) + c̄c

)
+ ε3(u31(τ, x) exp(it) + c̄c+

+u33(τ, x) exp(3it) + c̄c
)
, τ = ε2t.

(64)

Substituting (63) and (64) into (59) and performing standard operations, we find an
expression for u33, and from the condition that the equation is solvable with respect to u31,
we obtain a boundary value problem for determining the unknown amplitude ξ(τ, x). As
a result, we arrive at the relations

∂ξ

∂τ
= −1

2
a1ξ − id

2

1∫
0

ξ(τ, s)ds− 1
2

ξ|ξ|2, (65)

ξ(τ, x + 1) ≡ ξ(τ, x). (66)

u31(τ, x) = 0, u33(τ, x) = − i
8

ξ3(τ, x).

The next statement says that this boundary value problem plays the role of a quasi-normal
form for (59) and (60).

Theorem 5. Let (61) be satisfied and the boundary value problem (65) and (66) have a bounded
solution ξ(τ, x), for τ → ∞, x ∈ [0, 1]. Then, function U(t, τ, x) satisfies the original boundary
value problem (59) and (60) up to O(ε4).

5.2. Quasi-Normal Form for “Average” Values of the Parameter d

A boundary value problem linearised at zero for (59) and (60),

∂2u
∂t2 + ε2a1

∂u
∂t

+ u = d
1∫

0

u(t, s)ds, u(t, x + 1) ≡ u(t, x), (67)

has the characteristic equation

λ2
k + ε2a1λk + 1 =

{
d, if k = 0,
0 if k 6= 0.

Therefore, there is a pair of roots λ0(ε) and λ̄0(ε), where λ0(ε) = iω0 + O(ε) and
ω0 = (1− d)1/2, and infinitely many identical pairs of roots λk(ε) and λ̄k(ε) and λk(ε) =
i +O(ε) (k = ±1,±2, . . .). These roots correspond to solutions of the linear boundary value
problem (67)

uk(t, x, ε) = exp(2πikx + λk(ε)t).

Following the above method, we look for solutions to the non-linear boundary value
problem (59) and (60) in the form u(t, x, ε) = U(t, x, ε) + O(ε4), where

U(t, x, ε) = ε
(
ξ(τ, x) exp(it) + c̄c + η(τ) exp(iω0t) + c̄c

)
+ ε3u3(t, τ, x). (68)

It is important to keep in mind that the Fourier coefficient of function ξ(τ, x) for a
zero-mode harmonic is zero, so

M(ξ(τ, x)) ≡
1∫

0

ξ(τ, x)dx = 0.



Mathematics 2023, 11, 2047 21 of 34

We substitute (68) into (59). After standard operations, we arrive at a system of
equations for determining the unknown amplitudes ξ(τ, x) and η(τ):

∂ξ

∂τ
= −1

2
a1ξ − 1

2
[
ξ|ξ|2 −M(ξ|ξ|2) + 2ξ|η|2

]
, (69)

ξ(τ, x + 1) ≡ ξ(τ, x). (70)

∂η

∂τ
= −1

2
a1η − 1

2
η
[
|η|2 + 2M(|ξ|2)

]
. (71)

Let us formulate the final result.

Theorem 6. Let d < 1 and the boundary value problem (69)–(71) have a bounded solution
ξ(τ, x), η(τ) as τ → ∞, x ∈ [0, 1]. Then, function U(t, τ, x, ε) satisfies the boundary value
problem (59) and (60) up to O(ε4).

In Appendix A.3, the results obtained are applied to the problem of vibrations of
pedestrian bridges.

6. Conclusions

Non-linear integro-differential boundary value problems that arise in the study of
various chains of coupled van der Pol equations were investigated. Critical cases are
singled out in the problem of the stability of the equilibrium state. An important conclusion
is that these critical cases have infinite dimensions. A special technique was developed
for studying the local behaviour of solutions in critical cases based on the construction of
quasi-normal forms for finding the amplitude of solutions to the original boundary value
problem. The above quasi-normal forms can be conditionally divided into three groups.
The first group includes continuum families of equations depending on some parameters
of Schrödinger type, in which the linear part is the same as in the Schrödinger equation.
The number of parameters included in such quasi-normal forms is determined by the
number of basic—asymptotically large—modes of the studied classes of solutions. Ac-
cordingly, the critical cases in the problem of stability are almost naturally called continual
here. For an infinitely large number of such modes, an equation of the Schrödinger type
arises with two spatial variables. Such quasi-normal forms are characteristic of chains with
diffusion-type couplings. They are discussed in Sections 2 and 3 and Appendix A.1.

The second type of quasi-normal forms describes solutions that include one basic
mode. It is determined from the condition of the presence of a “point” critical case in
the problem under study. Such quasi-normal forms are Ginzburg–Landau-type boundary
value problems. Here, we can talk about complex dynamics which are characteristic of the
Ginzburg–Landau equation with one or two spatial variables. Hence, it follows that in the
original problem, the structure of the solutions can be complex. Quasi-normal forms of the
second group are presented in Section 4.

Quasi-normal forms of the third group are typical for problems describing fully
connected chains of equations. These quasi-normal forms are special non-linear integro-
differential equations. Section 5 shows that they can have interesting families of solutions
which are discontinuous in the spatial variable.

Note that in each of the above problems, we study the asymptotes of both regular
(i.e., solutions that smoothly depend on a small parameter) and irregular solutions that
have regular components, as well as solutions that smoothly depend on some large param-
eter. In the latter case, this leads to the appearance of solutions rapidly oscillating in the
spatial variable.

In this work, with the help of solutions to quasi-normal forms, functions are con-
structed that satisfy the original boundary value problem with high accuracy. Even in
regular cases, we are not talking about the asymptotes of exact solutions. The same conclu-



Mathematics 2023, 11, 2047 22 of 34

sion also applies to the works of other authors (see, for example, [25]). From the point of
view of problems of mathematical physics, the obtained conclusions are sufficient. In some
cases, more accurate results can be obtained. For example, in the case when a quasi-normal
form has a rough solution periodic in τ and some nondegeneracy-type conditions are
satisfied, then it is possible to substantiate the existence of an exact solution (torus) for the
original boundary value problem of the same stability and with the same asymptotes as
the cycle in the quasi-normal form.

The proposed methods can also be used to study chains with other types of couplings
with more general non-linearities, as well as with Neumann- or Dirichlet-type boundary
conditions. In this connection, we note the problem of dislocations in a solid given as
an application.

Note that under the condition γ′(δ) 6= 0, where γ(δ) is the oscillation frequency of
solutions with base mode δε−1, the solutions contain different spatial variables x± and
y±. In order to obtain a quasi-normal form with the same spatial variables and spatial
derivatives, certain efforts had to be made. Auxiliary functions f± were introduced and
special partial differential equations were solved to determine these functions.

It is worth noting that, under the condition γ(δ) = 0, i.e., in the non-oscillatory case,
the corresponding quasi-normal forms differ significantly from the quasi-normal forms
in the case of γ(δ) 6= 0 (see Formula (33) and the formulas in Section 3.3). Note that
oscillations in chains can also occur when the van der Pol equation itself has only a stable
stationary solution.

It may be of interest to study chains of coupled van der Pol equations in which the
integral term is replaced by

d
∞∫
−∞

F(s, ε)
∂u(t, x + s)

∂t
ds.

The proposed methods also extend to the study of solutions with an arbitrary number
of basic modes, including those in the presence of resonance relations. In particular, the role
of resonance relations is illustrated by considering problems with an infinite number of
basic modes.

We dwell separately on the role of the parameters σ, θ and c. The parameter σ char-
acterises the depth of the connection between the elements of the chain. For a large σ,
this relationship is significant only between neighbouring elements, while for a small σ,
the influence of relatively distant elements increases. If for a relatively large σ, the quasi
normal form contains derivatives with respect to only one spatial variable, then for a small
σ, differential operators contain derivatives with respect to two spatial variables. Obviously,
the complexity of the solutions in the latter case increases.

Many of the above quasi-normal forms contain the parameter θ, which varies from 0
to 1 depending on the number of elements, N, in the chain. For different θ, the properties of
the solutions of quasi-normal forms can change significantly [26]. Therefore, as N increases,
an infinite process of direct and inverse bifurcations in the quasi-normal form is possible,
and hence it is possible in the original system.

The integer parameter c also shows the changes in the properties of solutions when
the number of elements in the chain changes from N to N + c. It is worth noting that this
parameter is the coefficient of the second spatial derivative in problems with an infinite
number of basic modes of solutions.
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Appendix A

Appendix A.1. Construction of a CNF for Finding the Amplitudes of Multifrequency Solutions

In this section, we briefly describe the new points that arise when the asymptotes of
solutions to the boundary value problem (5) and (6) are based on several periodic solutions
to the linear boundary value problem (10) and (6).

Appendix A.1.1. Dual Frequency Quasiperiodic Solutions

We fix arbitrary positive distinct values of δ1 and δ2, and let γ′(δj) 6= 0 (j = 1, 2). Thus,
δ1,2 do not match integer multiples of 2π. We consider the question of the asymptotes of
the solutions (5), (6) based on the modes K(δ1) and K(δ2),

(
K(δ) = {δε−1 + θ + m, m =

0,±1, . . .}
)
.

We set x±j = x± εγ′(δj)t and

E±j = E±j (t, x, ε) = exp
[

i
(

δj

ε
+ θj

)
x + i

(
γ(δj) + εθjγ

′(δj)
)
t
]

.

An analogue of the asymptotic expression (21) is the equality

u = ∑j=1,2

(
ε1/2

(
ξ j(τ, x+j )E+

j + c̄c + ηj(τ, x−j )E−j + c̄c
)
+

+ε
(

f+j (t1, τ, x)E+
j + c̄c + f−j (t1, τ, x)E−j + c̄c

)
+ . . .

)
,

(A1)

where t1 = εt, τ = ε2t,

f+1 (t1, x, τ) = −(2γ′(δ1))
−1ξ1(τ, x+1 )

( x−1∫
0

(
|η1(τ, x)|2 −M(|η1(τ, x)|2)

)
dx
)
+

+

x−2∫
0

(
|η2(τ, x)|2 −M(|η2(τ, x)|2)

)
dx +

x+2∫
0

(
|ξ2(τ, x)|2 −M(|ξ2(τ, x)|2)

)
dx,

f+2 (t1, x, τ) = −(2γ′(δ2))
−1ξ2(τ, x+2 )

( x−1∫
0

(
|η1(τ, x)|2 −M(|η1(τ, x)|2)

)
dx
)
+

+

x−2∫
0

(
|η2(τ, x)|2 −M(|η2(τ, x)|2)

)
dx +

x+1∫
0

(
|ξ1(τ, x)|2 −M(|ξ1(τ, x)|2)

)
dx,

f−1 (t1, x, τ) = (2γ′(δ1))
−1η1(τ, x−1 )

( x+1∫
0

(
|ξ1(τ, x)|2 −M(|ξ1(τ, x)|2)

)
dx
)
+

+

x+2∫
0

(
|η2(τ, x)|2 −M(|η2(τ, x)|2)

)
dx +

x−2∫
0

(
|η2(τ, x)|2 −M(|η2(τ, x)|2)

)
dx,

f−2 (t1, x, τ) = (2γ′(δ2))
−1η2(τ, x−2 )

( x+1∫
0

(
|ξ1(τ, x)|2 −M(|ξ1(τ, x)|2)

)
dx
)
+

+

x+2∫
0

(
|ξ2(τ, x)|2 −M(|ξ2(τ, x)|2)

)
dx +

x−1∫
0

(
|η1(τ, x)|2 −M(|η1(τ, x)|2)

)
dx.
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The final boundary value problem for finding ξ1,2 and η1,2 has the form

2
∂ξ j
∂τ = −idγ(δj)

[
∂2ξ j
∂x2 + 2iθj

∂ξ j
∂x − θ2

j ξ j

]
− γ(δj)a1ξ j − ξ j

(
|ξ j|2+

+2M(|η1|2 + |η2|2 + |ξ j+1|2)
)
,

(A2)

2
∂ηj
∂τ = idγ(δj)

[
∂2ηj
∂x2 − 2iθj

∂ηj
∂x − θ2

j ηj

]
− γ(δj)a1ηj − ηj

(
|ηj|2+

+2M(|ξ1|2 + |ξ2|2 + |ηj+1|2)
)
,

(A3)

ξ j(τ, x + 2π) ≡ ξ j(τ, x), ηj(τ, x + 2π) ≡ ηj(τ, x), j = 1, 2 (A4)

where ξ j+1 (ηj+1) means that for j = 1, we have ξ j+1 (ηj+1) = ξ2 (η2), and for j = 2, we
have ξ j+1 (ηj+1) = ξ1 (η1).

Additional difficulties arise when formulating a statement similar to Theorem 1. These
difficulties are related to the choice of a sequence εm → 0, such that the values of both
quantities θj(ε) can be replaced by fixed values θj0 (j = 1, 2). Let us illustrate this choice in
more detail.

We fix arbitrarily θ10 and θ20 from the interval [0, 1]. By εm = εm(θ10), we denote a
sequences such that εm → 0 (m → ∞) and θ1(εm) = θ10. Let Ω(θ10) be the set of all limit
points of the sequence θ2(εm) and θ20 ∈ Ω(θ10). Note that there are situations when Ω(θ10)
consists of a single point, and it is possible that Ω(θ10) = [0, 1]. Then, for some subsequence
εmk of sequence εm, the conditions θ1(εmk ) = θ10, θ2(εmk ) → θ20 are satisfied for k → ∞.
Thus, for εmk → 0, the solutions of the boundary value problem (5) and (6) are determined
using the above formulas.

Theorem A1. Let the boundary value problem (A2)–(A4) have bounded solutions ξ j(τ, x), ηj(τ, x),
as τ → ∞, x ∈ [0, 2π], for some fixed values of θj = θj0. Then, the function (A1) satisfies the
boundary value problem (5) and (6) up to o(εmk ) for mk → ∞.

Remark A1. For γ′(δj) = 0 (j = 1, 2), the formulas are substantially simplified. We obtain a
boundary value problem only for ξ1(τ, x) and ξ2(τ, x). Here, x±1 and x±2 coincide with x.

Remark A2. The question of constructing the asymptotics of solutions based on modes from an
arbitrary number of sets K(δ1), . . . , K(δs) is considered similarly.

Appendix A.1.2. The Case of an Infinite Set of Basic Modes

It is of interest to consider an infinite set of basic modes, K =
∞⋃

j=1
K(δj). We first

consider the case when
δj = 2πj (j = 0, 1, . . .). (A5)

Note that for such δj, the value of θj is zero. The main part of the solutions to (5)
and (6) under the condition (A5) is based on the expression

u =
∞

∑
m,n=0

ξmn(τ) exp
(
i(2πnε−1 + m)x + it

)
= ξ(τ, x, y) exp(it), τ = ε2t, y = 2πε−1x

and the periodicity conditions

ξ(τ, x + 2π, y) ≡ ξ(τ, x, y) ≡ ξ(τ, x, y + 2π) (A6)

are satisfied. In the situation under consideration, there is an infinite resonance 1 : 1 : 1 : . . ..
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We seek solutions of the non-linear Equation (5) in the form

u = ε1/2(ξ(τ, x, y) exp(it) + c̄c
)
+ ε3/2(u31(τ, x, y) exp(it) + c̄c+

+u32(τ, x, y) exp(3it) + c̄c
)
+ O(ε2).

(A7)

We substitute the expression (A7) into (5). After standard calculations, at the third
step (collecting the coefficients at ε3/2), we obtain equations for u31 and u32. The second of
these functions is found and the condition for the solvability of the equation with respect
to u31 leads to the appearance of an equation for determining ξ(τ, x, y). In order to write
the corresponding equation in a convenient form, we take into account the equalities

d
∞∫
−∞

F(s, ε)ξ(τ, x + s, y + 2πε−1s)ds =

= d exp(it)
∞∫
−∞

F(s, ε)
∞

∑
m,n=−∞

ξmn(τ) · exp
(
im(x + s) + i2πε−1n(x + s)

)
ds =

= 4d exp(it)
∞

∑
m,n=−∞

ξmn(τ) sin2
(

εm
2

)
exp

(
− σ2(2πn)2 + O(ε)

)
=

= d exp(it)
∂2

∂x2

(
R(ρ)ξ

)
,

where R(ρ) = exp(−σ2ρ2), ρ = ∂/∂y. Then, the boundary value problem for finding the
amplitude ξ(τ, x, y) can be formally written using the infinite differentiation operator with
respect to y in the form

∂ξ

∂τ
= id

∂2

∂x2 R(ρ)ξ +
1
2

a1ξ − 1
2

ξ|ξ|2. (A8)

Finally, we have the following.

Theorem A2. Let the boundary value problem (A8), (A6) have a bounded solution ξ(τ, x, y) for
τ → ∞, x ∈ [0, 2π], y ∈ [0, 2π]. Then, the function (A7) satisfies the original boundary value
problem (5), (6) up to o(ε3/2).

Appendix A.2. Application to the Problem of Dislocations in a Solid

Assume we have the simplest crystal structure, consisting of layers of atoms located
at some distance from each other. J. Frenkel and T. Kontorova proposed a mathematical
model describing the behaviour of a point defect in the crystal structure of a solid [27].
These defects are called dislocations. At present, dislocations are understood as a more
complex imperfection of the crystal structure than any of the point defects [28].

As a reference equation for describing vibrations of an isolated atom, a conservative
second-order equation is used

mü + α sin u = 0.

In [27], the equation of motion of the j-th atom in the lattice,

müj + α sin uj = β[uj+1 − 2uj + uj−1], j = 1, . . . , N, (A9)

was proposed in order to describe dislocations in a solid. Here, m, α and β are positive
coefficients, whereas uj = uj(t, xj) is the deviation of the j-th atom from the equilibrium
position.The function uj(t, xj) satisfies the periodic boundary conditions uN+1 = u1, u0 =
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uN . The values of xj are the angular coordinates of the corresponding point on some circle.
It is assumed that the number of atoms, N, is sufficiently large, i.e., N � 1. Therefore,

ε =
2π

N
� 1. (A10)

Passing to a continuous mass distribution, from (A9), after obvious renormalisations
and replacement of sin u by a more general function f (u), we obtain the equation

u̇ + f (u) = d(u(t, x + ε)− 2u + u(t, x− ε)), (A11)

where d > 0,
u(t, x + 2π) ≡ u(t, x), (A12)

and for f (u) we have

f (u) = au + bu3 + ϕ(y) and ϕ(y) = o(y4) as y→ 0.

It is natural to consider Equation (A11) with a more general coupling

∂2u
∂t2 + f (u) = d

∞∫
−∞

(
Fε(s, ε)− 2F0(s, ε) + F−ε(s, ε)

)
u(t, x + s)ds. (A13)

In [29], one can find interesting results for the case when the coefficient α in (A9) is
sufficiently small. We also refer to the papers [25,30], in which the Fermi–Pasta–Ulam
problem similar to Equation (A9) was considered.

We now consider the problem, under condition (A10), of the behaviour of all solu-
tions to the boundary value problem (A12) and (A13) with initial conditions from some
sufficiently small (and ε-independent) neighbourhood of the zero equilibrium state. The be-
haviour of solutions of the linearised boundary value problem

∂2u
∂t2 + au = d

∞∫
−∞

(
Fε(s, ε)− 2F0(s, ε) + F−ε(s, ε)

)
u(t, x + s)ds, (A14)

for a 2π periodic in x function u(t, x) plays an important role. Its characteristic equation
has the form

λ2 + a = −4d sin2 z
2

, z = εk, k = 0,±1,±2, . . . . (A15)

In what follows, we assume that

a = 1 + ε2a1.

All roots in (A15) are purely imaginary, so (A14) has a critical case of infinite dimension.
We use the same technique as in Section 3 and Appendix A.1. Repeating the corresponding
constructions for (A12) and (A13), we obtain the final quasi-normal forms for finding
the asymptotics of solutions. The only difference between these forms—boundary value
problems—and (24)–(26) and (A2)–(A4) is that instead of cubic non-linearity

−1
2

ξ(|ξ|2 + 2|η|2),
(
− 1

2
η(|η|2 + 2|ξ|2)

)
with a real coefficient, the same non-linearity appears with a purely imaginary coefficient

− 3
2γ(δ)

ibξ(|ξ|2 + 2|η|2),
(
− 3

2γ(δ)
ibη(|η|2 + 2|ξ|2)

)
,
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and−ia1ξ/(2γ(δ)) appears instead of−a1ξ/2. In this case, it is possible to completely split
the corresponding boundary value problems from two coupled equations with respect to ξ
and η into two independent equations. In order to so, we make the Lyapunov substitutions

ξ(τ, x, y) = ξ1(τ, x, y) exp
(

i
2γ(δ)

a1τ +
3bi

2γ(δ)

τ∫
0

J0(|η(s, x, y)|2)ds
)

,

η(τ, x, y) = η1(τ, x, y) exp
(
−i

2γ(δ)
a1τ − 3bi

2γ(δ)

τ∫
0

J0(|ξ(s, x, y)|2)ds
)

.

Note that these formulas imply that

ξ1(τ, x, y) = ξ(τ, x, y) exp
(
−ia1

2γ(δ)
τ − 3bi

2γ(δ)

τ∫
0

J0(|η1(s, x, y)|2)ds
)

,

η1(τ, x, y) = η(τ, x, y) exp
(

ia1

2γ(δ)
τ +

3bi
2γ(δ)

τ∫
0

J0(|ξ1(s, x, y)|2)ds
)

.

Thus, the boundary value problems for determining the amplitudes for rapidly oscil-
lating modes for irregular solutions constitute a system of two independent equations of
the Schrödinger type.

Appendix A.3. Applications to the Problem of Vibrations of Pedestrian Bridges

Appendix A.3.1. Formulation of the Problem

In [31], in connection with the study of the stability of pedestrian suspension bridges,
a model was proposed that takes into account the influence of pedestrians on structural
vibrations

üj + λ(u̇2
j + u2

j − ε)u̇j + ω2uj = −ÿ,

ÿ + 2hẏ + Ω2y = − r
N

N

∑
i=1

üi,
(A16)

where j = 1, . . . , N. Here, the value uj determines the deviation of the “pedestrian” from
the bridge and y specifies the deviation of the bridge. All parameters of this “walker–bridge”
model are positive. They are described in [31,32]. A number of interesting results on the
dynamic properties of this type of model based on studies of synchronisation phenomena
are given in [33–38]. The known results for this problem refer only to systems with a small
number of elements. In this paper, quasi-normal forms are obtained for the most interesting
cases with a large number of elements (pedestrians).

In this paper, we present several analytical results on the collective behaviour of a
chain of coupled oscillators (A16).

The values of uj(t) can be associated with the values of functions of two variables
u(t, xj). Here, xj ∈ [0, 1] are points uniformly distributed on some circle with angular
coordinate xj = 2πN−1 j. With this definition of xj, periodic boundary conditions with
respect to the variable x arise in a natural way. Note that one could also consider points xj
uniformly distributed on the segment [0, 1]. Then, it is more natural to use Neumann-type
boundary conditions. Since this case of a segment does not differ significantly from the case
of a circle, we restrict ourselves to considering the case of periodic boundary conditions.

There are two main assumptions that open the way to the application of analytical
methods. First, we assume that the number of oscillators (pedestrians) is large enough,



Mathematics 2023, 11, 2047 28 of 34

i.e., N � 1. This gives grounds to move from a discrete system with respect to u(t, xj), y(t)
to a continuous spatially distributed boundary value problem for u(t, x), y(t)

∂2u
∂t2 + λ

(
u2 +

(
∂u
∂t

)2

− ε

)
∂u
∂t

+ ω2u = −d2y
dt2 ,

d2y
dt2 + 2h

dy
dt

+ Ω2y = −r
1∫

0

∂2u(t, s)
∂t2 ds,

(A17)

u(t, x + 1) ≡ u(t, x). (A18)

The second limitation is that the ε parameter is small enough:

0 < ε� 1. (A19)

Note that, under this condition, the van der Pol equation

ü + λ[u̇2 + u2 − ε]u̇ + ω2u = 0

has a stable cycle u0(t, ε) = ε1/2ρ0 cos(ωt(1+O(ε))) +O(ε3/2) with period 2π(ω +O(ε))−1,
where ρ0 = (3ω2 + 1)−1/2.

Under condition (A19), consider the behaviour of all solutions to the boundary value
problem (A17) and (A18) with initial conditions from some sufficiently small ε-independent
neighbourhood of the zero equilibrium state.

We introduce some notation. Let

M(v(x)) =
1∫

0

v(x)dx.

In (A17) and (A18), set

u(t, x) = u0(t) + u1(t, x), M(u1) = 0.

As a result, we arrive at the system
∂2u0

∂t2 + λM
((

u2 +

(
∂u
∂t

)2)
∂u
∂t

)
− λε

du0

dt
+ ω2u0 = −d2y

dt2 ,

d2y
dt2 + 2h

dy
dt

+ Ω2y = −r
d2u0

dt2 ,

(A20)

∂2u1

∂t2 + λ

[(
u2 +

(
∂u
∂t

)2)
∂u
∂t
−M

((
u2 +

(
∂u
∂t

)2)
∂u
∂t

)]
− λε

∂u1

∂t
+ ω2u1 = 0. (A21)

Taking into account boundary condition (A18), we have

u1(t, x + 1) ≡ u1(t, x). (A22)

When studying the local dynamics of solutions, an important role is played by the
behaviour of solutions of linearised systems for ε = 0 that are linear in u0, u1 and y:

d2u0

dt2 + ω2u0 = −d2y
dt2 ,

d2y
dt2 + 2h

dy
dt

+ Ω2y = −r
d2u0

dt2 ,
(A23)
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∂2u1

∂t2 + ω2u1 = 0. (A24)

Let us consider two cases separately, when the parameter r is small and when it is not.

Appendix A.3.2. First Case

Let the parameter r be small, i.e., for some fixed value r1 we have

r = εr1. (A25)

The boundary value problem (A22)–(A24) implements the critical case of an infinite
set of pairs of purely imaginary roots ±iω. They correspond to periodic solutions

uk(t, x) = exp(iωt + 2πikx), yk(t, x) = 0 (k = 0,±1,±2, . . .). (A26)

We use the technique for constructing quasi-normal forms developed in [20,38]. We
seek the asymptotes of the solutions to the boundary value problem (A20)–(A22) based on
solution (A26). To do this, we use the formal asymptotic representation

u(t, x) = ε1/2
(

ξ(τ, x) exp(iωt) + ξ̄(τ, x) exp(−iωt)
)
+ ε3/2u3(t, τ, x) + . . . ,

y(t) = ε3/2y3(t, τ) + . . . .
(A27)

where τ = εt is a slow temporal variable, the dependence on x is 1-periodic, ξ(τ, x) are
unknown amplitudes and functions u3 and y3 are 2π/ω periodic in t.

We substitute (A27) into (A20) and (A21) and equate the coefficients of the same
powers of ε. For ε1/2, we obtain an identity, and by collecting the coefficients of ε3/2, we
arrive at a system of equations for u3, y3. The condition for the solvability of this system in
the indicated class of functions is the following equation

∂ξ

∂τ
=

1
2

λξ + γ

1∫
0

ξ(τ, s)ds + bξ|ξ|2 (A28)

together with the boundary conditions

ξ(τ, x + 1) ≡ ξ(τ, x). (A29)

For the coefficients γ and b, we have

γ = r1ω2
[
2(Ω2 −ω2 + 2iωh)

]−1
, b = −1

2
λ(3ω2 + 1).

The following theorem plays a central role; it states that the boundary value prob-
lem (A28) and (A29) is a quasi-normal form.

Theorem A3. Let the condition (A25) be satisfied and the boundary value problem (A28) and (A29)
have a bounded solution ξ(τ, x) as τ → ∞, x ∈ [0, 1]. Then, the 2π periodic in x functions

u(t, x, ε) = ε1/2
(

ξ(τ, x) exp(iωt) + ξ̄(τ, x) exp(−iωt)
)
+

+ε3/2 λi
8 (1−ω2)

(
ξ3(τ, x) exp(3iωt)− ξ̄3(τ, x) exp(−3iωt)

)
,

(A30)

y(t, x, ε) = ε3/2rω2M
([

Ω2 −ω2 + 2ihω
]−1

ξ(τ, x) exp(iωt)+

+
[
Ω2 −ω2 − 2ihω

]−1
ξ̄(τ, x) exp(−iωt)

) (A31)
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satisfy the original system (A17) up to o(ε3/2).

Consider the question of constructing exact solutions to the boundary value prob-
lem (A28) and (A29). Set γ = (γ1 + iγ2)λ/2, b0 = 3ω2 + 1 (b0 > 0).

Under the condition λ/2 + γ1 > 0, we have infinitely many periodic solutions

ξ0(τ, x) =
(
(1 + γ1)b−1

0

)1/2
exp

(
iγ2

1
2

λτ
)

, ξk(τ, x) = b−1/2
0 exp(i2πkx),

(k = ±1,±2, . . .).
It is more interesting to construct solutions that are periodic in τ and piecewise constant

in the spatial variable. For example, we fix an arbitrary (finite) number of intervals from the

segment [0, 1] with a total length of 1/2 and set ξ(τ, x) =
(
(1+ γ1)b−1

0

)1/2
exp

(
iγ2λτ/2

)
,

whereas for other x values from [0, 1], we set ξ(τ, x) = −
(
(1 + γ1)b−1

0

)1/2
exp

(
iγ2λτ/2

)
.

One can construct families of 4π(λγ2)
−1-periodic in τ and 1-periodic piecewise-

continuous in x solutions ξ(τ, x, α, k1, k2) = ρ(x, α, k1, k2) exp(iγ2λτ/2), where

ρ(x, α, k1, k2) =


(
(1 + γ1)b−1

0

)1/2
exp

(
i2πα−1k1x

)
, x ∈ (0, α), k1 = ±1,±2, . . . ,(

(1 + γ1)b−1
0

)1/2
exp

(
i2π(−α)−1k2x

)
, x ∈ (α, 1), k2 = ±1,±2, . . . .

More interesting are the cycles consisting of two steps with different amplitudes in
the interval [0, 1]. To construct them, we fix arbitrarily the parameters α ∈ (0, 1) and
ϕ1,2 ∈ [0, 2π]. Let

ξ0(τ, x) = ρ(x) exp(iδτ), ρ(x) =
{

ρ1 exp(iϕ1), x ∈ [0, α],
ρ2 exp(iϕ2), x ∈ [α, 1].

Substitute this expression into (A28). Then, we obtain a system of four algebraic
equations in five real variables ρ1, ρ2, δ, α and ϕ = ϕ2 − ϕ1 ∈ [0, 2π]

B
(

ρ1
ρ2

)
= δ

(
ρ1
ρ2

)
, (A32)

where

B =

(
αγ2 −(1− α)(γ1 cos ϕ− γ2 sin ϕ)
−αγ1 sin ϕ + αγ2 cos ϕ (1− α)γ2

)
,

b0ρ3
1 = (1 + αγ1)ρ1 + (1− α)(γ1 cos ϕ− γ2 sin ϕ)ρ2, (A33)

b0ρ3
2 = (1 + (1− α)γ1)ρ2 + α(γ1 cos ϕ + γ2 sin ϕ)ρ1. (A34)

The condition for the eigenvalues δ+ and δ− and the corresponding eigenvectors
in (A32) to be real is

4α(1− α) sin2 ϕ ≤ γ2
2(γ

2
1 + γ2

2)
−1. (A35)

Then,

δ± =
1
2

γ2 ±
[

γ2
2 − 4α(1− α) sin2 ϕ · (γ2

1 + γ2
2)

]1/2

and

ρ±2 = c±ρ±1 , where c± = (δ± − αγ2)[(1− α)(γ2 cos ϕ + γ1 sin ϕ)]−1. (A36)
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Given (A35) and (A36), the expressions (A33) and (A34) take the form

b0(ρ
±
1 )

2 = R±1 , where R±1 = 1 + αγ1 + (1− α)c±(γ1 cos ϕ− γ2 sin ϕ), (A37)

b0(ρ
±
1 )

2 = R±2 , where R±2 =
[
(1 + (1− α)γ1)c± + α(γ1 cos ϕ + γ2 sin ϕ)

]
c−3
± . (A38)

We fix the parameter ϕ ∈ [0, 2π] arbitrarily. Denote by Φ±(ϕ) the set of all values
α ∈ [0, 1] for which Equation (A35) holds and R±j ≥ 0 (j = 1, 2). Equating the right parts
in (A37) and (A38), we arrive at

R±1 = R±2 ,

which we consider as an equation with respect to α± = α±(ϕ). In the case when the root
α±(ϕ) of this equation exists and belongs to the set Φ±(ϕ), we determine all elements of the
stepwise periodic solution ρ(x) exp(iδτ) of the boundary value problem (A28) and (A29).

Numerical experiments allowed to establish that, for certain values of the coefficients
in (A28), there are one-parametric families of such stepwise periodic solutions.

Appendix A.3.3. Second Case

Here, we consider the situation when the parameter r 6= 0 and is somehow fixed. We
assume that all roots of the characteristic equation

(λ2 + ω2)(λ2 + 2hλ + Ω2)− rλ4 = 0

for the linear system (A23) have negative real parts. Then, the boundary value prob-
lem (A24), (A22) has infinitely many periodic solutions (A26), where the index k takes the
values ±1,±2, . . .. Due to the fact that k 6= 0 in (A27), there is an additional condition

M(ξ(τ, x)) = 0.

Substituting (A27) into (A17) and (A18) and collecting the coefficients of the same
powers of ε, we obtain a system of equations with respect to 2π/ω-periodic in t functions
u3 and y3. From the solvability condition for this system, we arrive at the equation

2
dξ

dτ
= λξ − λ(1 + 3ω2)(ξ|ξ|2 −M(ξ|ξ|2)) (A39)

with conditions
ξ(τ, x + 1) ≡ ξ(τ, x), M(ξ(τ, x)) = 0. (A40)

Theorem A4. Let the condition r 6= 0 be satisfied and the boundary value problem (A39) and (A40)
have a bounded solution ξ(τ, x) as τ → ∞, x ∈ [0, 1]. Then, the 2π periodic in x functions (A30)
and y(t, x, ε) = 0 satisfy the original system (A17) up to o(ε3/2).

Thus, the resulting boundary value problem is a quasi-normal form in the situation
under consideration.

For example, functions (1 + 3ω2)−1/2 exp(i2πkx), k = ±1,±2, . . . , are periodic solu-
tions to (A39) and (A40).

The equilibrium states for (A39) and (A40) are the family of step functions

ξ(x) =

 (1− α)
(

α(1 + 3ω2)1/2
)−1

, x ∈ [0, α],

(1 + 3ω2)−1/2, x ∈ (α, 1],
(A41)

depending on the parameter α ∈ (0, 1).
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Remark A3. The stepwise solutions constructed above allow an asymptotic study of their stability.
We do not dwell here on this. We only note that some results on the stability of solutions of the
form (A41) are given in [38].

Remark A4. In a more general case, when in the original system (A17) the left side of the first equa-
tion contains, for example, the term γu3, we arrive at a quasi-normal form that differs from (A39)
only in the presence of one more purely imaginary term, 3iλγξ|ξ|2. This leads to the fact that,
instead of a family of equilibrium states in (A39) and (A40), continuum families of solutions periodic
in τ appear with different periods.

Remark A5. When considering the construction of three, four, etc., stepwise solutions with different
amplitudes on the segment [0, 1], multiparametric families of such solutions arise.

An important conclusion is that the dynamic properties of the boundary value prob-
lems (A28) and (A29), (A39) and (A40) are quite rich.

We note that similarly we consider the quasi-linear case when the first equation
in (A17) is replaced by

∂2u
∂t2 + ω2u + ε f

(
u,

∂u
∂t

)
= −d2y

dt2 .

In this case, the quasi-normal form analogous to (A28) has the form

2iω
∂ξ

∂τ
= g(ξ)−M(g(ξ)),

g(ξ) =
ω

2π

2π/ω∫
0

f
(

ξ exp(iωt) + ξ̄ exp(−iωt), iωξ exp(iωt)−

− iωξ̄ exp(−iωt)
)

exp(−iωt)dt

(A42)

and for u(t, τ, x), y(t, τ), we have the asymptotic representations

u(t, τ, x) = ξ(τ, x) exp(iωt) + ξ̄(τ, x) exp(−iωt) + εu1(t, τ, x) + . . . ,

y(t, τ) = εy1(t, τ) + . . . .

It is possible to choose the function f in such a way, for example, in the form of a
polynomial in u and ∂u/∂t of degree 5, such that the oscillations have cluster character; the
boundary value problem (A42), (A40) had stepwise solutions such that different “steps”
oscillated with different periods in t.
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