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1. Introduction

The theory of function spaces with variable exponents, traced back to Orlicz [1], has
gained a lot of attention since the development emerged from the pioneering work of
Kovacik and Rakosnick [2]. In particular, the Morrey space with a variable exponent over
open sets of R” was introduced by [3], and the boundedness of the maximal operator on
this space was proved in the same paper under the log-Holder condition of the variable
exponents. Independently, Kokilashvili and Meskhi [4] studied the boundedness of the
fractional maximal operator and fractional integral operator on the variable exponent
Morrey spaces defined over spaces of homogeneous type in the sense of Coifman and
Weiss [5].

Besov spaces were also extended to the variable case. Indeed, by means of the variable
sequence space I, (Lp(,)), Almeida and Hasto [6] introduced the variable Besov space

al-
Byt

of the basis functions and some basic properties, and gave Sobolev-type embeddings.
Recently, Besov spaces were further generalized to the Morrey-type with variable exponents.
In particular, Almeida and Caetano [7] introduced the Besov—Morrey space with variable
exponents via the Morrey sequence space I,(.)(L,(.),(.)) and proved some elementary
properties for this space.

Over the last decades, the theory of function spaces associated with different operators
attracted great interest and has become a fruitful research topic. Mainly, Auscher, Duong,
and MclIntosh [8] introduced the Hardy spaces H} (R") associated with the operator L,
where L is a linear operator on L?(R") which generates an analytic semigroup {e~*L};-0,
whose kernels have pointwise Gaussian upper bounds. Kerkyacharian and Petroshev
initially introduced Besov and Triebel-Lizorkin spaces associated with operators on a
homogeneous-type space in [9], where they proved embedding theorems, heat kernel
characterization, and frame decomposition. Such spaces are associated with a non-negative
self-adjoint operator whose heat kernels satisfy Gaussian upper bounds, the Holder continu-
ity, and Markov property. Hu [10] gave their characterization by means of the Peetre-type
maximal functions and proved their atomic decompositions. Very recently, Zhuo and
Yang [11] generalized the results obtained in [9] to the variable case. More precisely, they
introduced the variable Besov space associated with heat kernels and proved several char-

(R") and proved that the definition of this space is independent of the choice
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acterizations of this space, such as the Peetre maximal functions characterizations, heat
kernel characterizations, and the frame decomposition.

It is well known that Besov spaces include many important function spaces, such as
Lebesgue, Hardy, and Sobolev spaces. Thus, it is worthwhile to generalize and extend
these spaces to more general settings. Therefore, in this article, we aim to extend the Besov
spaces associated with operators to a more general framework. Indeed, we introduce and
study the Morrefied version of the space investigated in [11]. More precisely, we firstly aim
to study the variable Besov—Morrey space on spaces of homogeneous-type Bzggs ()40) (X),
with a measure satisfying the doubling condition, associated with the non-negative self-
adjoint operator L on L2(X), whose heat kernels satisfy the small-time Gaussian upper
bound and the Holder continuity. We introduce the definition of our space by means of the
Littlewood-Paley-type decomposition and establish its characterizations by means of the
Peetre maximal functions to conclude that different choices of the basis functions in our
definition produce equivalent quasi-norms and yield to the same space. Our second aim is
to prove the atomic decomposition of the variable Besov—Morrey spaces associated with
the operator L.

We finish this introduction by describing the layout of this paper. In Section 2, we
give some notions, definitions, and properties. In Section 3, we introduce the variable
Besov—-Morrey space associated with the operator L by means of a vector-valued inequal-
ity (Theorem 1), establishing its Peetre-type maximal functions characterizations and
atomic decompositions.

As usual, throughout the paper, we denote by N and Z the set of non-negative integers
and the set of integers, respectively, and Nyg = NU {0}. Additionally, by C, ¢, Cy, - - -, we
denote positive constants independent of the parameters, which can differ from occurrence
to occurrence. The symbols A < B and A < B are used for the inequality A < CB and the
compound inequality cA < B < CA, respectively.

2. Preliminaries

In this section, we give some notions, notations, and definitions, and we describe the
assumptions required for the operator L.

The space (X, d) is assumed to be a locally compact metric measure space and y a
positive regular Borel measure (see, for instance, p. 965 in [12], for the definition and more
details about the regular Borel measure), satisfying the doubling condition, i.e., there exists
a positive constant cg such that

u(B(x,2r)) < cou(B(x,r)) forallx € Xandr > 0, (1)

where B(x, r) is the ball with center x and radius r, i.e.,, B(x,r) := {y € X : d(x,y) < r}. We
call the triplet (X, d, i) a space of homogeneous type in the sense of Coifman and Weiss [5].
It is easy to show that (1) implies

u(B(x,xr)) < cox"u(B(x,r)) forallx € X,r >0and x > 1, (2)
where n = log, ¢o > 0.

Forany x,y € X andr € (0,00), wehave B(x,7) C B(y,r+d(x,y)); then, u(B(x,r)) <
u(B(y,r+d(x,y))). Thus, by (2), we have

r

(B < o1+ d“"y))nyw(y,r», &)

where ¢ is as in (1).



Mathematics 2023, 11, 2038

30f22

Let L be a non-negative self-adjoint operator, with a dense domain in L?(X) denoted
by Dom(L). The heat semigroup {e¢~*!'};>¢ arising from L is the family of the integral
operators associated with the heat kernels {p; };>0 defined for any function f € L?(X) by:

e ' f(x) / pe(x,y)f(y)du(y) forany x e X.

We assume that there exist positive constants C; and C; such that the kernels { p; }+>¢ satisfy
the following;:

. Small-time Gaussian upper bound:

Cod(xy)

P )| < (B VOB, V)| “Crem T, @

e  Holder continuity: There exists a T € (0,00) such that for any x,y;,, € X and
t € (0,1] such thatd(x,y) <t,

|pe(x,y1)—pe(x, y2)|

< & (D) (e Vi, v) e L @

e Markov property: Forany x € X and t € (0,1],
/X pe(x,y)du(y) = 1. (©6)

Now, we recall some notions and definitions related to the variable function spaces.
A variable exponent is a measurable function p(-) : X — (0, co]. We set

p— :=essinf,cxp(x) and py := esssup, xp(x)

and
P(X):= {p() variable exponent : 0 < p_ < p; < oo}.

Let p(-) € P(X). The variable Lebesgue space LP()(X) consists of all measurable
functions f : X — R, such that ¢, (f) < oo, where

= [ P Pau(),

equipped with the Luxemburg quasi-norm

p(x)
”fHLP(')(X) ::inf{/\>0:/x<|f(;)|> dy(x)gl}.

One can easily show that for any s € (0, o), we have

P ) = 1 I @)

Letp(-), u(:) € P(X) such that p(x) < u(x), the Morrey space with variable exponents
denoted by M, ()u(-)(X) is defined as the set of all measurable functions f, such that
Hf||M (x) < 0, where

1 1

1AMy ) = sUP VRO P || fxp i e,
xeX,r>0



Mathematics 2023, 11, 2038

4 0f22

here, and hereafter, V;(x) denotes the measure of the ball B(x, r). It is easy to see that the
above norm can be written as

L_L
||f||Mp(.),u(.)(X) ‘= sup lnf{/\ >0: Qp( 4 ([VT( )] SO i%B(x,r)) < 1}-

xeX,r>0

By (7), we can show that for s € (0,00) and f € M, (. ,(.)(X), we have

1A 0 = 17

), 7>
A variable exponent p(-) is said to satisfy the locally log-Holder continuity condition,
and we write p(-) € Hllgcg(X ) if there exists a positive constant cjg(p), such that for any
x,y € X,
Clog (p ) .
log(e+1/d(x,y))’
additionally, we say that p(-) satisfies the globally log-Holder condition, and we denote by

p(+) € Hiog(X) if it further satisfies the log-Holder decay condition with respect to a base
point xo, i.e., there exists poo € R and ce(p) > 0 such that

lp(x) —p(y)| < 8)

Coo(P)
IP() = peol < o )
We recall that for any f € L10 .(X), the Hardy-Littlewood maximal operator M is
defined for all x € X by setting

M()() = sup o [ 1f(w)ldy, ©)

B>x

where the supremum is taken over all balls B of X containing x. The next lemma presents
the boundedness of the Hardy-Littlewood maximal operator on the Morrey space with
variable exponents on homogeneous spaces; for the proof, we refer the reader to Theorem 1
in [13].

Lemma 1. Let (X, d, ) be a space of homogeneous type and p(-) : X — [1,00) and u(-) :
X — [1,00) such that uy < 0, 1/p(-),1/u(-) € Hiog(X) and p(-) < u(-). Then, the Hardy—
Littlewood maximal function is bounded on My.) ,,(.)(X).

Definition 1. Let p(-),u(-),q(-) € P(X) such that p(x) < u(x). Then, the mixed Morrey
sequence spaces L. (Mp( yu() (X)) are the set of all sequences { f;}icn, of measurable functions
on X, such that QL (x)) ({fi}ien,) < oo, where

My()u()

x)) ({fitieny)

Cly) My (

::Z sup infd B; >0:0
i>0xeX,r>0 ﬁg()
1

For any sequence { f;}ien, in Ly (Mp(.) u(.) (X)), its norm in this space is given by

S bienlli, vy oy (X)) 5= inf{)\ > 0501, (M) ) (X)) ({fl}/{eNO) < 1}‘ (10)

We say that a function ¢ : X — [0, o] is the following;:
1. 0(0)=0.
2. o(Ax) =o(x) forallx € X,A € Kwith |A| = 1.
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3. pisconvex.
4. gis left-continuous.
5. o0(Ax) =0forall A > 0 implies x = 0.
If, in addition,
o(x) = 0 implies x = 0,
then ¢ is called a modular. For more details about semimodulars and modulars, we refer
the reader to Chapter 2 in [14].

Remark 1.

1. Byasimilar arqument used for Theorem 3.7 in [7], one can show that QL) (M) (X)) defines
a semimodular on X and a modular if g, < oo; here, and hereafter, q1 := ess sup,.x 4(x).

2. It can be shown that || - ”lq(,) (My(.)u) (X)) defines a quasi-norm, and it is a norm in the following

particular cases:
(@)  Case(1): p(x) > 1and q(x) = vy for any x € X, where v € (0, 00];
(b)  Case(2):1<q(x) <p(x) <u(x) <

|
(c) Case (3): o0 T am S <1

3. Itiseasy to show that for any s € (0,00),

(RUZR = IGY

H{fl}lENOHl (M ( )’

PO 7)
The next lemma gives the relationship between the semimodular and the quasi-norm.

Lemma 2. Let p(-),u(-),q(-) € P(X) such that p(x) < u(x). If g+ < oo or
Qg My (X)) ()‘{fz}z) > 0, then

”{fi}ieNo”lq(‘)(Mp(,),u(,)(X))
1
SmaX{Ql ( ({fl}lGNo) 7/Ql (MF,(,)’,,(.)(X))({fi}iGNO)qJr }

Proof. It can be easily shown that the right-hand side satisfies the inequality appearing
in (10) and, taking into account that we are dealing with a modular, when gy < co. [

Next, we prove a convolution inequality which is considered as a replacement of the
maximal inequalities and is used to prove the results in the next section.
Let 6,0 € (0,00), define

Toa(xy) = (Vﬁ(x)vé(W)% (1+ d()}’y))*”.

Forany f € L{_(X), we define the operator 75, for any x € X by

Bso(F)) = [ a0 (e ) fF)dn(y)

The next result is given in [11].

Lemma 3. Let a(-) € HlOg(X) NL®(X), 6 € (0,1),0 € (n,00) and | € [cipg(a),0). Then,

loc
there exists a positive constant C such that for any x,y € X,

R 6)) M5.001(f)(x)] < Crse (e‘j“(') |f|) (x).

The next theorem is a generalization of the convolution inequality ([7], Theorem 4.6)
to homogeneous-type spaces.
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Theorem 1. Let (X, d, i) be a space of homogeneous type and p(-) : X — [1,00), u(-) : X —
[1,00) and q(-) : X — [0,00) such that p(-) < u(-), 1/p(-),1/u(-) € Hypg(X), 1/9(-) €
Hllgf(X), 0 € (0,1 and o € (n+ cio5(1/9),00), where n is as in (2). Then, there exists a positive

constant C, such that for any {fi}ien, C LL.(X),

{1500 () e,

< Cl|H{fi}: .
lagy My (X)) I Cidietalliy ) a0

Proof. We assume that ||{f; }icn, ||lq< (M) (X)) = 1, and we prove that

H{%i,a(fi)}ieNo

<L
lg(y (Mp()u( (X))

The latter is equivalent to
. 1 <
infeA >0 @y (M0 (X)) X{%i,g(fi)}ieNo <1l,31L
Then, it is enough to prove that there exist some constants ¢ > 0, such that

qu<) (Mp(),u()(X)) ({Cnél,ﬂ(fl)}leNo) S 1/

which is equivalent to

sup inf{/\i >0:
ieNy xeX,r>0

(Ve ()] "0 P& el si o (f7)]
%p() — = XB(x) 31}<1
Al
We claim that
Vo ()]0 P ey, ()
)@ ) eln .
sup infq A; > 0: 0y, V() - oS XBer) | <1
xeX,r>0 /\4(-)
i
V. ()79 79
u(x)  p(x ] .
< sup inf ﬁi>0:Qp(.) [r<x)} =N |fl|)(3(x’r) <1p+27%
xeX,r>0 ,557(')
1

Then, by taking the sum over i, we obtain

sup inf {/\i >0:

icNy x€X,r>0

1 1
[V ()] P& clng o (f)]
() . = XB(xr) | = 1} =3

Al

1

which means
qu()(Mp() u()(X)) (C{nél,{f(fl)}ZENo) S 3

Then, by the connection between the semimodular and the quasi-norm, we obtain

1
<37
gy Mp(),u() (X))

HC{T](gi,g(ﬂ)}iENO
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and the result follows by homogeneity.
We return to the claim. One can easily see that it is a consequence of

1

(Vi (x)] 777 %m () X

Q) T — =L
Ai
where
V,(x)] 0~
u(x) p(x A .
Aj:= sup infd B;>0: Op() [ r(x)] T |fZ|XB(x’r) <1,+4+274
x€X,r>0 IBW
1
It is easy to see that
[V, ()] 77 7] |
p() cl| f;
supQ() | T X | S
xeX,r>
Al
which implies that
a7y <1
My (X)

Note that for any ¢ € (0, c0),

0 ) 6)| = [ e )
<Z/ 11510 (%, ) f () 1dpe(y)

(B(x,6'))

= s (o y) f(y)ldu(y)

Uy(B (X o))

Z gy 1 GO W)

where Uy(B(x,6")) = B(x,6") and for any j € N,

U;(B(x,4")) = B(x,2/6')\B(x,2/714").

) (3), we have
i 4 du

= Jrpu (Ve Vs 0) (14 2 g augy)
(

(11)
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For any j € N, we have

i

- &,))\%i,a(x,y)f(y)ldﬂ(y)
AN

- /u]'(B(x,éf)) (Vy(x)V(;f (y))

S a2 (V@Ve ) 1))

Note that
V(%) = (Vg () (Ve ()
<25 000! (1+ 952) (1 0!
<PV (0))2 (Vs ())?
Then,

iy M W F )

S /B(x,zféi) 27 (Vg (Vi) Y2 0) () )

Vyjgi (x)
. 1
< p—jlo—n) / d , 12
Then, adding the summation on j of (12) to (11), we obtain
5 o (fi)(X)] S M(f)(x) (13)
forany x € X and 0 € (1,0). Thus, by Lemma 3 and (13), we have
15 o (fi) 1
| 1 < ’75",177c10g(1/q) (A 10 f;)
Afl(') Mp(.),u(,)(X) MP(')rl'(')(X)
_1
< HM(A q(*)fi)
My () (X)
My () (X)

where we used Lemma 3 in the first inequality and Lemma 1 in the third inequality.
The proof is complete. [

3. Besov-Morrey Space Associated with Operators

In this section, we give the definition of the Besov—Morrey space with a variable
exponent associated with the operator L and prove that this space can be characterized by
Peetre maximal functions and admit atomic decomposition. To this end, let us recall some
notions and definitions.

If u(X) = oo, the test function space denoted by D(L) is defined as the set of all
functions ¢ € Ny,cz, Dom(L™), such that for any m,y € Ny,

P,y (¢) := sup[l +d(x, x0)]"|[L"p(x)| < co.

xeX
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If 4(X) < oo, the test function space denoted by D(L) is defined as the set of all
functions

Pu(P) == [IL" ¢ 12(x)-
The distribution space D’(L) is the set of all continuous linear functionals on D(L)
equipped with the weak—x topology.
Similarly to [9], let e € (0,1), o, ¢ € C®(R,), such that
supp ¢ C [0,8_1],goézv+1>(0) =0, Vv >0, |[po(A)] > cforany A € [O,s_%], (14)
and .
supp ¢ C [e,e 1], |@(A)] > cforany A € [e%,e1]. (15)

Then, for any A > 0
) lp(27IA)| > ¢ > 0.
i=0

In the sequel, we set @;(A) = ¢(g'A).
By ([9], Corollary 3.5), for any i € Ny, ¢;(/L) is an integral operator with kernel
@:(v/L)(x,-) € D(L) for any given x € X; thus, we may consider

p(VD) (N = [ SV (xp)dp(y)

Definition 2. Let p(-),u(-),q(-) € P(X) such that p(x) < u(x), a(-) € CIOg(X) NL®(X),

loc
and let L be a non-negative self-adjoint operator whose domain is dense in L>(X), satisfying (4)—(6).

The variable Besov—Morrey space ng;i() 4() consists of the set of all f € D'(L), such that

< oo,
la()y (Mp () (X))

{e"Ve(vD)}

T ] |
By )a() %) i€N

where ¢o and ¢ satisfy (14) and (15).
Remark 2. If p(-) = u(-), then the variable Besov—Morrey space BZE;{:
variable Besov space studied in [11].

(24() dates back to the

3.1. Peetre Maximal Function Characterizations
We present the Peetre maximal function characterizations of the Besov—Morrey space
BZE;II/:() a0) (X), from which we conclude that the definition of our space is independent of

the choice of ¢g and ¢ appearing in Definition 2.
Let ¢, ¢ be two functions in S(R4) and a2 > 0. For any f € D'(L), « € P(X) and

i € Ny. The Peetre maximal functions (qb,(ﬁ))*( f) and (qb,(ﬁ))* ()( f) are defined,
a a,u(-
respectively, by setting for any x € X,

(#:(VD)) (F)(x) o= sup[1 + 8~ d(x, )] i (V) F ()

yeX

and
*

(‘Pi(ﬁ))

The first main result for this section is given in the following theorem.

(f)(x) = sup[1+ 6 d(x,y)] 0™ |g: (VL) f ().

au(-) yex
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Theorem 2. Let p(-),u(-) and q(-) be as in Theorem 1, a(-) € Hllscg(X) N L®(X), and o, 1 be
in C®(Ry.), satisfying (14) and (15). Let

3n
(it p o) - amlt/0) "
Then, the following holds:

’X(')fL . : / *
1. fe Bp(‘),u(.),q(.)(X) ifand only if f € D'(L) and ”fHBiﬁfiﬁ,ﬁ(‘),q(,)(X) < oo, where

{0 (D) (0},

a

T—— -
p()u()a() lg(y (Mp(),u() (X))

a(-),L . : / Kok
2. fe Bp(‘)/u(.)’q(.)(X) ifand only if f € D'(L) and ||fHB;E:;:§(<),q<,)(X) < oo, where

{e_m(') (lpi(ﬁ)):ﬁa(-) ) }iENo

Before giving the proof of Theorem 2, we present the following lemma, which comes
from Corollary 3.5 in [9], and Lemma 2.1 in [15].

||f||**(«),L = ‘
Byt 1.90)X)

gy Mp(),u() (X))

Lemma 4.

(1) Let f € C®°(R.), such that for any v,r > 0and A > 0, [f)(A)] < Cy, (1 +A)~" and
F@+1)(0) = 0 for v > 0. Then, for any & > 0, f(6\/L) is an integral operator with kernel
f(6v/'L)(x,y), such that for any x,y € X,

FOVL)(x,y)| < Cotso(x,y).
(2)  For any even function ¢ € S(R..), the kernel (/L)(x,y) of the operator ¢(+/L) belongs to

D(L) as a function of x € X ory € X for any giveny € X or x € X.
(3) Leto € (n,00). Then, forany s,t € (0,00) and x,y € X,

/X 16,0 (xX,2)1p,0 (2, y)dp(z)

C%2n+0+1 . .
N g T max{((S* B)", (B~ 5)”},7max{5/ﬁ},a(x,y).

(4) Leto € (n,00). Then, forany é € (0,00) and x € X,

ZnC()
/X%,a(x/y)dﬂ(]/) ST —ono

The following lemma is just ([11], Lemma 3.8).

Lemma 5. Let ¢, ¢ be two functions in S(R.), satisfying (14) and (15) with ¢ € (0,1) and L
as in Definition 2. Then, for any givenr € (0,1],a € (n/2r,00) and N € (n, o), there exists a
positive constant C depending on a,r, and N, such that, for any i € Ny, f € D'(L) and x € X,

) <x>] .

Proof of Theorem 2. We start by (1). We divide the proof into two steps.

¢irk(VL)(f)

(evD) (H) < [ E 00
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First step: We need to prove that

{09 (/D }

j€No g ) (M, (X))

<

{0 (nvD), (0} 17)

i€No lgcy Mp(),u() (X))

By ([16], Lemma 6.10), there exist functions {(y, ¥} € C*(R. ), satisfying (14) and
(15) such that for any A € R,

i;{pi()\)lpi(/\) =1
Then,
) i=j+2
q’j(/\) = ZO ( )¢z ZZ(PJ Pi(A),
i= i=j

where ¥ 1 = _1(A) = 0. By ([9], Proposition 5.5(b)), for any f € D'(L) and x € X,
we have

i=j+2

o;(VL)(f)(x) = 'Z;z%(ﬁ)lﬂ(ﬁ))l/)i(ﬁ)(f)(x)

i=j

i=j+2
= ¥ [ 6/ k),
i=j—2

where 6; ;(-, -) is the kernel of the operator ¢;(v/L))$;(v/L). From Lemma 4, we have

l9;(VL)(x,9)| S 1 o (x,y) forany x,y € X

and

9i(VL)(y,w)| S 161 o (y,u) forany y,u € X,
where ¢ > a 4 n. Then, by Lemma 4 (3), we obtain

16;(x,y)| = VL) (x,y)$: (VL) (y, u)du(y)
N /X Nei o (X YN o (v, ) du(y) S 1 o (x, 10).
Therefore,
i= ]+2
9; (VL) (f)(x)] 2/ Mei o (%, 9)[9i (VL) (f) () du(y)
i=j—

i=j+2

= ¥ [ teealen [+ y)] e VDE Wldu().

i=j—2
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Thus, by the definition of (gbl(\/f)> ' (f)(x) and Lemma 4 (4), we obtain

a

9 VDADIS L (6VD) (A [ ol m)dn(y)

= ¥ (4vD) (D). (18)

Then, by Remark 1 (2), we have

[{e 00D}

jENo gy (Mp( 1 (X))

<

k=2 . *
{ )3 e‘f“<‘>(¢j+k<¢f))u<f>}
k==2 jeNg

k=2

~D3

k=-2

lg() Mp()u( (X))
*

{70 (VD))

*

{e0(nvD) 0}

(N}

T ol (M (X))

S (19)

la()y (Mp(y () (X))

Second step: we prove the converse part, i.e., we show that for any f € D’'(L)

*

{Em(.) (l/«’z(ﬁ))a(f) }ieNo lg(y (M) (X))

{e"0g(VD)(]

5 ‘

j€No gy (Mp(),u() (X))

It suffices to show that for any f € D'(L),

[{e =0 (nvD), 0}
i€N g ) (M, (X))

Oy}

S ’ (20)

J€No gy (Mp(),u() (X))

Then we use (17) to obtain

[{eso (tpi(m):(f)}ieNo )

S|{e DN}

j€No lg(y Mp(),u() (X))

{0 (av), (0},

a

gy (Mp(),u() (X))

S|{e™Ve(vD ()}

, (21)

JeNo lg(y Mp(),u() (X))

where in the last inequality we used (20) again.
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We return to prove (20). By Lemma 5, for any r € (0,1] and N € (% + |a |, 00),
we have

1

7

(1:(vD) (N < Li ek<Nf">m_f,arn/z(|¢k+i<ﬁ><f>|f)<x>] :

a

Since a is as in (16), there exists r € (0, min{1, &-, Z-}) such that

3n
a> 2 + Clog(’x) + Clog(l/q)'

Then,

*

{Sm(.) <¢i(ﬁ)>a(f)}ieNo

{s—m(‘) { i (K(Nr—n)

k=0

gy Mp(),u() (X))

SJ ‘

7

g0y (Mp(yu( (X))

<o nsa (10 (VENOT )| 1}

[IS\)

by Remark 1 (3), we have

S I .

{Sim(-) i Sk(Nrfn)

k=0

lg(y (Mp()u( (X))

<

~ ‘

T

<oy W (VDT )}

iGNO lq(~)/r (Mp(-)/r,u(-)/r(X))

Thus, by Remark 1 (2) and Lemma 3, we obtain

ei40) (4. (VD))
{ (l/J ( )) a ) }iGNO lgy Mp(u() (X))

00
k(Nr—n+ra_
< { ZS( o )H{Tlei,arn/Zrclog(lX)
k=0

1

X( mm|wAVxﬁ0}

lq /(M )/ru(- /;(X))}

ieNy

[e9)
§ { Zek(Nr—n—&-m,)
k=0

We apply Theorem 1, and we obtain

{0 (wxﬁ)):(f)}i%

{e—(k+f>m<'>|¢k+i<ﬁ><f>|r}

gy Mp(),u() (X))
1

r

X

IS

lq()/y (Mp(<)/r,u(«)/r(X)) }
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Since N € (n/r+ |a_|, 00), we have

{0 (wD)in}
a ieNo 1l (Mp(y (X))

{e 0w}

ieNy lq(') (Mp()u() (X))

Thus, by (19) and (21), the proof of (1) is complete.
Next, we prove (2).

. . . a(-),L
First Step: We firstly show that for any f € Bp(.)/u(_),q(_) (X),

{s"""(') (lpi(ﬁ)):,—zx(')(f)}ieNo

{eg(VD)(£)}

lg(y Mp(),u() (X))

< ‘

~

j€Ng

gy (Mp(),u() (X))

To show this, let r € (0,min{1, 5, %}), a € (3n/2r + cjog(&) + ciog(1/4),00). Then,
from Lemmas 3 and 5, we know that for any i € Ny and x € X,

([1+e-fd<x,y>1 10| gy (VI )f(y)l)r
€ 3N (O BV (),
where N € (1/r,00). By Remark 1 (2), we have
{0 (vt >)a,«<»><f>}ieN0 S

(N
H{ ZS rn) X WNei gr—n /2— rClog (@)

1
r

(e OlpVDNT) }

1€No gy /r(Mp(y ru(yr(X))

Then, applying Remark 1 (2) and Theorem 1, we have

{e0(novD), U >}z-eNo

< |:i gk(Nr—n)

k=0

lg(y (Mp()u( (X))

1
r

{e Ol VD(HI'}

lq(‘>/r(Mp(«)/r,u(~)/r(X))]

ieNy

5 ‘

(gD}

jGNO lq() (Mp(),ll()(x))

By this and a similar argument to the one used in (21), we have

e SNl g
p )ou

N . (22)
w24 %) By yuat) X)
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Second Step: We prove that for any f € D’(L) such that Hf||;(.>,L - < oo,
pCu-)4()
we have

[F[ ey S Ao
By (u(a0) (%) By (u()a0)

By the first inequality in (18) and Lemma 3, we know that for any j € Z4, 0 €
(n+a+ clpg(a),00) and for any x € X,

(x)”

' =2
e Vg (VD) (H ()] S e }ZZ/XW,a(x,y)lﬁi(ﬁ)(f)(y)ldﬂ(y)
i=j—
i=j+2 ‘
S )L /XUsf,a_ck,gm)(x,y)f’]“(”Ilﬁi(ﬁ)(f)(y)ldu(y)/
i=j-2

*

then, by the definition of (zpl- (\/Z)) .
a,—a(-

(f)(x) and Lemma 4 (4), we obtain
i=j+2

OV (NI L (B(VD)

i=j—2 a,—a(:)

(f)(x)

x /X Usi,a—u—clog(a) (x,y)du(y)
i=j+2

S Y (w(VD) (D).

=2 a,~a()
Then, by a similar argument used for (19), we can obtain
(23)

Tilwee
p()u(-

Sl o
()X By,

(a0 X

Thus, by (22) and (23), the proof of (2) is complete, which ends the proof of the theo-
rem. [

3.2. Atomic Characterization
In this subsection, we assume that the measure y satisfies the uniformly bounded
condition, that is,

sup (B(x, 1)) < oo.
xeX

We establish the atomic decomposition of B;E:g’i(.) a() (X). Let us begin by recalling

the following lemma concerning the properties of the Christ’s dyadic cubes [17] on the
space of homogeneous type.

Lemma 6. There exists a collection {Q, : i € Z,a € I;} of open subsets of X, where I; is some
index set (possibly finite) and a constant 6 € (0,1) and Ay, Ay > 0, such that the following holds:

1. u(X\ User, Q4) = O for each fixed i and Q' N Q;; =Qifa #p;

2. Forw,p,i,juwithj >i,either Q C Qpor QN Qy =

3. Foreach (w,i) and j < i, there exists a unique B such that Qi C Q’; ;
4. diam(Q!) < A0, where diam(Q}) := sup{d(x,y) : x,y € Q. };
5. Each Q) contains some ball B(z}, A0"), where z!, € X.

Without loss of generality, we assume that § = 1/2. We denote by D the family of all
dyadic cubes on X. Fori € Z, we set D; = {Q), : « € I;}, so that D = U, D;.
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Definition 3. Let p(-),u(+),q(+), a(-) be positive functions on X such that p(-) < u(-) for almost
every x € X. The sequence space b%ff()) is defined to be the set of all sequences A = {/\Q}QEszoDj'
such that HA”b“(')"’(') < oo, where

p()

()

1M a0 1= 1§67 X 1Aollk(Q)]2xe
p()u() QeD; .
JER0M ) (M (X))

Definition 4. Let K, S € Ny, and let Q be a dyadic cube in D; with j € No. If j > 1, we say that a
function ag € L2(X) is a (K, S)—atom for Q if aq satisfies the following conditions for m = K
and m = —S:
1.  ag € Dom (L™);
2. supp (L™ag) C B(zq, (A1 +1)277);
3. supyex |L"ag(x)] < 8" [u(Q)] 712

Ifj = 0, a function ag € L2(X) is a (K, S)—atom for Q if ag satisfies the above conditions
only form = K.

Lemma 7. Let K, S € Ny, Q be a dyadic cube in D}, j € Ny, ag be a (K, S)—atom for Q, and
N > 0 be arbitrarily large. Suppose that ¢o,¢ € S(R.) such that (-)~™>{SK}p(.) € S(R,).
Then,

CRUDR(QN 2y 5 (v, 20), ifi >,
C’52(j—i)5[y(Q)]l/z%i/N(x,zQ), otherwise.

|9(6'VL)ag(x)| < {

Theorem 3. Let p(-),u(-),q(-) € P(X) such that p(x) < u(x), a(-) € Clof(X) NL®(X), and

lo
let L be a non-negative self-adjoint operator whose domain is dense in L*(X), satisfying (4)—(6).

Let K, S € Ny such that
4n

2K > o4 and 258 > m

+ Clog(‘x) + Clog(l/q) +ta—. (24)

Then, there exists a constant C > 0 such that for any sequence of (K, S)—atoms {aQ}QGUjENO i

Y. ). Ao

j€No QED;

< ClIA ey -
POl

Conversely, there exists a positive constant C, such that for any function f € Bﬁﬁ;'ﬁ(.) a0 (X),

there exist a sequence of (K,S)—atoms {ag}geu,.,p, and a sequence of complex scalars
A = {Ao}Qeuiay, ; such that -

where the sum converges in D' (L). Moreover,

I a0 < ClIFI e : (25)
Bym() B0y )

Before giving the proof of the above theorem, we give the following lemma, which
plays a crucial role in the proof of the second part. For the proof, we refer to [10], Lemma 4.7.

Lemma 8. Let M € N (resp. M = 0). There exists a function { € S(R), such that the following
holds:
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1. A Myp(r) € S(Ry).
. Thereexists e € (0,1) such that [¢(A)| > 0on (e,e=1) (resp.|¢(A)| > 00n (0,e71)).
3. Forallintegers T > —M and for all j € Ny,

supp K z2ipyep(si vy C {(x,y) € X x X :d(x,y) < 6},

where K pipyry(sivi) is the kernel of the operator (69 L)Ty(8/\/L).
4. For every integer T > — M, there exists a constant c depending on T, such that for all j € Ny,

K((sz/'L)w(zsfﬁ)(x'-‘/)‘ < e[Vy(x)]

We also present the following technical lemma, whose proof is similar to the one of
Lemma 6.1 in [7], by establishing the appropriate changes. Indeed, it is a generalization to
the homogeneous spaces case.

Lemma9. Let p(-), p(+), p(+) € P(X) such that p(-) < u(-). Let ¢ > 0and 6 € (0,1). For any
sequence { f; }icn, of non-negative measurable functions on X, we denote

X) = xélj_i‘sﬁ(x), xe X, jeNp.

Then,
H {Fitjen, ’|lq(,)(Mp(,>,u(,)(X)) N H {fi}ien, qu(_)(MP(_M_)(X))'

Proof of Theorem 3. Let K, S € Ny, satisfying (24) and ¢o, ¢ € S(R,), satisfying (14), (15),
and (-)"Mg(-) € S(R) with M > max{K, S}. We decompose the summation as follows:

0o (D (L T haro) 0
jIOQGD]'
<oty Y olle(VE “Q|+Z Y. Agllei(VL)agl,
j=0QED; j=i QeD;

We apply Lemma 7 to obtain

(VDX T Aono) ()

j=0 QeD;

a (X)Z Z |AQ|5 775/N<x ZQ)

57i0c(x)

+ 6 X>Z Y [Agl6®0=D55 w(x,20).
j=1Q€D;

Then

j=0 Q€D;

_|_Z(5(j—i)“(x)+2(]'—i)5 Z (5—f"‘(x)|/\Q|17(5i’N(x,zQ),
j=i QeD;
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where N € (37" + Clog(1/q) + clog (), 25 — ¥ +a— + rclog(tx)> such that2S > 4 + Clog(1/9)
+Clog(a) + a4, where r € (0,min{1, p—,g-}) Now, we set

So={Q €D d(zg,x) < A8V},
Sm={QeD: Ad" "6 < d(zg,x) < Aj5 6N}, m €N,

Bn={z€X:d(x,z) < Ale*(Hm)(Si/\j}, meN,

where A; is as in Lemma 6. We have

Y- 0 MOAQ|[H(Q)) 7 (146 Md(zg,x)) N
QeD;
<(L X o @l¥ o+ am )

m=0 Q€S

We multiply and divide by #(Q) to obtain

Y 5T Mg [1(Q)] 7 (146~ Md(zg, x)) N
QED]
1

S(L o [ L s Nor Q7 Q) o))

QGSTH
Now, we multiply and divide by 7, N (x,2) to

Y Al Q)] 7 (145 Md(zg,x)) N
QGD/‘

S(L o [ % o0l Q) F xolgn (52

m=0 B Qcs,,

(1 5N (s, ) % [HBLE 0 Bz, 0) )12 o)

1Q)
Note that
[1(B(x, 6"))u(B(z, 6 M) V2 _ 67" u(B(zg, Ao " 26"))
Q) ~ 1(B(zg, A207))
5 (5—(3m+j—i/\j)n.
Then,

Y 5O A [1(Q)] 7 (146 Md(zg,x)) N
QGD]

5 ( i 5m[%—3n]5(—j+i/\j)n
m=0
1

x/ y (5jroc(x)|AQ|r[‘u(Q)]zyXQ(z);ymjlz\é,(x,z)dy(zO

Bu Q€S
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Then, by Lemma 3, we have

Y 5O A [1(Q)) 7 (146~ d(zg,x)) N
QED;
< ( i 5m[%73n](5(7j+i/\j)n
m=0
1

g s L 87 Rl (@17 20() )

Qesm
Thus,
sin(x) QD(Zi\/Z)(Z Z )\QQQ) (x)
j=0 QeD;
1
i j—i 2(i—j)K i r '
< YOI e | B @Il Q)] Exe)
j=0 QeD;
" i(;(jfi)a(x)ﬂjfi)(zsf% Gi=phn
j=i
1
X [ﬂéi,l\érrqog(zx)( Z (é_jm(')l/\Qr[V(Q)]_EXQ))] .
QeD;
Note that
_ _i N e (1)
Mo, ey () (0 2) = (Vi (1) Vi () ™2 (1407l y)] T
. . B ) SN e
5 5(]71)(”103(“)71\]7)(‘/5]‘ (x)Vé](]/)) 1/2 [1 +57]d(x,y)] 2 +rey, g(l’é)'
So,
571'04(36) q)(zfi\/Z) ( Z Z AQ”Q) (x)
j:O QEDJ

nmfgr_rqogw( )3 <5fm<'>|AQ|’[u<Q>JEx@)] .

QED]‘

<y (i
j=0

where the map © : Z — R is defined by

o) — 5i(25+“*_%_g_%"’_rclog(“)), ifi>0
§i(K-ay) otherwise.
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Then, by Lemma 9, we have

Y. ) Mg

j€No QED; Byyutra) )
@ - ] r
{]GZNO U l[%A]Nrclog()
1
< | Z 6O @l o) )] )
QeD; i€No Mgy (Mp( (X))

We apply Lemma 1 to obtain

Y. Y. Aodg

jENy QG'D]

{ 175]/ % 7rClug (“)
x (Z IO Aol u(Q)] ém)}
QeD; jeNg Il

S { > (5_j“(')|AQ|[74(Q)]_%XQ)}
J€No ||}

QeD;

~

r

/V(M /ru()/r(X))

9() Mp(),u( (X))

We now pass to showing the converse part. Let K, S € Ny; we choose 4y, € S([0,0)),
satisfying Lemma 8 with M > S. In particular, the couple {¢y, ¢} satisfies (14) and (15).
Then, there exist two functions ¢, ¢ € S([0,0)), such that

Y 9i(A)gi(A) =1forany A € [0,00). (26)
i€Np
It follows that
f= Z ¥i(VL)@;(VL)f forany f € D' (27)
ieNp

For Q € Dy, we set

Ag = [y(Q)}“z(sug l9o(VL)f(y)]) sup IK(gyig (X 9)dp (),
ye xe

otherwise.

= fQ oD @ eo(VL) f()du(y), ifAg #0
LIQ = 0 ‘/}

If Q € D; withi > 1, we set

Aq :=[p(Q)]"*(sup @i (VL) F(y)1)

yeQ

K if\ym ’ d 4
X sy S o Ky v (9 Y)

0, otherwise.

ig = {Xlg Jo Ky vy )@ (VI f(y)duly), ifAg #0



Mathematics 2023, 11, 2038

21 of 22

Then, by (27), we have

f= % [ Kpn CeVDfw)dn(y)

ieNp

= ¥ ¥ [ Ky 0o VDFan(y)

ieNy QeD;

=) Y Agdg,

ieNy QeD;

where the sum converges in D’(L). It is easy to see that
~ 1
aq = Tlpi(\/i)[((l’i(\/z)f)XQ]r
Q

Then, ag € D(LX) N D(L™9) (resp. ag € D(LK)) whenever Q € D; (resp. Q € Dy).
Moreover,

g = immﬁ)[((pi(ﬁ)ﬁm]
_ 5—2im

T g /Q Kgaipyng,(vi) -9 @i (VL) f(y)du(y)

holds for m € {K,—S} (resp., M = K). Then, by Lemma 8, we deduce that for any
Q € Ujen,Dj,ag is a (K, S)—atom up to a multiple constant independent of Q.
Now, for any Q € Ujen, D;, we define

/\Q = CXQ, lZQ = ﬁQ,
where c is a sufficiently large constant independent of Q. Then, ag is a (K, S)—atom and
f=2 Y Ao
i=0 QeD;

where the sum converges in D’ (L) It remains to show (25). Indeed, by Lemma 8, we have,
for any Q € Ujen, D;,

Ail S Q)2 (sup lpi (VL) F(y)]) sup / [Vo-i (x)] 1dp(y)
21 7Q

yeQ d(xzg)< (A1 +1

< Q)2 (sup lg; (VL) f ().

yeQ
Taking a satisfying (16), then
Y 5 I Q)2 x(0) £ Y sups T Vi (VI)f(y)]
QeD; QeD; ¥€Q

< sup 50 (VI)f(y)]
yEB(x,2A1671)

< sup T Plei(VDf ()]
Tyex (1407 (xy))"

=570 (VD)) f(x).
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Then, by Theorem 2, we obtain
I arae) < CIFI ey :
By Bp(ma() (%)

This finishes the proof of the theorem. [
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